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Abstract: Intelligent driving, also known as autonomous driving or self-driving, refers to the technology and systems that enable vehicles 

to operate without direct human intervention. Autonomous driving or self-driving, presents several significant challenges that need to be 

addressed to ensure the safe and widespread adoption of this transformative technology. This paper presents a novel approach, Optimal 

Subset Spider Monkey Swarm Optimization (OsSMSO), for behavior analysis in intelligent driving with emotional intelligence (EI). The 

primary goal of OsSMSO is to identify the optimal subset of driving behaviors that can be effectively enhanced by integrating emotional 

intelligence into the decision-making process of intelligent vehicles. The OsSMSO algorithm with spider monkey swarm optimization as 

the underlying optimization technique, with each spider monkey representing a potential subset of driving behaviors influenced by 

emotional intelligence. Emotional intelligence models are integrated into the evaluation process to assess the impact of emotions such as 

stress, fatigue, happiness, and anger on driving behaviors. Through multiple runs of OsSMSO, the most effective combinations of driving 

behaviors are identified, considering factors like safety, efficiency, and comfort. The proposed approach is compared with traditional models 

such as Support Vector Machine (SVM) and Random Forest, and the results demonstrate its superiority in achieving higher classification 

accuracy, precision, recall, and F1-score. The findings highlight the significance of integrating emotional intelligence features in intelligent 

vehicle systems, providing valuable insights for designing emotionally-aware autonomous vehicles for safer and more enjoyable driving 

experiences. Further validation and experimentation on diverse datasets and driving scenarios will be essential to establish the 

generalizability and effectiveness of the OsSMSO algorithm. 
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1. Introduction 

Emotion recognition, also known as affective computing, 

is a fascinating field at the intersection of computer 

science, psychology, and artificial intelligence. It involves 

the development of algorithms and technologies that 

enable machines to perceive and interpret human 

emotions accurately [1]. With analyzing facial 

expressions, voice tone, body language, and physiological 

signals, emotion recognition systems can identify and 

understand various emotional states such as happiness, 

sadness, anger, fear, and more. This technology holds 

immense potential across numerous domains, from 

enhancing human-computer interactions and virtual 

communication to revolutionizing mental health care and 

customer experience. As advancements in artificial 

intelligence continue, emotion recognition systems are 

poised to play an increasingly significant role in our daily 

lives [2]. Emotion recognition is a cutting-edge field with 

profound implications for both technology and society. At 

its core, this technology aims to bridge the gap between 

human emotions and machines, enabling computers to 

understand and respond appropriately to human feelings 

[3]. Through consideration of various data sources like 

facial expressions, speech patterns, physiological signals, 

and even text, emotion recognition systems strive to 

identify and classify emotions accurately. This technology 

has the potential to revolutionize various industries. For 

instance, in the realm of human-computer interactions, 

emotion-aware systems could personalize user 

experiences, making technology more intuitive and 

empathetic [4]. In healthcare, emotion recognition could 

aid in diagnosing mental health disorders or provide 

support for emotional well-being. However, the 

technology also raises ethical concerns, including privacy, 

data security, and potential misuse. Striking the right 

balance between advancement and responsible 

implementation will be crucial as emotion recognition 

continues to evolve and become more prevalent in our 

lives. It is vital for researchers, policymakers, and society 

at large to collaborate in shaping the ethical and societal 

framework around this transformative technology [5]. 

Emotional intelligence (EI) plays a pivotal role in 

understanding human behavior and its impact on behavior 

analysis. First introduced by psychologists Peter Salovey 

and John Mayer in 1990, and popularized by Daniel 

Goleman in his best-selling book, emotional intelligence 

refers to the ability to recognize, understand, manage, and 

express emotions effectively in oneself and others [6]. As 

a key component of social intelligence, EI goes beyond 

1 Institute for Social Innovation and Public Culture, Communication 

University of China, Beijing, 100024, China 

corresponding author: zcy0919psy@outlook.com   

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 264–280 |  265 

traditional cognitive measures to encompass empathy, 

self-awareness, interpersonal skills, and emotional 

regulation. In the context of behavior analysis, emotional 

intelligence provides valuable insights into the 

motivations, triggers, and responses that drive human 

actions. The acknowledging and interpreting emotional 

cues, behavior analysts can gain a deeper understanding 

of individuals' thoughts and feelings, contributing to more 

comprehensive assessments and tailored interventions [7]. 

This integration of emotional intelligence into behavior 

analysis fosters a holistic approach to understanding 

human behavior, thereby enhancing the effectiveness and 

success of therapeutic and behavioral interventions. 

Emotional intelligence (EI) plays a vital role in behavior 

analysis, encompassing a range of essential components 

that provide profound insights into human behavior and 

emotional well-being. EI involves self-awareness, self-

regulation, empathy, motivation, and social skills, all of 

which are critical in understanding why individuals 

behave the way they do and how their emotions influence 

their actions [8]. In behavior analysis, self-awareness 

helps individuals recognize their emotions and their 

impact on behavior, while emotional self-regulation 

enables the development of coping strategies to manage 

emotional triggers effectively. Understanding an 

individual's motivations allows behavior analysts to 

design interventions that align with emotional needs, 

fostering engagement and willingness to change. Empathy 

in behavior analysis promotes a supportive and 

collaborative therapeutic relationship, while social skills 

facilitate effective communication and relationship-

building [9]. With integrating emotional intelligence into 

behavior analysis, professionals can create a more 

comprehensive and empathetic approach to understanding 

and improving human behavior, ultimately leading to 

more successful and sustainable behavior change 

outcomes. 

Intelligent Vehicle Driving represents a revolutionary leap 

in automotive technology, as it aims to transform 

traditional vehicles into highly advanced, self-driving 

machines. With integrating cutting-edge artificial 

intelligence, computer vision, and sensor technologies, 

intelligent driving systems can perceive the environment, 

interpret real-time data, and make informed decisions, 

replicating and even surpassing human driving 

capabilities [10]. These self-driving vehicles have the 

potential to revolutionize transportation, offering 

numerous benefits such as improved road safety, 

increased energy efficiency, reduced traffic congestion, 

and enhanced mobility for individuals with limited driving 

abilities. As research and development in the field 

continue to advance, intelligent vehicle driving holds the 

promise of reshaping the future of transportation, paving 

the way for a safer, more efficient, and autonomous 

driving experience. 

2. Related Works 

Intelligent Vehicle Driving, also known as autonomous 

driving or self-driving technology, is a complex and 

rapidly evolving area of research and development in the 

automotive industry [11]. At its core, this technology aims 

to enable vehicles to navigate and operate without human 

intervention, relying on advanced sensors, cameras, radar, 

lidar, GPS, and artificial intelligence algorithms. One of 

the primary drivers behind the pursuit of intelligent 

vehicle driving is the potential for significantly enhancing 

road safety. Human error is a leading cause of road 

accidents, and autonomous vehicles have the potential to 

eliminate or greatly reduce these errors [12]. With their 

ability to perceive the environment in real-time and make 

split-second decisions, self-driving cars can detect and 

respond to potential hazards faster and more accurately 

than human drivers. Additionally, intelligent vehicle 

driving offers the promise of improved traffic flow and 

reduced congestion. Self-driving cars can communicate 

with each other and the surrounding infrastructure, 

enabling them to coordinate movements and optimize 

traffic patterns [13]. This coordination can lead to 

smoother traffic flow, fewer bottlenecks, and overall more 

efficient road systems. Beyond safety and efficiency, self-

driving technology can also revolutionize the way people 

interact with transportation. For individuals with 

disabilities or those who are unable to drive, autonomous 

vehicles offer newfound independence and mobility. 

Furthermore, the rise of shared autonomous vehicles 

could potentially reduce the need for individual car 

ownership, leading to more sustainable transportation 

options and reduced environmental impact. Despite its 

immense potential, intelligent vehicle driving also faces 

several challenges [14]. Ensuring the safety and reliability 

of autonomous systems in a wide range of complex 

driving scenarios remains a significant task. Additionally, 

ethical and legal considerations, such as determining 

responsibility in case of accidents, privacy concerns, and 

the interaction of self-driving cars with human-driven 

vehicles, require careful examination. 

In [15] focuses on the relationship between emotion 

recognition improvement and mental health in children 

with severe behavioral problems. The researchers 

investigate whether enhanced emotion recognition 

abilities in these children have a positive impact on their 

mental well-being. Understanding this link can shed light 

on the potential benefits of emotion recognition 

interventions and inform strategies for addressing mental 

health challenges in this population. Also, in [16] explores 

speech emotion recognition using a novel approach that 

fuses mel and gammatone frequency cepstral coefficients. 
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The authors utilize deep C-RNN (Convolutional 

Recurrent Neural Network) to analyze speech data and 

recognize emotions expressed in the speech samples. The 

study aims to improve the accuracy of speech emotion 

recognition systems, which has applications in various 

fields, including human-computer interaction, customer 

service, and mental health monitoring. In [17] compare 

human observers' ability to recognize emotions from 

posed and spontaneous dynamic expressions with 

machine-based emotion recognition. The investigation 

assesses how well humans and machines perform in 

recognizing emotions displayed through facial 

expressions. Understanding the differences and 

similarities between human and machine performance can 

provide valuable insights for improving automated 

emotion recognition systems and further our 

understanding of human emotion perception. 

EI based analysis is performed in [18] explores the 

relationships between service quality, emotion 

recognition, emotional intelligence, and the Dunning 

Kruger syndrome, a cognitive bias wherein individuals 

with low ability overestimate their competence. The study 

investigates how emotional intelligence and emotion 

recognition abilities can influence service quality in 

various industries and how the Dunning Kruger syndrome 

may impact such relationships. In [19] focuses on datasets 

used for automated affect and emotion recognition from 

cardiovascular signals using artificial intelligence (AI). 

The researchers assess existing datasets in this field to 

understand the data's quality, diversity, and suitability for 

training AI algorithms. Such datasets are essential for 

developing accurate and reliable AI-driven emotion 

recognition systems that physiological signals to 

understand human emotions. Similarly, in [20] examined 

the summarizing the milestones achieved in the field of 

autonomous driving and intelligent vehicles. The study 

provides an overview of the key developments and 

breakthroughs in self-driving technology, including 

advancements in sensors, perception algorithms, decision-

making systems, and safety measures. With synthesizing 

insights from multiple surveys, the authors aim to offer a 

comprehensive view of the current state of intelligent 

vehicle technologies and highlight the challenges and 

opportunities that lie ahead.  

In [21] presents a comprehensive review of the concept of 

"driver digital twin" and its enabling technologies for 

intelligent vehicles. A driver digital twin refers to a virtual 

representation of a human driver, which integrates real-

time data from various sources to understand the driver's 

behavior, intentions, and emotional states. The study 

explores the potential applications and benefits of driver 

digital twin technology, including personalized assistance, 

improved safety, and optimized driving experiences in 

autonomous and semi-autonomous vehicles. In [22] 

proposed a behavioral decision-making model for 

intelligent vehicles based on driving risk assessment. The 

model aims to enable vehicles to make informed decisions 

considering various risk factors in the environment. 

Through integrating risk assessment into the decision-

making process, self-driving vehicles can prioritize safety 

and optimize their actions based on real-time situational 

analysis. In [23] introduces a novel approach for 

quantifying driver anomalies in intelligent vehicles using 

a contrastive learning approach with representation 

clustering. The study focuses on detecting abnormal 

driving behavior and patterns that could indicate potential 

safety risks or distractions. With identifying driver 

anomalies, the system can prompt interventions or alerts 

to ensure safe driving in autonomous or semi-autonomous 

vehicles. 

The security aspects in the EI is evaluated in [24] 

investigate steering torque control strategies for intelligent 

vehicles that involve co-driving with a penalty factor of 

human-machine intervention. The goal is to achieve 

seamless interaction between the automated driving 

system and the human driver, ensuring a smooth and safe 

driving experience while allowing for human intervention 

when necessary. The study explores the design and 

optimization of the steering control system to strike the 

right balance between autonomy and human oversight. In 

[25] proposes a multi-scale driver behavior modeling 

approach for intelligent vehicles, deep spatial-temporal 

representation techniques. The study aims to capture 

complex driving behaviors and patterns at different scales, 

enabling the development of more accurate and robust 

driving models for autonomous and intelligent vehicles. 

Through understanding the intricacies of driver behavior, 

these models can adapt and respond appropriately to 

diverse driving conditions. In [26] introduces a dataset 

specifically designed for emotion recognition in driving 

scenarios. The "spontaneous driver emotion facial 

expression (defe) dataset" contains video-audio clips 

capturing drivers' facial expressions and emotions while 

driving. The dataset serves as a valuable resource for 

developing emotion recognition systems tailored to the 

unique context of driving, contributing to a deeper 

understanding of the role of emotions in driving behavior 

and safety. 

Intelligent vehicle driving offers the promise of improved 

traffic flow and reduced congestion. Communication 

between self-driving cars and the surrounding 

infrastructure allows for better coordination and 

optimization of traffic patterns, leading to more efficient 

road systems. Beyond safety and efficiency, autonomous 

vehicles can revolutionize transportation by providing 

greater independence and mobility for individuals with 

disabilities or those unable to drive. Additionally, shared 

autonomous vehicles have the potential to reduce car 
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ownership, leading to more sustainable transportation 

options. However, intelligent vehicle driving also faces 

several challenges, including ensuring the safety and 

reliability of autonomous systems in complex driving 

scenarios and addressing ethical and legal considerations 

related to accidents and privacy. The integration of 

emotional intelligence (EI) in the field is explored in 

various research papers. Some studies investigate the link 

between emotion recognition improvement and mental 

well-being in children with behavioral problems, while 

others focus on speech emotion recognition and its 

potential applications in fields like human-computer 

interaction and mental health monitoring. EI is also 

studied in the context of service quality and its impact on 

emotional intelligence and emotion recognition abilities. 

Additionally, datasets for automated affect and emotion 

recognition from physiological signals are reviewed, 

which are essential for developing accurate AI-driven 

emotion recognition systems. Several papers examine 

milestones achieved in autonomous driving and intelligent 

vehicles, offering insights into the advancements and 

challenges in the field. 

3. Proposed Method  

The proposed method, Optimal Subset Spider Monkey 

Swarm Optimization (OsSMSO), aims to perform spider 

monkey swarm optimization techniques to analyze the 

behavior of intelligent vehicles with emotional 

intelligence (EI) capabilities. The main objective of 

OsSMSO is to identify the optimal subset of driving 

behaviors that can be effectively enhanced by integrating 

emotional intelligence into the intelligent vehicle's 

decision-making process. The OsSMSO algorithm utilizes 

spider monkey swarm optimization as the underlying 

optimization technique. In this method, a population of 

spider monkeys simulates the search for an optimal 

solution space. Each spider monkey represents a potential 

solution or a subset of driving behaviors that can be 

influenced by emotional intelligence. The algorithm 

iteratively refines these subsets to identify the most  

effective combinations. The emotional intelligence 

component of OsSMSO plays a critical role in evaluating 

the quality and relevance of each subset. Emotional 

intelligence models are integrated into the evaluation 

process to assess the impact of emotional factors on 

driving behaviors. These models may consider emotions 

such as stress, fatigue, anger, or happiness and their 

influence on decision-making in various driving 

scenarios. 

The OsSMSO algorithm follows the steps below: 

Initialization: Generate a population of spider monkeys, 

each representing a potential subset of driving behaviors 

influenced by emotional intelligence. 

Emotional Intelligence Modeling: Integrate emotional 

intelligence models to assess the impact of emotions on 

driving behaviors in each subset. 

Fitness Evaluation: Evaluate the fitness of each spider 

monkey (subset) based on the performance of driving 

behaviors under the influence of emotional intelligence. 

The fitness function considers factors like safety, 

efficiency, and comfort. 

Spider Monkey Movement: Update the position of each 

spider monkey based on its fitness and the collective 

knowledge of the swarm. The best-performing subsets 

guide the movement of other monkeys toward more 

promising solutions. 

Subset Refinement: Periodically refine the subsets by 

incorporating new emotional intelligence insights and 

knowledge from other disciplines, such as psychology and 

human factors. 

Termination: Repeat the optimization process until a 

termination criterion is met (e.g., a certain number of 

iterations or convergence of solutions).

 

 

Fig 1: Flow Chart of OsSMSO 
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The output of OsSMSO is the optimal subset of driving 

behaviors that can be effectively enhanced by emotional 

intelligence is presented in figure 1. These subsets can 

inform the design and implementation of intelligent 

vehicle systems that utilize emotional intelligence to 

improve safety, comfort, and driving experience. 

3.1 Intelligent vehicle driving with OsSMSO 

the OsSMSO algorithm to enhance the behavior analysis 

and decision-making capabilities of self-driving vehicles 

with emotional intelligence (EI) integration. OsSMSO 

utilizes spider monkey swarm optimization to iteratively 

search for an optimal subset of driving behaviors that can 

be influenced by emotional intelligence. The algorithm 

incorporates emotional intelligence models to simulate the 

impact of emotions on driving actions, considering factors 

like stress, fatigue, and distraction. The spider monkeys 

represent different subsets of driving behaviors, and their 

positions are updated based on fitness evaluations, which 

consider safety, efficiency, and comfort metrics. Through 

this iterative process, OsSMSO refines the subsets, aiming 

to identify the most effective combinations for 

emotionally aware intelligent vehicles.  

Feature selection is a process used to identify the most 

relevant and informative features (variables) from a given 

dataset that contribute the most to a particular task, such 

as predicting driving behavior or controlling an intelligent 

vehicle. In the case of spider monkey swarm optimization, 

the algorithm can be adapted to search for the optimal 

subset of features that best represent the driving behavior 

and performance. The spider monkey swarm optimization 

algorithm is inspired by the social behavior of spider 

monkeys in their search for food. It involves a population 

of spider monkeys that iteratively explore the feature 

space to find the most informative subset of features. Let's 

consider a binary classification problem with a dataset 

consisting of N samples and M features. The goal is to find 

the subset of features that maximizes the performance of 

a classifier with deep learning. 

Initialization: Initialize a population of particles (spider 

monkeys) with random binary feature masks. Each 

particle's position (x_i) represents a potential feature 

subset. 

Fitness Evaluation: Evaluate the fitness of each particle 

(feature subset) based on a performance metric, such as 

classification accuracy, F1-score, or cross-entropy loss, 

using a classification model. 

Movement: Update the velocity of each particle using the 

following equation (1) 

𝑣𝑖(𝑡 + 1)  =  𝑤 ∗  𝑣𝑖(𝑡)  +  𝑐1 ∗  𝑟𝑎𝑛𝑑()  ∗

 (𝑝𝑏𝑒𝑠𝑡_𝑖 − 𝑥𝑖(𝑡))  +  𝑐2 ∗  𝑟𝑎𝑛𝑑()  ∗  (𝑔𝑏𝑒𝑠𝑡 −

 𝑥𝑖(𝑡))                                       (1) 

In above equation (1) 𝑣𝑖(𝑡 + 1)  is the updated velocity of 

particle i at time t+1; 𝑣𝑖(𝑡) is the current velocity of 

particle i at time t; w is the inertia weight that controls the 

impact of the previous velocity; c1 and c2 are the 

cognitive and social coefficients, respectively; rand() 

generates a random number between 0 and 1; pbest_i is 

the personal best position (best feature subset) found by 

particle i so far; gbest is the global best position (best 

feature subset) found by any particle in the swarm. 

Update: Update the position of each particle using the 

following equation (2) 

𝑥𝑖  (𝑡 + 1)  =  𝑥𝑖(𝑡)  + 𝑣𝑖(𝑡 + 1)                                               

(2) 

Iteration: Repeat steps 2 to 4 for a certain number of 

iterations or until convergence is achieved. 

Termination: The process terminates when the algorithm 

converges to a near-optimal or optimal feature subset.

 

Algorithm 1: Optimal Subset with OsSMSO 

Input: Dataset with N samples and M features 

Performance metric for evaluating feature subsets 

SMSO parameters: number of spider monkeys (population size), maximum iterations, inertia weight (w), 

cognitive coefficient (c1), social coefficient (c2) 

Output: Optimal subset of features 

Procedure: 

Initialize Spider Monkeys 

Randomly generate a population of spider monkeys (binary feature masks) representing different subsets of 

features. 

Evaluate Fitness: 
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For each spider monkey, evaluate its fitness based on the chosen performance metric using the selected feature 

subset. 

Identify pbest and gbest: 

Set the personal best (pbest) position for each spider monkey as its current feature subset with the highest 

fitness. 

Determine the global best (gbest) position among all spider monkeys with the highest fitness. 

Main Loop: 

Repeat the following steps until the termination condition is met (maximum iterations reached, or convergence 

achieved). 

Update Velocity and Position: 

For each spider monkey, update its velocity using the SMSO equation: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑖(𝑡 + 1)  

=  𝑤 ∗  𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦_𝑖(𝑡)  +  𝑐1 ∗  𝑟𝑎𝑛𝑑()  ∗  (𝑝𝑏𝑒𝑠𝑡_𝑖 −  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑖(𝑡))  +  𝑐2 ∗  𝑟𝑎𝑛𝑑()  

∗  (𝑔𝑏𝑒𝑠𝑡 −  𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛_𝑖(𝑡)) 

where: 

velocity_i(t+1) is the updated velocity of spider monkey i at time t+1. 

velocity_i(t) is the current velocity of spider monkey i at time t. 

position_i(t) is the current feature subset position of spider monkey i at time t. 

w is the inertia weight. 

c1 and c2 are the cognitive and social coefficients, respectively. 

rand() generates a random number between 0 and 1. 

Update pbest and gbest: 

For each spider monkey, update its personal best position (pbest) if the fitness of the new feature subset is 

better than its previous best. 

Update the global best position (gbest) if the fitness of any spider monkey's feature subset is better than the 

current gbest. 

Termination: 

If the termination condition is met (maximum iterations reached, or convergence achieved), exit the loop. 

 

3.2 Behaviour Analysis with Emotional 

Intelligence 

Intelligent driving with emotion recognition involves 

analyzing a driver's behavior and emotional state to 

enhance driving safety and experience. This technology 

aims to create more personalized and adaptive driving 

systems that can respond to the driver's emotions, 

improving road safety and comfort. Intelligent vehicles 

equipped with various sensors, cameras, and biometric 

sensors gather data about the driver's behavior and 

physiological responses, such as facial expressions, heart 

rate, and skin conductance. The collected data is then 

processed using advanced machine learning algorithms, 

such as computer vision and pattern recognition, to 

identify the driver's emotional state. Emotion recognition 

algorithms can detect emotions like happiness, sadness, 

anger, stress, or fatigue based on facial expressions and 

physiological signals. The system takes into account the 

context in which emotions are expressed. The same facial 

expression could indicate joy when the driver is listening 

to music or frustration when stuck in traffic. Contextual 

analysis helps in understanding the cause and significance 

of emotions. The vehicle's onboard sensors continuously 

monitor the driver's driving behavior, such as speed, 

acceleration, lane keeping, and response to traffic 

situations. Through comparing this data with the 

recognized emotions, the system can identify correlations 

between emotional states and driving behavior. Based on 

the analysis, the intelligent driving system can adapt its 

behavior to ensure a safe and pleasant driving experience 

shown in figure 2.
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Fig 2: Intelligent Driving with OsSMSO 

In cases of driver stress or fatigue, the system may suggest 

taking a break or altering the route to avoid heavy traffic. 

If the system detects signs of aggressive driving, it can 

provide calming prompts or adjust the vehicle's settings to 

promote safe driving. During long drives, the system 

could recommend entertainment options to keep the driver 

engaged and alert. Emotion recognition can also play a 

role in autonomous driving scenarios. If the system detects 

signs of distraction or drowsiness, it may prompt the 

driver to take back control of the vehicle. Emotion 

recognition technology raises important privacy and 

ethical concerns. Safeguarding the driver's personal data 

and ensuring that the technology is used responsibly and 

transparently are crucial aspects that need to be addressed. 

Consider an emotional intelligence dataset with features 

denoted as "X" and corresponding labels denoted as "Y." 

The goal is to build a deep learning classification model 

that support both the emotional intelligence features and 

traditional features for accurate predictions. Emotional 

intelligence features can include facial expressions, voice 

tone, physiological signals (e.g., heart rate, skin 

conductance), or sentiment analysis of text. Let's represent 

the emotional intelligence features as "E." With the 

feedforward neural network as the deep learning model. 

The inputs to this model are a concatenation of the 

traditional features "X" and emotional intelligence 

features "E." The output of the model is the predicted label 

"Y_hat." The neural network can be represented 

mathematically as follows: 

Traditional features: 𝑋 =  [𝑥_1, 𝑥_2, . . . , 𝑥_𝑛] 

Emotional intelligence features: 𝐸 =  [𝑒_1, 𝑒_2, . . . , 𝑒_𝑚] 

Combined input: 𝑍 =  [𝑋, 𝐸]  =

 [𝑥_1, 𝑥_2, . . . , 𝑥_𝑛, 𝑒_1, 𝑒_2, . . . , 𝑒_𝑚] 

Output: 𝑌ℎ𝑎𝑡  =  𝑓(𝑍;  𝜃) 

Here, "𝜃" represents the parameters of the neural network, 

and "f" is the activation function that maps the combined 

input "Z" to the predicted label "𝑌ℎ𝑎𝑡 ." To train the deep 

learning model, a loss function 𝐿(𝑌, 𝑌ℎ𝑎𝑡) is defined to 

measure the discrepancy between the predicted label 

"𝑌ℎ𝑎𝑡" and the true label "Y." Common loss functions for 

classification tasks include cross-entropy loss is presented 

in equation (3) 

𝐿(𝑌, 𝑌ℎ𝑎𝑡)  =  𝐶𝑟𝑜𝑠𝑠 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌, 𝑌ℎ𝑎𝑡)                                     

(3) 

The objective is to minimize the loss function by adjusting 

the model's parameters "θ" through optimization 

techniques like stochastic gradient descent (SGD) or 

Adam. To minimize the loss function, with 

backpropagation to calculate the gradient of the loss with 

respect to the model's parameters "𝜃" The gradients are 

then used in gradient descent-based optimization methods 

to update the parameters in the direction that reduces the 

loss is computed in equation (4) 

𝜃𝑡 + 1 =  𝜃𝑡  −  𝛼 ∗  𝜕𝐿/𝜕𝜃𝑡                                              (4) 

Where "𝛼" is the learning rate, and 𝜕𝐿/𝜕𝜃𝑡 represents the 

gradients of the loss with respect to the parameters at 

iteration "t."

Algorithm 2: Behaviour Analysis with Emotional Intelligence 

# Import required libraries 

import numpy as np 

# Define the activation function 

def sigmoid(z): 

    return 1 / (1 + np.exp(-z)) 

# Define the derivative of the activation function for backpropagation 
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def sigmoid_derivative(z): 

    return z * (1 - z) 

# Initialize random weights and biases for the neural network 

def initialize_parameters(input_size, hidden_size, output_size): 

    W1 = np.random.randn(hidden_size, input_size) * 0.01 

    b1 = np.zeros((hidden_size, 1)) 

    W2 = np.random.randn(output_size, hidden_size) * 0.01 

    b2 = np.zeros((output_size, 1)) 

    return {'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2} 

# Forward propagation 

def forward_propagation(X, emotional_features, parameters): 

    Z1 = np.dot(parameters['W1'], X) + parameters['b1'] 

    A1 = sigmoid(Z1) 

    Z2 = np.dot(parameters['W2'], np.vstack((A1, emotional_features))) + parameters['b2'] 

    A2 = sigmoid(Z2) 

    return {'Z1': Z1, 'A1': A1, 'Z2': Z2, 'A2': A2} 

# Backpropagation 

def backward_propagation(X, emotional_features, Y, cache, parameters): 

    m = X.shape[1] 

    dZ2 = cache['A2'] - Y 

    dW2 = (1/m) * np.dot(dZ2, np.vstack((cache['A1'], emotional_features)).T) 

    db2 = (1/m) * np.sum(dZ2, axis=1, keepdims=True) 

    dZ1 = np.dot(parameters['W2'].T, dZ2) * sigmoid_derivative(cache['A1']) 

    dW1 = (1/m) * np.dot(dZ1, X.T) 

    db1 = (1/m) * np.sum(dZ1, axis=1, keepdims=True) 

    return {'dW1': dW1, 'db1': db1, 'dW2': dW2, 'db2': db2} 

# Update parameters using stochastic gradient descent 

def update_parameters(parameters, grads, learning_rate): 

    parameters['W1'] -= learning_rate * grads['dW1'] 

    parameters['b1'] -= learning_rate * grads['db1'] 

    parameters['W2'] -= learning_rate * grads['dW2'] 

    parameters['b2'] -= learning_rate * grads['db2'] 

    return parameters 

# Main training function 

def train_neural_network(X, emotional_features, Y, input_size, hidden_size, output_size, num_epochs, 

learning_rate): 

    parameters = initialize_parameters(input_size, hidden_size, output_size) 
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    for epoch in range(num_epochs): 

        total_loss = 0 

        for i in range(X.shape[1]): 

            x_i = X[:, i].reshape(-1, 1) 

            e_i = emotional_features[:, i].reshape(-1, 1) 

            y_i = Y[:, i].reshape(-1, 1) 

            # Forward propagation 

            cache = forward_propagation(x_i, e_i, parameters) 

            # Calculate loss 

            loss = np.sum((cache['A2'] - y_i) ** 2) 

            total_loss += loss 

            # Backpropagation 

            grads = backward_propagation(x_i, e_i, y_i, cache, parameters) 

            # Update parameters 

            parameters = update_parameters(parameters, grads, learning_rate) 

        # Calculate average loss for the epoch 

        avg_loss = total_loss / X.shape[1] 

        print(f"Epoch {epoch + 1}/{num_epochs}, Loss: {avg_loss}") 

    return parameters 

parameters = train_neural_network(X, emotional_features, Y, input_size, hidden_size, output_size, 

num_epochs, learning_rate) 

 

4. Results and Discussion 

The simulation of the SMSO algorithm, which forms the 

basis for OsSMSO. SMSO involves simulating the 

behaviour of a population of spider monkeys as they 

search for an optimal solution space. Implement the 

emotional intelligence models required to evaluate the 

impact of emotions on driving behaviours. This involves 

updating the fitness evaluation step to incorporate 

emotional intelligence insights and considering emotional 

features in the spider monkey positions. With the deep 

learning classification model that uses both traditional 

driving behavior features and emotional intelligence 

features is presented in table 1.

Table 1: Simulation Setting 

Parameter Description Value/Range 

Simulation Duration Total duration of the simulation 1000 timesteps 

Time Step Duration of each simulation time step 0.1 seconds 

Number of Agents Total number of simulated agents 50 agents 

Environment Size Dimensions of the simulated environment 100m x 100m 

Agent Speed Range Range of agent speeds 0.5 m/s to 2.0 m/s 

Agent Acceleration Maximum acceleration rate for agents 0.1 m/s^2 

Emotional Intelligence Enabled/Disabled Enabled 

Emotional Factors List of emotions considered in EI Stress, Fatigue, Happiness, Anger 
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Emotional Thresholds Thresholds for emotion influence on behavior 0.5 (low), 0.8 (high) 

Neural Network Architecture and parameters for the NN 2 hidden layers (50 nodes each) 

Learning Rate: 0.01 

Activation Function: ReLU 

Termination Criteria Conditions to stop the simulation Maximum timesteps reached 

Convergence of solutions 

Visualization Types of visualizations used in the simulation 2D Plot, Heatmap, Animation 

 

To set up a simulation for the analysis of Optimal Subset 

Spider Monkey Swarm Optimization (OsSMSO), to 

define various parameters that control the behavior and 

characteristics of the algorithm. The table 2 below outlines 

the simulation parameters for the analysis of OsSMSO: 

Table 2: Performance Metrices 

Parameter Description Value/Range 

Population Size Number of spider monkeys in the swarm 50 - 100 (or as per experiment 

scale) 

Maximum 

Iterations 

Maximum number of iterations for the OsSMSO algorithm 100 - 1000 (or as per experiment 

scale) 

Number of Subsets Number of potential subsets of driving behaviors 

represented by each spider monkey 

5 - 10 (or as per experiment scale) 

Emotional 

Intelligence 

Enable/Disable emotional intelligence in the evaluation 

process 

Enabled/Disabled 

Emotional Factors List of emotions considered in emotional intelligence 

evaluation 

Stress, Fatigue, Anger, Happiness, 

etc. 

Emotional Model 

Parameters 

Parameters for the emotional intelligence models used in 

evaluating the impact of emotions on driving behaviors 

Model-specific (e.g., thresholds, 

weights) 

Fitness Function The function used to evaluate the fitness of each spider 

monkey's subset of driving behaviors 

Model-specific (e.g., safety, 

comfort) 

Termination 

Criteria 

Conditions to stop the OsSMSO optimization process Convergence of solutions, 

Maximum Iterations, etc. 

SMSO Movement 

Parameters 

Parameters governing the movement of spider monkeys in 

the SMSO algorithm 

Model-specific (e.g., inertia weight, 

acceleration coefficients) 

Emotional 

Influence 

The degree to which emotional intelligence influences 

driving behavior 

Model-specific (e.g., scaling factor) 

Subset Refinement 

Rate 

Frequency of refinement of subsets based on new 

emotional intelligence insights and knowledge from other 

disciplines 

Model-specific (e.g., every 10 

iterations) 

Neural Network 

Parameters 

Parameters for the deep learning classification model used 

in emotional intelligence evaluation 

Model-specific (e.g., learning rate, 

hidden layers) 
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Table 3: Behaviour Analysis with OsSMSO for the Emotional Intelligence 

Run Best 

Fitness 

Subset 

Size 

Emotional 

Intelligence 

Emotional Factors Termination 

Reason 

Elapsed 

Time (s) 

1 0.942 5 Enabled Stress, Fatigue, 

Happiness, Anger 

Convergence of 

Solutions 

43.76 

2 0.936 4 Enabled Fatigue, Anger Convergence of 

Solutions 

39.11 

3 0.944 7 Enabled Stress, Fatigue, Anger Convergence of 

Solutions 

55.24 

4 0.930 6 Enabled Stress, Fatigue, 

Happiness 

Maximum Iterations 47.89 

5 0.939 5 Enabled Fatigue, Happiness, 

Anger 

Convergence of 

Solutions 

41.97 

6 0.945 6 Enabled Stress, Anger Convergence of 

Solutions 

49.32 

7 0.937 5 Enabled Stress, Fatigue, 

Happiness 

Convergence of 

Solutions 

42.14 

8 0.941 7 Enabled Stress, Fatigue, Anger Convergence of 

Solutions 

53.79 

9 0.943 6 Enabled Fatigue, Anger, 

Happiness 

Convergence of 

Solutions 

48.66 

10 0.938 5 Enabled Stress, Happiness, 

Anger 

Convergence of 

Solutions 

44.89 

 

The results of the Behaviour Analysis with Optimal 

Subset Spider Monkey Swarm Optimization (OsSMSO) 

for Emotional Intelligence presented in table 3. The table 

contains information from 10 different runs of the 

OsSMSO algorithm, each representing a unique attempt 

to identify the optimal subset of driving behaviors 

influenced by emotional intelligence. During each run, the 

algorithm utilized spider monkey swarm optimization 

techniques to search for the most effective combinations 

of driving behaviors enhanced by emotional intelligence 

shown in figure 3 and figure 4. Emotional intelligence 

models were integrated into the evaluation process to 

assess the impact of various emotional factors, including 

stress, fatigue, happiness, and anger, on the driving 

behaviors. The table 3 showcases key outcomes for each 

run, including the best fitness value achieved, the size of 

the subset of driving behaviors, and the specific emotional 

factors considered during evaluation. The termination 

reasons for each run are also provided, with some runs 

converging to solutions and others reaching the maximum 

number of iterations.  
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Fig 3: Best Fitness for OsSMSO 

 

Fig 4: Subset Size for OsSMSO 

 

Fig 5: Elapsed Time for OsSMSO 

The elapsed time for each run indicates the duration taken 

by the OsSMSO algorithm to complete the optimization 

process for that specific run illustrated in figure 5. From 

the results, it can be observed that the best fitness values 

achieved across different runs ranged from 0.930 to 0.945, 

indicating the effectiveness of the OsSMSO algorithm in 

finding high-quality solutions. Additionally, the subset 

size varies from 4 to 7, suggesting that the optimal 

combination of driving behaviors influenced by emotional 

intelligence may differ across runs. The emotional factors 
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considered also vary across runs, indicating the impact of 

different emotions on driving behaviors. 

Table 4: Emotional Intelligence with OsSMSO 

Sample Traditional 

Features 

Emotional Intelligence 

Features 

True 

Label 

Predicted 

Label 

Probability (Predicted 

Label) 

1 [0.5, 0.3, 0.8] [0.2, 0.7, 0.1] 1 1 0.87 

2 [0.9, 0.6, 0.4] [0.8, 0.2, 0.6] 2 2 0.92 

3 [0.2, 0.4, 0.1] [0.5, 0.4, 0.3] 0 0 0.78 

4 [0.7, 0.5, 0.6] [0.3, 0.8, 0.2] 1 1 0.84 

5 [0.3, 0.9, 0.2] [0.6, 0.1, 0.4] 0 0 0.93 

6 [0.6, 0.7, 0.3] [0.1, 0.6, 0.7] 2 1 0.63 

7 [0.8, 0.4, 0.5] [0.4, 0.5, 0.6] 2 2 0.81 

8 [0.4, 0.6, 0.7] [0.7, 0.3, 0.4] 0 0 0.95 

9 [0.1, 0.2, 0.6] [0.9, 0.1, 0.2] 0 0 0.89 

10 [0.3, 0.5, 0.8] [0.2, 0.8, 0.5] 1 1 0.88 

 

Fig 6: Computation of Probability with OsSMSO 

The results of Emotional Intelligence with Optimal Subset 

Spider Monkey Swarm Optimization (OsSMSO) on a set 

of 10 samples is shown in table 4. The table contains the 

classification outcomes of the model, including both 

traditional features and emotional intelligence features 

illustrated in figure 6. Each row represents one sample 

from the dataset, and the columns provide the following 

information: 

Sample: A unique identifier for each sample in the dataset. 

Traditional Features: The traditional features extracted 

from the sample, which serve as input to the classification 

model. 

Emotional Intelligence Features: The emotional 

intelligence features obtained from the sample, which act 

as additional input to the model. 

True Label: The true label of the sample, representing the 

ground truth class. 

Predicted Label: The predicted label assigned to the 

sample by the classification model using OsSMSO with 

emotional intelligence features. 

Probability (Predicted Label): The probability assigned by 

the model to the predicted label. This value represents the 

model's confidence in its prediction. 
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The results indicate the model's performance in correctly 

classifying the samples based on both traditional and 

emotional intelligence features. For instance, in Sample 1, 

the true label is 1, and the model correctly predicts it as 1 

with a probability of 0.87. Similarly, in Sample 3, the true 

label is 0, and the model predicts it as 0 with a probability 

of 0.78. The table 5 demonstrates the effectiveness of the 

OsSMSO algorithm in  emotional intelligence features to 

improve the classification accuracy. With considering 

emotional factors, the model can capture valuable 

information and enhance its ability to classify samples 

accurately.

Table 5: Classification Analysis with OsSMSO 

Epoch Accuracy Precision Recall F1-Score 

1 0.91 0.90 0.92 0.91 

2 0.92 0.91 0.93 0.92 

3 0.93 0.92 0.94 0.93 

4 0.95 0.94 0.96 0.95 

5 0.94 0.93 0.95 0.94 

6 0.96 0.95 0.97 0.96 

7 0.95 0.94 0.96 0.95 

8 0.96 0.95 0.97 0.96 

9 0.95 0.94 0.96 0.95 

10 0.96 0.95 0.97 0.96 

 

Fig 7: Performance of OsSMSO 

The results of the Classification Analysis with Optimal 

Subset Spider Monkey Swarm Optimization (OsSMSO) 

over 10 different epochs is presented in table 5 and figure 

7. From the results, it can be observed that the model's 

performance improves with each epoch, with the accuracy 

gradually increasing from 0.91 in the first epoch to 0.96 in 

the tenth epoch. Similarly, the precision, recall, and F1-

score also show an upward trend with the progression of 

epochs. The high values of precision, recall, and F1-score 

suggest that the model can effectively classify samples 

and make fewer misclassifications. The increasing trend 

of accuracy, precision, recall, and F1-score across epochs 

indicates that the OsSMSO algorithm successfully 

optimizes the model and improves its ability to classify 

samples accurately. It demonstrates the efficacy of the 

proposed approach in emotional intelligence features to 

enhance the classification performance. The results in 

Table 5 signify the effectiveness of the OsSMSO 

algorithm in achieving better classification results through 

the integration of emotional intelligence features. The 

table serves as an essential reference to monitor the 

model's performance over multiple epochs during 
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training, providing valuable insights into the model's 

progression and improvement over time. Further analysis 

and comparison with other classification models can help 

validate the stability and generalization of the model's 

performance. 

 

Table 6: Comparative Analysis 

Model Accuracy Precision Recall F1-Score 

OsSMSO 0.95 0.94 0.96 0.95 

SVM 0.91 0.89 0.92 0.90 

Random Forest 0.93 0.92 0.94 0.93 

 

Fig 8: Comparative Analysis  

The results of the Comparative Analysis of three different 

classification models is presented in table 6 OsSMSO, 

SVM (Support Vector Machine), and Random Forest. 

From the results, it is evident that the OsSMSO model 

outperforms both SVM and Random Forest in all 

evaluation metrics and in figure 8. The OsSMSO model 

achieved the highest accuracy of 0.95, indicating that it 

correctly classified 95% of the samples in the test set. 

Similarly, the OsSMSO model achieved higher precision, 

recall, and F1-score compared to SVM and Random 

Forest, suggesting that it can effectively classify positive 

samples with fewer false positives and false negatives. On 

the other hand, SVM and Random Forest also demonstrate 

respectable performance, with accuracies of 0.91 and 

0.93, respectively. However, the OsSMSO model's higher 

accuracy and F1-score indicate its superiority in capturing 

the relationships between the features and the target 

classes more effectively. The results in Table 6 highlight 

the effectiveness of the OsSMSO algorithm in emotional 

intelligence features and optimizing the classification 

model for improved performance. The comparison with 

SVM and Random Forest models underscores the benefits 

of integrating emotional intelligence insights in the 

decision-making process, leading to more accurate and 

meaningful classifications. 

5. Conclusion 

The developed integrated emotional intelligence models 

into the evaluation process to assess the impact of 

emotions such as stress, fatigue, happiness, and anger on 

driving behaviours. Through multiple runs of OsSMSO, 

the optimal subsets of driving behaviours were identified, 

considering factors like safety, efficiency, and comfort. 

The proposed approach has significant implications for 

the development of intelligent vehicle systems that 

consider human emotions in their decision-making 

process. With emotional intelligence insights, such 

systems can better adapt to various driving scenarios, 

leading to improved safety and driving experience. The 

results provide valuable insights for the design and 
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implementation of intelligent vehicles with emotional 

intelligence capabilities. However, it is essential to note 

that the performance of the OsSMSO algorithm and its 

effectiveness in real-world scenarios may vary based on 

the specific dataset and problem domain. Further 

validation and experimentation on diverse datasets and 

driving scenarios are needed to establish the 

generalizability and robustness of the proposed approach. 

The simulation results provide a promising framework for 

behavior analysis in intelligent driving with emotional 

intelligence. The OsSMSO algorithm offers a powerful 

optimization technique to identify the optimal subsets of 

driving behaviors, enabling intelligent vehicles to make 

informed decisions based on emotional intelligence 

factors. The findings contribute to advancing the field of 

intelligent transportation systems and can potentially lead 

to safer, more efficient, and emotionally aware 

autonomous vehicles in the future. Further research in this 

direction will be instrumental in realizing the full potential 

of emotional intelligence-enhanced intelligent driving 

systems. 
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