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Abstract: The field of cancer research and therapy has been revolutionized by the rapid development of artificial intelligence (AI). 

Focusing on early cancer diagnosis, individualized therapy, and addressing ethical problems, this study seeks to investigate the many 

ways in which AI-driven tools are expanding the frontiers of oncology. This study will revolutionize how early cancer is detected by 

analyzing imaging scans and diagnostic tests using artificial intelligence and machine learning algorithms. The study has mapped out 

automated approaches, with deep learning being the automatic classification crown gem due to its higher performance. Because of this, 

several deep learning network topologies have been created. In deep learning, selecting the best models to address a certain challenge is a 

major challenge. Therefore, an innovative ultrasonic image-based deep learning system based on a matrix dataset to choose the best 

performing networks for cancer detection automatically. Based on this information, the proposed system chooses amongst ResNet99, 

MobileNetX2, and EffNetb0 as the most suitable classification method. The precision of the developed model's categorization was 

97.18% using 10-fold cross-validation. The goal of this project is to progress the field of oncology by addressing the significant ethical 

issues brought about by technological advancements which promise more precise and tailored cancer treatments. 

Keywords: artificial intelligence, personalized medicine, cancer detection, ethical considerations 

1. Introduction 

McCarthy et al. [1] first used the phrase "artificial 

intelligence" (AI), also known as "machine intelligence," 

during a Dartmouth workshop in the summer of 1956. A 

machine that can "learn," or detect and use previously 

taught patterns and correlations between inputs and 

outputs, to make right choices with novel data is referred to 

as an artificial intelligence (AI) [1, 2]. As AI 

implementation techniques, the terms machine learning 

(ML) and deep learning (DL) are usually used 

interchangeably. The link between ML and DL in 

computer science is shown in Figure 1. ML is a branch of 

AI. Thanks to improvements in big data, algorithms, 

processing power, and internet technologies during the past 

ten years, DL has achieved amazing success in a variety of 

fields, including healthcare, speech recognition, automated 

translation, photo categorization, and automated facial 

identification [3]. Since there are so many individuals 

impacted by cancer, there is a great deal of interest in using 

AI to treat cancer patients worldwide. [4]. Pathology and 

radiology pictures are used to make a precise diagnosis of 

cancer, and patient outcomes are predicted, and the 

optimization of treatment decisions. As a result, AI may 

help equalize access to healthcare and enhance treatment 

for cancer [23]. 

Deep learning (DL) takes its cues from the brain's neural 

architecture, employing DNNs to build complex models 

with several hidden layers for data analysis and prediction 

(Figure 1) [5]. DL algorithms feed the machine raw data 

from which it is able to learn the most effective deep 

characteristics that most effectively fit the requirement 

within a training process, in contrast to traditional ML 

methods, where it is necessary to engineer a feature 

extraction tool to transform raw data (like the values of 

pixels of an image) through relevant unfair features before 

data input. [6, 7]. Many basic AI tasks, like image 

identification, Computer vision, automatic voice 

recognition, and NLP, have seen steady improvements 

thanks to DL algorithms, and this capacity likely explains 

why. Therefore, Most cancer-related artificial intelligence 

research now underway uses DL [24]. The most often used 

DL architecture for DNN models is the convolutional 

neural network (CNN). These are being implemented in 
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medical image classification, segmentation, especially 

lesion detection for cancer [8, 9, 10].  

Cancer research, diagnostics, precision medicine, and 

radiation have all benefited from the extensive use of DL 

during the past five years. In addition, in 2018 the FDA 

established a fast-track clearance strategy for AI medical 

algorithms and authorized a number of AI algorithms 

relevant to cancer [25]. 

1.1. Organisation of the paper 

Here is how the rest of the paper is supposed to go 

together. The current literature on cancer diagnosis using 

AI, personalized medicine, and ethics is labelled in Section 

2. The planned model is then designated in detail in 

Section 3, and Section 4 offers the results, then section 5 

elaborates performance validation. Challenges faced are 

discussed in section 6, then comes section 7 which 

summarizes this paper as conclusions and future scope 

details are also mentioned. 

 

 

 

 

 

 

 

 

Fig 1. Overall Diagram of The Research 

1.2 Research Novelty 

• This study uses AI and machine learning to analyze 

imaging scans and diagnostic tests to revolutionize early 

cancer detection. This method might boost cancer 

diagnostic accuracy and speed, improving patient 

outcomes. 

• A novel ultrasonic image-based deep learning system 

uses a matrix dataset to automatically identify the optimum 

deep learning network topologies for cancer diagnosis. 

This method may improve cancer detection and diagnosis, 

saving lives and lowering healthcare costs. 

• The study examines ethical issues raised by cancer 

technological breakthroughs, such as balancing 

individualized medicines with privacy, data security, and 

healthcare resource allocation. AI-driven cancer research 

and treatment technologies are making these challenges 

more essential. 

 

 

2. Literature Review 

2.1. AI-Driven Cancer Detection 

For the purpose of detecting cancer, artificial intelligence 

(AI) models are used to the analysis of medical imagery 

including CT scans, MRI scans, and X-rays. Results from 

several research using AI models for cancer diagnosis are 

encouraging. 

Esteva et al. (2017) [13] built a deep learning system that 

can spot skin cancer in diagnostic images. The algorithm 

outperformed dermatologists in diagnosing skin cancer, 

having a sensitivity of 95% as well as a specificity of 82%. 

In a similar vein, [11] Liang et al. (2019) created a deep 

learning model that has a 94.4% accuracy rate in detecting 

lung cancer from CT images. 

To identify malignant cells in cytological pleural effusion 

pictures, Chen Y. et. al (2019) [14]  created a computer-

aided decision system. The original image quality was 

improved by using median filtering and intensity 

modification. Linear iterative clustering was the method of 

choice with K-means clustering to create a hybrid 

segmentation approach for isolating cell nuclei. Errors are 

calculated for each data point in a K-means clustering 

method by squaring distance from data point to nearest 

centroid in Euclidean space. 

2.1 AI-Driven Personalized Treatment 

Patient data is analysed by AI models for individualised 

care, such as medical history, genetic makeup, and 

treatment response, to develop personalized treatment 

plans. Several research have indicated positive outcomes 

when using AI models for individualized care. 

In a study by Gulshan et al. (2016) [12], researchers used a 

deep learning algorithm to predict who would get severe 

diabetic retinopathy, enabling early detection and 

treatment. In another study by Cheng et al. (2018), To 

better gauge whether or not breast cancer patients would 

respond to chemotherapy, a machine learning model was 

created, allowing for personalized treatment plans [15]. 

The CAD technique for detecting lung cancer was 

developed by Taher et al. [26]. A total of one hundred 

colour photographs of sputum were used, all taken from 

patients at the Tokyo Centre for Lung Cancer. The sputum 

images were analysed by the new CAD technology, and 

the cells were identified as either benign or malignant. 

Bayesian classification was found to be more effective 

than rule-based heuristic classification, another finding of 

the study. Bayesian analysis relies on the calculation of 

posterior probabilities. 

Naeem et al. [27] suggested AI (ML) algorithms for the 

classification of liver cancer using a combined dataset of 

2D CT and MR images. An optimized hybrid-feature 
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dataset was produced after combining the MRI and CT-

filter datasets. The MLP's 99% accuracy is among the most 

encouraging when compared to other communication 

classifiers.  

The idea of modified minimum error thresholding (MET) 

has also been put up by Kalaiselvi et al. [28], who employ 

a fuzzy c-means algorithm for automatic brain tumor 

diagnosis utilizing T2-weighted MRI brain scans.  

Lee et al. discovered the most well-known illnesses, 

including skin disease, lung sickness, breast cancer, and 

prostate cancer. [29] The development of a more flexible 

CAD framework for illness discovery has been motivated 

by experts' usage of continuing agreements involving 

picture-based disease study and a newly anticipated 

distributed computing structure. 

3. Proposed Model 

In this work, a novel matrix-based deep feature generator 

and use it in a new computer vision framework. Our 

feature generator, like exemplar-based deep designs, aims 

to improve classification accuracy, then without the 

complicated time cost of exemplar/patch-based deep 

models. To simplify the example feature creation process 

without sacrificing efficiency, the ultrasonic picture is 

partitioned into lines and columns. Using a 5x5 matrix in 

an exemplar model, for instance, yields 25 exemplars. The 

feature generator should take the 25 produced examples 

and extract features from them. In contrast, our suggested 

methodology only requires 10 matrix to produce a mask 

with a 5x5 matrix size. The other issue with models based 

on deep learning is selecting the best network to address 

the issue. In order to determine the most effective model 

for their purposes, many researchers have relied on trial 

and error. A convolutional neural network is employed 

here to provide such a structure. In order to select the 

optimal model(s), the provided framework produces an 

error vector. High precision for this issue is achieved by 

importing the suggested matrix-based feature generator 

into this framework. The best possible feature vector is 

selected using INCA inside the specified framework. To 

get those outcomes, deep neural network is used. Figure 2 

is a diagram depicting the general structure of the 

suggested procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2. Proposed Matrix-Based Framework Outline 

In the future scheme, ultrasonic images are matrix-divided 

into eight segments (g1, g2,..., g8). Following feature 

combination, the deep feature creation step extracts 9,000 

features from each ultrasonic image. Each pre-trained 

model's fully linked layer is used for this purpose. INCA's 

feature picker takes an initial collection of 9000 features 

and selects the top 1000. We evaluate the accuracy of each 

of the training models by calculating the fraction of times 

its predictions were off utilizing 10-fold cross-validation 

and a support vector machine (SVM) classifier [16]. In this 

arrangement, the loss function is the SVM classifier. The 

ideal pre-trained models for the computer vision issue are 

chosen using the computed loss values. Matrix-based deep 

transfer learning architecture for medical image analysis is 

provided, using the ideal hybrid deep model to address the 

issue of ultrasonic image categorization. (Figure 3). Figure 

3depicts the three primary steps of the proposed 

framework: Classification, feature selection, and feature 

extraction. The model's pseudocode can be found in 

Algorithm 1. 

 

 

 

 

 

 

 

 

 

Fig 3. Proposed matrix-based deep transfer learning 

method using ultrasonic dataset 

Algorithm 1: Pseudocode of the design 

Input: Ultrasound image dataset. 

Output: Outcome. 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 112–120 |  115 

00: Load image dataset. 

01: Insert picture database. 

02: Examine the ultrasound picture database carefully 

separate each picture into matrix. The Feature Extraction 

section elaborates on this process. 

03: Using the pre-trained network, draw in-depth features 

from each matrix and picture. 

04: Make up three unique feature vectors. 

05: From each pre-trained network, choose the 1000 most 

informative characteristics. 

06: Combine these characteristics to create a 3000-element 

long feature vector. 

07: Get the INCA selector working on these three thousand 

characteristics. 

08: Send the features that picked upon to a DNN classifier. 

Images are used to create features for testing, with 

ResNet99, MobilNetX2, and EffNetb0 as the best 

pretrained networks. By using these three networks, 9000-

length feature vectors have been generated. The most 

informative characteristics are indexed. The most 

important characteristics have been selected through the 

use of these indices. In the testing phase, these indices can 

be used instead of NCA [17] and INCA. A DNN classifier 

is used to assign labels to these characteristics. In this part, 

further depth about these stages are analyzed. 

3.1 Feature Extraction 

The suggested matrix-based deep learning architecture's 

feature extraction is the most challenging aspect because 

feature development directly affects the learning model's 

capacity for categorization. The recommended matrix-

based deep pattern synthesizer model chooses features 

twice, using NCA and loss values twice, to extract the 

most helpful features for the classification problem. The 

following are the stages of the described matrix-based deep 

feature extraction model. 

Step 1: Make a total of eight matrix out of the picture. 

𝑓𝑗 = 𝑖𝑘 (: ; 𝑖: + [
𝑚

4
] − 1) , 𝑖 ∈ {1, [

𝑚

4
] , … . 𝑚} , 𝑗 ∈ {1,2,3,4}      

(1) 𝑓𝑗+4 = 𝑖𝑘 (: ; 𝑖: + [
𝑛

4
] − 1) , 𝑖 ∈ {1, [

𝑛

4
] , … . 𝑛} 

      (2) 

Where ik is the ultrasonic image in use, fj is the jth matrix 

formed using Equations (1) and (2), m is the matrix width, 

and n is the matrix height. Therefore, matrices both vertical 

and horizontal have been developed. Using Equations (1) 

and (2), we can see that eight matrices have been 

produced. 

Step 2: 16 pre-trained networks (ResNet20, ResNet60, 

ResNet99, DarkNet20, MobileNetX2, Darknet54, 

Xception, EffNetbo, ShuffleNet, DenseNet101, 

InceptionX3, InceptionResNetX2, GoogleNet, AlexNet, 

VGG18, and VGG21) matrixes and the original ultrasound 

pictures are used to produce features. Given its modular 

design, this framework has the potential to include 

additional pre-trained networks into the created features. 

Using the suggested matrix-based deep framework, we 

choose deep feature generators. The employed pretrained 

networks were first developed for use with the ImageNet 

dataset. There are a million photos in this collection, 

divided into a thousand categories. As a result, 1000 

features are produced by each pre-trained network. The 

final remaining completely linked network has been used 

to obtain these characteristics. 

𝑦𝑛(𝑠, 𝑘) = 𝑉𝑈𝑛(𝑖𝑘), 𝑠 ∈ {1,2,3, … 𝑓𝑖𝑛}, 𝑘 ∈

{1,2, … 1000}, 𝑗 ∈ {1,2, … 16}  (3) 

𝑦𝑛(𝑠, 1000 × 𝑘 + 𝑗) =  𝑉𝑈𝑛(𝑓𝑗), 𝑗 ∈ {1,2, … 8} 

     (4) 

where dim is the total quantity of ultrasonic images 

processed, and 𝑦𝑛 is a vector of features (about 9000 

elements long) extracted from the original image and 

matrix and 𝑉𝑈𝑛  describes the employed nth pre-trained 

network. Each model that has been trained generates 9000 

features by using Equations (3) and (4). The data retrieval 

and merging processes are jointly defined by Equations (3) 

and (4). 

Step 3: Use the NCA selection to reduce the size (f) of the 

feature vectors that were extracted.  

𝑖𝑏𝑛 = 𝑁𝐶𝐴(𝑓𝑛 , 𝑝)    (5) 

𝑓𝑛(𝑠, 𝑘) = 𝑓𝑛(𝑠, 𝑖𝑏𝑛(𝑘))   (6) 

where𝑓𝑛 are features of length 1000 that have been 

carefully chosen. The most informative 1000 

characteristics out of a total of 9000 were selected using 

equations (5) and (6). Idh (qualified indexes based on the 

computed weights) is used to choose the most 

instructive/meaningful features. 

Step 4: Estimate the proportion of false positives for each 

feature vector (x) using a support vector machine (SVM) 

classifier and 10-fold cross-validation. We determine 16 

distinct incorrect classification rates in this paper. 

Step 5: Using the 16 loss values that were provided, pick 

the top three pre-trained models. 

Step 6: Combine the 𝑓𝑛 into one final feature vector.  

Here, loss values are used to choose the top three feature 

vectors. ResNet99 [20], MobileNetX2 [21], The best pre-

trained models for feature extraction in this study are and 

EffNetb0 [22]. Three thousand distinct features make up 

the final feature vector (f). It is explained how to use INCA 

to identify the ideal feature combination while choosing 

features. 
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3.2. Feature Selection 

The INCA, suggested by Tuncer et al. in 2020 [18], is an 

improved and refined version of the NCA. INCA employs 

a loss function and an iterative framework to find the most 

useful characteristics. It's a way for selecting features 

based on parameters. The loop's loss function, as well as its 

beginning and final values, can all be set by the user. As a 

loss function, classifiers have often been employed. 

Defining a loop's range helps speed up the INCA's 

computations. Third-degree (Cubic) SVM and a ten-fold 

cross-validation are used in the loss function, with 100 and 

1000 serving as the initial and final values of the loop, 

respectively. The best characteristics are chosen using 

these criteria from a pool of three thousand. The optimal 

feature vector is 980 elements long. 

3.3. Classification of Matrix-based DNN model: 

Classification is then applied to the proposed matrix-based 

deep neural network model [19]. Deep neural networks 

(DNNs) are a type of ANN that has two or more hidden 

layers. The employed DNN is a backward network 

employing scaled inverse gradient (SCG) for learning as a 

result of the need for gradient computation of functions. 

The SCG algorithm descends using the route with the least 

amount of resistance. Initial weights for a DNN are chosen 

at random, and h (the input to the hidden layers) is 

determined using Eq. 8,  

�̂� = 𝑓(𝐶𝑡𝑗 + 𝑏𝑖𝑎𝑠)    (8) 

Where C (the weights), j (the inputs), and f (the activation 

function) are the relevant variables. After that, we use the 

back propagation approach to recalculate the weights. 

Here, we employ SCG, the most challenging optimization 

strategy, which makes use of orthogonal vectors to achieve 

optimal error reduction. Eqs. 9–11 provide the 

mathematical notation for SCG. 

𝑥 = ∑ 𝑙𝑘𝑑𝑘
𝑛
𝑘=1     (9) 

𝑙𝑘 = 𝑑𝑘𝑏/𝑑𝑘
𝑚𝑇𝑑𝑘    (10) 

Table 1. Produced Confusion Matrix 

TrueClass Estimated Class 

 Benign Malignant Regular 

Benign 432 2 3 

Malignant 6 205 1 

Regular 10 3 120 

Re-call (%) 98.64 96.66 93.24 

Prec (%) 96.65 98.06 97.65 

F1_Value (%) 97.63 97.35 95.36 

𝑑𝑘 = −∆𝑓(𝑥𝑘)   (11) 

the input x, the orthonormal vector d, and the multiplier 𝑙𝑘. 

This optimization strategy involves recalculating weights. 

The effectiveness of the future extraction and choosing of 

features outline is evaluated by feeding the 980 features 

into a SCG-based, three-hidden-layer DNN. There isn't yet 

a method that is widely acknowledged for creating deep 

learning models with the ideal number of layers and 

neuron densities in each layer. The DNN was consequently 

created through trial and error. The number of hidden 

layers, the number of nodes in each hidden layer, the 

number of training steps, the pace of learning and growth, 

and the activation function were all different for every 

experiment. In order to optimize the backpropagation, we 

employed the SCG method. To define the remaining DNN 

hyperparameters, the classification accuracy is determined 

with 10-fold cross-validation for each artificial structure. 

For various hidden layer representation sizes, this process 

is repeated. Using this time-consuming manual process as 

a guide, a DNN with 400, 180, and 40 nodes in its three 

hidden layers yields the best classification result. This 

research makes use of the optimizer defined by the scaled 

conjugate gradient. As the activation function, tangent 

sigmoid is used. In addition, the model employs batch 

normalization. 

4. Results  

Minimal hardware was used to successfully contrivance 

the proposed matrix-based deep learning model. This pre-

owned machine features 16GB of RAM, a 4.20GHz Intel 

Core i7 7700 CPU, a 1TB hard drive, and Windows 10.1 

Professional. Using the MATLAB 2020b programming 

tool, the suggested matrix-based deep learning model has 

been realized. First, MATLAB's Add-Ons are used to bring 

in some already-trained networks, and then some m-files to 

put our ideas into action. The pre-trained networks with 

their default parameters and the pre-trained networks have 

not been subjected to any kind of fine-tuning model. Since 

deep features were generated using transfer learning, no 

parallel programming techniques have been employed. 

Next, measure the efficacy of proposed matrix-based deep 

learning method using a battery of metrics, incorporating 

the geometric mean, F1-score, accuracy, recall, and 

precision. The ensuing confusion matrix is displayed in 

Table 1. Table 1 shows a confusion matrix with predictions 

and their corresponding observed values. Table 2 also 

shows F1-scores, recall rates, and precision rates broken 

down by class. Table 2 displays the performance metrics at 

which the suggested technique succeeded; overall, it 

achieved over 96% and achieved a classification accuracy 

of 97.23%. Ten-fold cross-validation with a DNN classifier 

yielded these outcomes. Figure 4 thus represents the fold-

wise precisions. As can be seen in Figure 4, our solution 

achieved a perfect categorization rate on the third and 

seventh folds. The lowest computed accuracy for the first 
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fold was 85.90%. 

Table 2. Analysis of the Ultrasonic Picture Collection as a 

Whole with the Help of the Suggested Matrix-Based Deep 

Learning Model 

Performance Analysis Outcome (%) 

Acc 97.23 

Prec 97.43 

Re-call 96.21 

F1_Value 96.77 

G-mean 96.14 

The simulation results of confusion matrix is as follows: 

 

Fig 4. Confusion matrix simulation for AI based cancer 

diagnosis 

5 Performance Validation  

The authors of this study suggest a revolutionary matrix-

based deep learning system to improve breast cancer 

diagnosis accuracy. The suggested system is a parametric 

one in which deep features are generated using 16 different 

transfer learning techniques. In addition, eight matrix are 

used. In the feature extraction stage, a feature vector is 

compiled using the best predictions of the best three pre-

trained models. When it came to selecting the optimal 

feature vector, INCA settled on a set of 980 features. Ten-

fold cross-validation is working alongside DNN in the 

classification phase. The findings showed that the 

suggested framework was successful to the tune of 97.23% 

without resorting to any sort of picture enhancement 

technique. The suggested matrix-based model makes use 

of three different techniques for selecting features. Feature 

extraction makes use of the initial two feature selection 

methods, In particular, selecting the top feature vectors and 

then computing an INCA and loss value. Table 3 displays 

the obtained accuracy rates (1-loss) while using Cubic 

SVM to identify top feature vectors. Table 3 displays the 

matrix-level outcomes of the pre-trained nets deployed 

with Cubic SVM. The primary focus of the research is 

improving the efficacy of cancer diagnosis (the best 

accuracy is 90.42 per cent as shown in Table 3). 

 

Fig 5. Matrix-based deep learning model accuracy-fold 

values 

Table 3. Accuracy of 16 Pre-Trained Systems and a Cubic 

Support Vector Machine Cross-Validated by a Factor of 10 

Network 
Accurac

y 
Network 

Accurac

y 

ResNet20 88.19 ShuffleNet 86.05 

ResNet60 88.19 DensNet101 88.19 

ResNet99 90.42 InceptionX3 87.47 

DarkNet20 88.47 
InceptionResNetX

2 
88.39 

MobileNetX

2 
89.12 GoogLeNet 86.89 

Darknet54 87.93 AlexNet 87.84 

Xception 85.63 VGG18 85.63 

EffNetb0 88.92 VGG21 85.01 

 

As a result, INCA is on the combined feature vectors. 

Figure 5 displays the INCA feature selection and 

misclassification rates. Figure 6 shows that in order to get 

optimal classification accuracy, 980 characteristics are 

used. The suggested model utilised 980 features and 

achieved 93.59% accuracy using Cubic SVM. The highest 

accuracy rate is raised from 90.42% to 93.59% by 

combining features and using the INCA technique.  

The matrix-based deep learning model culminates in 

classification. The most informative features were chosen 

via error value calculation using cubic SVM. The use of a 

deep neural network (DNN) improves the classification 

accuracy of the proposed approach. Table 2 shows that 

DNN achieved 97.23% accuracy in its classifications. The 

suggested model's classification accuracy was improved by 

this classifier (DNN) by about 3.6%. 
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Fig 6. Error Rate and Number Of Features Using Proposed 

Model 

Proposed matrix-based model was able to achieve these 

results because it is a cognitive deep image categorization 

model. Most of the studies relied on deep learning models 

to get good results in classification, while others relied on 

augmentation. When compared to various other works, 

proposed model performed the best. There is a plethora of 

CNNs available in the literature, and they are widely 

utilised in computer vision applications to provide good 

classification results. Each of these models has a different 

track record in the picture databases. In order to classify 

cancer, this study developed a comprehensive deep 

framework. Therefore, 16 pre-trained networks' feature 

extraction skills have been evaluated using the data set. 

Local deep features (comprehensive features) have been 

generated using patch-based models with a fixed size. 

However, the complexity of this approximation makes it 

difficult to use. The generation of local deep features in 

less time has been demonstrated, thanks to matrix division. 

Given that it selects optimal models for fixing image 

classification problems, this model qualifies as an 

explainable image classification model. This model is an 

example of a deep feature extraction model that operates 

autonomously. The recommended method's classification 

accuracy is increased by using a deep neural network 

(DNN). Below, we summarize the most important points 

raised by this study. 

• Classification accuracy has been enhanced by using 

deep models and example feature generators, however 

training these models takes a long time. To simplify 

the example model over time without sacrificing 

classification accuracy, a matrix-based approach is 

presented. 

• To determine whether pre-trained networks (CNNs) 

are best suited for a given classification task, a unique 

deep image classification framework is provided.  

• Based on the outcomes of our framework, a technique 

is developed for classifying ultrasonic images 

utilisingResNet99, EffNetb0, and MobileNetX2.  

• To yet, no energy has been made to advance 

classification accurateness by employing an 

augmentation model.  

• The suggested cognitive ultrasonic image 

categorization approach relies on the matrix-based 

deep learning model.  

• Proposed matrix-based model functions admirably.  

• Suggested approach can be utilised to address various 

image classification and computer vision issues in 

future research.  

• The suggested method may be put to the test using 

larger and more comprehensive datasets. 

6 Challenges 

While AI has great promise in the field of cancer research, 

it is currently hindered by a number of obstacles. To 

significantly alter cancer processes of varying proportions, 

the present era of innovation in oncology presents a 

number of obstacles It needs to be defeated. A few of the 

impediments to the successful adoption of AI are rigid 

healthcare systems, regulation, payment, knowledge, and 

practical difficulties. Artificial intelligence classifier and 

predictor models require labelled data for training. Though 

raw data can be easily sent to AI models, datasets still need 

human annotation or, at the very least, curation. It is 

advised to consult several subject-matter experts to ensure 

correct assessment of the data labels during the data-

annotation process. The creation of AI models is 

significantly hampered by the absence of standardized data 

on cancer health as well as by the lack of consistency in 

the collection and storage of unstructured data inside an 

electronic health record (EHR) or unified data platform of 

a single healthcare system. 

Absence of diverse training datasets is a key barrier to 

using AI algorithms and decision-support schemes to 

improve cancer care delivery. When trying to train a 

model, one of the most common issues is a shortage of 

data. Most effective AI models require a large sample size 

in order to be trained to outperform a restricted one. When 

there are more characteristics than there are health records 

in a dataset, we say that the dataset has high 

dimensionality. Dimensionality-reduction and feature-

selection techniques can be applied to the situation at hand, 

but they must be employed properly if desirable outcomes 

are to be achieved. Classes tend to be unevenly distributed 

in medical datasets, especially cancer data. An example of 

class imbalance is when the sample sizes for different 

groups are grossly unequal. Classification models tend to 

give more weight to the class that has the most examples. 

While many current methods excel at addressing inequity 

on binary classes, they often reduction petite when 

confronted with multi-class decorations. 

7 Conclusion 

Smart medical applications will soon be able to help both 

cancer patients as well as physicians save valuable time. 

Thus, automated methods have been extensively laid out in 
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research, with deep learning as the most valuable part of 

automatic categorization techniques due to its superior 

performance. This motivates the development of several 

deep learning network architectures. Selecting the best 

models to address a certain challenge is a major challenge 

in deep learning. In light of this, we provide a novel 

matrix-based deep learning framework that uses an 

ultrasonic image dataset to choose the best performing 

networks for cancer detection automatically. Using this 

data, the suggested system chooses the best classification 

technique among ResNet99, MobileNetX2, and EffNetb0. 

Using 10-fold cross-validation, the generated model 

attained 97.23% classification accuracy. 

Ethical and societal ramifications must be carefully 

considered, however, as is the case with any innovative 

technology. The development and evaluation of AI-driven 

decision support systems, as well as guidelines and 

regulatory frameworks for the use of AI and big data in 

cancer, are crucial for ensuring the moral application of 

these technologies in clinical settings. Better cancer 

treatment and better patient outcomes will result from the 

medical community's recognition and response to these 

obstacles, which will allow AI and big data to be used to 

break down traditional barriers within oncology. By 

tackling the problems of this quickly expanding technical 

landscape, the integration of AI and big data analytics into 

conventional oncology practices holds great potential for 

the development of more efficient, individualized, and 

ethically-driven cancer therapies in the future. 
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