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Abstract: Space design is to create spaces that cater to the needs and preferences of the people who will use them. This can involve 

designing residential spaces such as homes and apartments, commercial spaces like offices and retail stores, and public spaces such as 

museums, libraries, and recreational areas. This paper presents a novel approach for Landscape Health Activity Space Design, with 

Reliability Multi-Objective Optimization (RMOO) to create sustainable and user-centric outdoor environments that promote physical 

activity and mental well-being. The RMOO model computes a balance between greenery density, pathway length, and accessibility while 

considering budget constraints. Through the RMOO process, a diverse set of Pareto solutions was obtained, offering decision-makers 

multiple landscape design options to choose from. The proposed RMOO model uses the Pareto optimization model with the computation 

of the multi-optimization factors. Sensitivity analysis was conducted to assess the robustness of the solutions to uncertainties, aiding in the 

selection of stable design configurations. Convergence analysis demonstrated the optimization algorithm's effectiveness in improving 

solutions over generations. The simulation environment confirmed the proposed designs' positive impact on physical activity and mental 

well-being, enhancing the overall landscape health. The RMOO approach offers a valuable tool for designing healthier and more sustainable 

outdoor spaces, contributing to improved public well-being and a greener future. 
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1. Introduction 

Landscape Health Activity Space Design is a holistic 

approach that integrates landscape architecture, health and 

wellness principles, and activity planning to create 

outdoor spaces that promote physical activity, mental 

well-being, and overall health for users [1]. This design 

philosophy recognizes the profound influence of the 

natural environment on human health and seeks to harness 

the therapeutic potential of outdoor spaces. With blending 

active design, biophilic elements, inclusivity, and 

sustainability, Landscape Health Activity Space Design 

aims to enhance the quality of life, foster community 

engagement, and nurture a profound connection between 

people and nature. Through this innovative approach, 

individuals can experience the numerous health benefits 

of spending time in thoughtfully designed outdoor 

environments, contributing to healthier, happier, and more 

vibrant communities [2]. Landscape Health Activity 

Space Design takes a comprehensive and interdisciplinary 

approach to create outdoor spaces that go beyond 

traditional aesthetics and functional considerations. It 

recognizes that the built environment has a profound 

impact on human health and well-being, and by 

purposefully integrating health-promoting elements into 

the landscape, it can enhance the overall quality of life for 

individuals and communities [3]. 

One of the fundamental principles of Landscape Health 

Activity Space Design is the promotion of physical 

activity [4]. The design of landscapes and outdoor spaces 

is carefully planned to encourage movement and exercise. 

This can include the incorporation of walking and cycling 

paths, jogging trails, fitness stations, sports facilities, and 

open green spaces for recreational activities. With 

providing opportunities for physical activity, the design 

supports active living and addresses sedentary lifestyles, 

which are linked to various health issues [5]. 

Incorporating biophilic elements is another key aspect of 

Landscape Health Activity Space Design. Biophilia refers 

to the innate human connection with nature, and 

incorporating natural elements into the landscape, such as 

greenery, water features, and natural materials, can have 

numerous positive effects on human well-being. Exposure 

to nature has been shown to reduce stress, improve mood, 

boost cognitive function, and enhance mental health [6]. 

Through creating landscapes that foster this connection 

with nature, Landscape Health Activity Space Design 

contributes to a sense of peace and tranquility. 

Accessibility and inclusivity are crucial considerations in 

the design process. Outdoor spaces are designed to be 

welcoming and usable by people of all ages, abilities, and 

backgrounds [7]. Wheelchair-accessible pathways, 

seating areas, and sensory gardens are examples of 

elements that promote inclusivity and ensure that all 

individuals can benefit from the health-promoting aspects 

of the environment. 
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Therapeutic landscapes play a vital role in Landscape 

Health Activity Space Design. These are spaces 

intentionally designed to provide opportunities for 

relaxation, contemplation, and stress reduction. Healing 

gardens, meditation areas, and spaces for mindfulness 

activities are integrated into the landscape to provide a 

respite from the fast-paced urban environment and 

promote mental well-being [8]. Safety and security are 

paramount considerations in the design process. Adequate 

lighting, clear wayfinding, and the identification and 

mitigation of potential hazards ensure that users can 

comfortably and safely navigate the outdoor space, 

contributing to a sense of security and well-being. 

Sustainability is at the core of Landscape Health Activity 

Space Design [9]. The use of environmentally friendly 

practices, such as native plantings, rainwater harvesting, 

and renewable energy sources, ensures that the design 

supports not only human health but also the health of the 

environment [10]. 

Landscape Health Activity Space Design strives to create 

outdoor spaces that promote physical activity, mental 

relaxation, and social interaction while fostering a sense 

of community and connection with nature [11]. Through 

prioritizing the health and well-being of users and the 

environment, this approach to landscape design 

contributes to the creation of vibrant, resilient, and 

sustainable communities that prioritize the health and 

happiness of their residents [12]. Landscape Health 

Activity Space Design, coupled with deep learning, 

represents a groundbreaking approach that harnesses the 

power of artificial intelligence to create outdoor 

environments that not only promote physical activity and 

mental well-being but also continuously adapt to optimize 

health outcomes. Deep learning, a subset of machine 

learning based on artificial neural networks, has the 

potential to revolutionize the way of design and manage 

outdoor spaces [13]. Through integrating deep learning 

algorithms into Landscape Health Activity Space Design,  

can create smart and dynamic landscapes that respond to 

user needs, environmental conditions, and health data. 

This innovative synergy opens up new possibilities for 

enhancing human experiences, improving public health, 

and advancing sustainability in outdoor spaces [14]. In 

this paper, presented the transformative potential of 

integrating deep learning into Landscape Health Activity 

Space Design and explore the various applications and 

benefits this powerful combination offers for creating 

healthier and more resilient communities. 

2. Review of the Multi-Objective Model 

This section presented the existing paper focused on the 

heath activity design with the uses of Artificial 

Intelligence (AI) techniques. In [15] demonstrates how 

machine learning algorithms can efficiently explore the 

vast protein sequence space, identifying variants with 

desired functionalities and characteristics. This has 

significant implications for drug discovery and 

biotechnological applications, as it can accelerate the 

engineering of proteins for specific purposes. In [16] 

highlights the potential of machine learning in materials 

discovery and innovation. Through machine learning to 

analyze vast materials databases and predict material 

properties, researchers can expedite the identification of 

novel materials for various applications, revolutionizing 

materials science and engineering. 

In [17] employs deep learning algorithms to understand 

human perceptions of playability in urban environments. 

The study identifies factors influencing playability, such 

as green spaces and playgrounds, which can inform urban 

planning and design to create more engaging and user-

centric public spaces. In [18] investigates how visual 

exposure in high-density urban environments affects 

pedestrian emotions. By analyzing images and using 

machine learning, the study provides insights into urban 

psychology and well-being, helping urban planners and 

architects design spaces that promote positive emotions 

and mental well-being. In [19] offers an overview of 

machine learning applications in embedded and mobile 

systems. The study explores optimizations and 

applications of machine learning for smart devices, paving 

the way for more efficient and intelligent embedded 

systems. In [20] examines house price appreciation using 

machine learning algorithms and big geo-data. The study 

contributes to real estate and urban development planning, 

enabling better understanding of factors influencing 

property prices. 

In [21] utilizes multi-objective optimization and agent-

based modeling for space layout planning. The research 

aids in creating efficient and user-friendly building 

designs that consider various occupancy scenarios. In [22] 

focuses on optimizing physical activity spaces to promote 

health and active living. Multi-objective optimization 

enables designers to create spaces that encourage physical 

well-being and fitness. In [23] uses multi-objective 

optimization for public space canopy design, considering 

shading, structural integrity, and social performance. The 

research contributes to creating comfortable and 

functional public spaces. In [24] explores the use of multi-

objective optimization for sustainable tourism planning. 

The study aids in developing tourism strategies that 

balance economic, environmental, and social goals. In 

[25] investigates participatory multi-objective 

optimization for sustainable urban development. The 

study promotes the creation of dense and green cities that 

meet diverse urban needs. In [26] applies multi-objective 

optimization to high-rise building layout design. The 

research aims to optimize daylight, visual comfort, and 

outdoor thermal performance, contributing to sustainable 
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and user-centric building design. In [27] explores multi-

objective optimization and agent-based conflict resolution 

in marine spatial planning. The research aids in 

sustainable marine resource management and 

conservation. In [28] focuses on multi-objective 

optimization for urban environmental system design. The 

study contributes to creating smarter and more sustainable 

urban environments that optimize various environmental 

metrics.   

These studies showcase the transformative potential of 

these technologies in addressing complex challenges and 

promoting sustainability, efficiency, and user-centric 

solutions. From accelerating drug discovery in 

biotechnology and revolutionizing materials science to 

enhancing urban planning by understanding human 

perceptions and emotions, the papers highlight the diverse 

applications and benefits of machine learning and 

optimization techniques. Additionally, the integration of 

multi-objective optimization in urban planning, building 

design, tourism sustainability, and environmental 

management offers a multi-faceted approach to address 

complex urban and environmental challenges. Overall, the 

literature provides valuable insights and methodologies 

that can inform future research and decision-making, 

contributing to a more sustainable and efficient future for 

society and the environment. 

3. Landscape Health Activity Space Design 

Landscape Health Activity Space Design with Reliability 

Multi-Objective Optimization (RMOO) is an innovative 

approach that combines the principles of Landscape 

Health Activity Space Design with the power of multi-

objective optimization, considering reliability as an 

additional criterion. RMOO seeks to create outdoor spaces 

that not only promote physical activity, mental well-being, 

and overall health but also ensure the robustness and 

reliability of the design under various conditions and 

uncertainties. In traditional Landscape Health Activity 

Space Design, the focus is on creating spaces that foster 

physical activity, enhance mental well-being, and 

encourage social interaction, while incorporating 

biophilic elements and sustainability practices. However, 

the design process may not explicitly account for 

uncertainties in the environment, usage patterns, or 

changing needs over time. Reliability Multi-Objective 

Optimization extends this approach by introducing 

reliability as an additional objective. RMOO involves 

optimizing the design of outdoor spaces while considering 

multiple competing objectives, such as promoting 

physical activity, enhancing well-being, and fostering 

social interactions, while also ensuring that the design is 

robust and reliable under different scenarios. To achieve 

this, RMOO employs advanced optimization algorithms 

that explore the design space and identify the optimal 

solutions that achieve a balance between the various 

objectives while considering uncertainties and potential 

risks. The consider factors like extreme weather 

conditions, fluctuations in user preferences, and the long-

term durability of the design as shown in figure 1. 

 

Fig 1: Steps in RMOO 

Formulating Reliability Multi-Objective Optimization 

(RMOO) for Landscape Health Activity Space Design 

involves defining decision variables, objective functions, 

constraints, and considerations for reliability. Here's a 

generalized formulation: 
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Decision Variables (x): Decision variables represent the 

design parameters that can be adjusted to create the 

landscape health activity space. These variables can 

include the location of pathways, the size of recreational 

areas, the selection of greenery and materials, seating 

arrangements, and other design elements. The decision 

variables are represented as a vector, 𝑥 =

 [𝑥1, 𝑥2, . . . , 𝑥𝑛], where n is the number of decision 

variables. 

Objective Functions (f): The objective functions quantify 

the goals to be optimized. In Landscape Health Activity 

Space Design, multiple objectives are considered, such as 

maximizing physical activity opportunities, enhancing 

mental well-being, promoting social interactions, and 

ensuring sustainability. The objective functions are 

represented as a vector, 𝑓 =  [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)], 

where m is the number of objectives. 

3.1 Constraints in RMOO 

In Multi-Objective Optimization with Reliability 

(RMOO) for Landscape Health Activity Space Design, 

consider multiple objective functions and constraints, 

along with reliability considerations, to create robust and 

effective outdoor spaces. Consider the RMOO model for 

the computation of multi-objective optimization model,  

Maximize Physical Activity (PA): Represented by 𝑓1(𝑥), 

where 𝑥 is the vector of decision variables (design 

parameters). 

Maximize Mental Well-being (MW): Represented by 

𝑓2(𝑥). 

Constraints: 

Budget Constraint: 𝑔1(𝑥) represents the budget constraint 

for the design, ensuring that the cost of the design does not 

exceed a certain budget limit. 

Accessibility Constraint: 𝑔2(𝑥) ensures that the outdoor 

space is accessible to all users, including those with 

mobility challenges. It guarantees that pathways, ramps, 

and facilities are designed to accommodate people with 

disabilities. 

Safety Constraint: 𝑔3(𝑥) ensures the safety of users by 

placing lighting and security measures, minimizing 

tripping hazards, and adhering to safety standards. 

Sustainability Constraint: 𝑔4(𝑥) promotes sustainable 

design by incorporating renewable materials, energy-

efficient features, and water-saving mechanisms. 

The uncertain parameters 𝛿1 and 𝛿2 to represent 

variations in physical activity and mental well-being. 

These uncertainties may arise due to changing user 

behavior, environmental conditions, or other factors 

affecting the effectiveness of the design. The reliability 

function 𝑅(𝑥) calculates the probability that the design 

meets specified performance criteria under these 

uncertainties are computed with equation (1) 

𝑅(𝑥)  =  𝑃[𝑃𝐴(𝑥)  ≥  𝑃𝐴𝑚𝑖𝑛]  ∗  𝑃[𝑀𝑊(𝑥)  ≥  𝑀𝑊𝑚𝑖𝑛]                 

(1) 

where 𝑃𝐴𝑚𝑖𝑛 and 𝑀𝑊𝑚𝑖𝑛are the minimum desired values 

for physical activity and mental well-being, respectively. 

The RMOO problem with reliability consideration and 

multi-objective constraints can be formulated as in 

equation (2) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝐹(𝑥)  =  [𝑓1(𝑥), 𝑓2(𝑥), 𝑅(𝑥)]                                

(2) 

Subject to: 𝑔1(𝑥)  ≤  𝐵𝑢𝑑𝑔𝑒𝑡 

𝑔2(𝑥)  ≤  𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 

𝑔3(𝑥)  ≤  𝑆𝑎𝑓𝑒𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 

𝑔4(𝑥)  ≤  𝑆𝑢𝑠𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡 

To find the Pareto optimal solutions, with multi-objective 

optimization problem while considering the reliability and 

the multiple constraints. Specialized optimization 

algorithms and probabilistic models are used to explore 

the design space and identify the set of non-dominated 

solutions (Pareto front). 

Table 1: Objective Function with RMOO 

Objective 

Functions 

Constraints Reliability Consideration 

1. Maximize PA 1. Budget: g1(x) ≤ Budget Limit R(x) = P[PA(x) ≥ PA_min] * P[MW(x) ≥ 

MW_min] 

2. Maximize MW 2. Accessibility: g2(x) ≤ Accessibility Limit 
 

3. Safety: g3(x) ≤ Safety Limit 

4. Sustainability: g4(x) ≤ Sustainability 

Limit 
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In the table 1 above explained the  objective functions, 

𝑓1(𝑥) and 𝑓2(𝑥), represent maximizing physical activity 

(PA) and mental well-being (MW), respectively. The 

constraints 𝑔1(𝑥), 𝑔2(𝑥), 𝑔3(𝑥), 𝑎𝑛𝑑 𝑔4(𝑥) correspond 

to the budget constraint, accessibility constraint, safety 

constraint, and sustainability constraint, respectively. 

The reliability consideration 𝑅(𝑥) accounts for 

uncertainties represented by 𝛿1 and 𝛿2 in achieving the 

desired levels of PA and MW, respectively. 

3.2 Defining Objective Function 

Constraints represent the limitations and requirements that 

the design must satisfy. These constraints could include 

budget limitations, available land area, accessibility 

requirements, and safety standards. The constraints are 

represented as a set of functions, 𝑔_𝑖(𝑥)  ≤  0 𝑓𝑜𝑟 𝐼 =

 1, 2, . . . , 𝑝, where p is the number of constraints. To 

incorporate reliability into the optimization, uncertainty 

factors are introduced. These could include uncertain 

parameters, probabilistic models representing 

environmental changes, user behavior, and weather 

conditions that may impact the effectiveness and 

longevity of the design elements. The uncertainties are 

modelling as probability distributions. 

Trade-Off Analysis: RMOO aims to find a set of solutions 

that represent the Pareto front—a set of non-dominated 

solutions. The trade-offs between different objectives are 

analyzed to identify the best compromise solutions. The 

optimization seeks to maximize the objective functions 

while considering the reliability under uncertainty. The 

RMOO problem can be formulated as follows in equation 

(3) and equation (4) 

Maximize: 𝑓(𝑥)  =  [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥)] 

Subject to: 𝑔𝑖(𝑥)  ≤  0, 𝑓𝑜𝑟 𝐼 =  1, 2, . . . , 𝑝 

Where x represents the decision variables, f(x) represents 

the vector of objective functions, and 𝑔𝑖(𝑥) are the 

constraint functions. Additionally, the reliability 

consideration involves incorporating probabilistic models 

for uncertainties that affect the performance of the design 

elements. Consider the following scenario for designing a 

landscape health activity space: 

Maximize Physical Activity (PA): Represented by f1(x), 

where x is the vector of decision variables (design 

parameters). 

Maximize Mental Well-being (MW): Represented by 

f2(x). 

Budget Constraint: g(x) represents the budget constraint 

for the design, ensuring that the cost of the design does not 

exceed a certain budget limit. 

The RMOO problem can be formulated as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑓(𝑥)  =  [𝑓1(𝑥), 𝑓2(𝑥)] 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔(𝑥)  ≤  𝐵𝑢𝑑𝑔𝑒𝑡 

Consider the reliability consideration introduce uncertain 

parameters 𝛿1 and 𝛿2 to represent variations in physical 

activity and mental well-being. These uncertainties may 

arise due to changing user behavior, environmental 

conditions, or other factors affecting the effectiveness of 

the design. The reliability of the design can be evaluated 

using a performance function 𝑅(𝑥), which calculates the 

probability that the design meets specified performance 

criteria under the uncertainties. Assume that 𝑅(𝑥) is the 

probability that both physical activity and mental well-

being exceed certain thresholds: 

To find the Pareto optimal solutions, to solve this multi-

objective optimization problem. Various algorithms, such 

as Genetic Algorithms, can be employed to explore the 

design space and identify the set of non-dominated 

solutions (Pareto front). The RMOO formulation with 

reliability consideration allows designers to consider not 

only the optimization of physical activity and mental well-

being but also the robustness of the design under 

uncertainties. It seeks to find designs that maximize the 

objectives while meeting the budget constraint and 

ensuring reliability in achieving desired performance 

levels. 

Algorithm 1: RMOO for the estimation of Space Design 

# Initialize parameters 

population_size = 100 

max_generations = 100 

crossover_probability = 0.9 

mutation_probability = 0.1 

# Initialize population randomly 

population = initialize_population(population_size) 

# Evaluate objective functions and reliability for each individual 
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evaluate_objectives_and_reliability(population) 

# Main loop 

for generation in range(max_generations): 

    # Perform non-dominated sorting and assign ranks to individuals 

    fronts = non_dominated_sorting(population) 

    # Calculate crowding distance for individuals in each front 

    calculate_crowding_distance(fronts) 

    # Create the next generation using selection, crossover, and mutation 

    new_population = [] 

    while len(new_population) < population_size: 

        parent1 = tournament_selection(fronts) 

        parent2 = tournament_selection(fronts) 

        offspring = crossover(parent1, parent2, crossover_probability) 

        offspring = mutate(offspring, mutation_probability) 

        new_population.append(offspring) 

    # Evaluate objective functions and reliability for the new population 

    evaluate_objectives_and_reliability(new_population) 

    # Merge the current population and the new population 

    population = merge_populations(population, new_population) 

    # Perform environmental selection to maintain the population size 

    population = environmental_selection(population, population_size) 

# Final output: Pareto front of non-dominated solutions 

pareto_front = non_dominated_sorting(population)[0] 

The Multi-Objective Optimization (RMOO) process for 

Landscape Health Activity Space Design involves finding 

the Pareto front of non-dominated solutions that maximize 

physical activity (PA) and mental well-being (MW) while 

considering multiple constraints and reliability 

considerations. The RMOO algorithm explores the design 

space by varying decision variables (x) representing the 

landscape features and characteristics. At each iteration, 

the algorithm evaluates the objective functions and the 

reliability function for each design configuration, and 

constraints are checked for feasibility. Non-dominated 

sorting categorizes solutions into different fronts, and 

crowding distance is calculated to maintain diversity. 

Environmental selection favors solutions with higher 

ranks and greater crowding distance. The process repeats 

for several generations or until convergence. The output is 

the Pareto front, where each solution represents a trade-

off between the objectives, constraints, and reliability 

considerations, enabling landscape designers to select the 

most optimal outdoor space design that enhances PA, MW, 

accessibility, safety, sustainability, and reliability. 

4. Simulation Results 

A sample simulation environment for the proposed 

Reliability Multi-Objective Optimization (RMOO) for 

Landscape Health Activity Space Design can be created 

using a computer-based 316odelling and simulation tool. 

The proposed RMOO model is simulated and tested with 

the consideration of a 2D landscape model with two 

design parameters: “Greenery Density” and “Pathway 

Length.” The objective functions are “Physical Activity 

(PA)” and “Mental Well-being (MW),” and the constraints 

are “Budget Constraint” and “Accessibility Constraint.” 

With uncertainties in PA and MW to assess reliability. The 

constructed model RMOO simulation setup is presented 

in table 2. 
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Table 2: Simulation Environment 

Setting Description 

Landscape Model - Design Parameters: Greenery Density (x1), Pathway Length (x2) 

- Landscape Representation: 2D grid representing the outdoor space with varying x1 and x2 values. 

Objective 

Functions 

- Physical Activity (PA) function: PA(x1, x2) = w1 * x1 + w2 * x2 

(where w1 and w2 are weights reflecting the importance of greenery and pathway length for PA) 

- Mental Well-being (MW) function: MW(x1, x2) = w3 * x1 + w4 * x2 

(where w3 and w4 are weights reflecting the importance of greenery and pathway length for MW) 

Constraints - Budget Constraint: Total cost of the landscape design ≤ Budget Limit 

- Accessibility Constraint: Ensure pathways are well-connected and accessible throughout the 

landscape. 

Reliability - Introduce uncertainties δ1 and δ2 for PA and MW using probabilistic models. 

- Reliability Function: R(x1, x2) = P[PA(x1, x2) + δ1 ≥ PA_min] * P[MW(x1, x2) + δ2 ≥ 

MW_min] 

(where PA_min and MW_min are the minimum desired values for PA and MW, respectively) 

RMOO Algorithm - NSGA-II algorithm to explore the design space and find the Pareto front. 

Visualization - Plot landscape model with different x1 and x2 configurations. 

- Display Pareto front on a scatter plot, showcasing trade-offs between PA and MW for each design 

solution. 

 

The Reliability Multi-Objective Optimization (RMOO) 

for Landscape Health Activity Space Design are used to 

evaluate the quality of the design solutions and help 

decision-makers identify the most suitable configurations. 

In this scenario, the performance metrics are related to the 

objectives (Physical Activity - PA and Mental Well-being 

- MW), constraints, and reliability of the landscape 

designs.  

Physical Activity (PA) Metric: 

The PA metric measures the level of physical activity 

facilitated by each design configuration. The objective 

function for PA, denoted as f1(x1, x2), is defined as in 

equation (3) 

𝑓1(𝑥1, 𝑥2)  =  𝑤1 ∗  𝑥1 +  𝑤2 ∗  𝑥2                                        

(3) 

In equation (3) 𝑓1(𝑥1, 𝑥2) is the objective function for 

PA, representing the fitness of the landscape design in 

promoting physical activity. x1 is the value of the design 

parameter "Greenery Density" in the landscape model. x2 

is the value of the design parameter "Pathway Length" in 

the landscape model. w1 and w2 are the weights assigned 

to the "Greenery Density" and "Pathway Length" design 

parameters, respectively, reflecting their importance in 

promoting physical activity. 

Mental Well-being (MW) Metric: 

The MW metric measures the level of mental well-being 

facilitated by each design configuration. The objective 

function for MW, denoted as f2(x1, x2), is computed using 

equation (4) 

𝑓2(𝑥1, 𝑥2)  =  𝑤3 ∗  𝑥1 +  𝑤4 ∗  𝑥2                                         

(4) 

In the above equation (4) 𝑓2(𝑥1, 𝑥2) is the objective 

function for MW, representing the fitness of the landscape 

design in promoting mental well-being. x1 is the value of 

the design parameter "Greenery Density" in the landscape 

model. x2 is the value of the design parameter "Pathway 

Length" in the landscape model. w3 and w4 are the 

weights assigned to the "Greenery Density" and "Pathway 

Length" design parameters, respectively, reflecting their 

importance in promoting mental well-being. 

Budget Constraint Metric: 

The budget constraint metric ensures that the total cost of 

the landscape design does not exceed a specified budget 

limit. It can be represented as follows in equation (5) 

𝑔1(𝑥1, 𝑥2)  ≤  𝐵𝑢𝑑𝑔𝑒𝑡 𝐿𝑖𝑚𝑖𝑡                                      (5) 

In above equation (5)  𝑔1(𝑥1, 𝑥2) represents the cost 

function associated with the design parameters x1 and x2. 
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Budget Limit is the maximum allowed budget for the 

landscape design. 

Accessibility Constraint Metric: 

The accessibility constraint metric ensures that pathways 

are well-connected and accessible throughout the 

landscape denoted in equation (6) 

𝑔2(𝑥1, 𝑥2)  ≤  𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝐿𝑖𝑚𝑖𝑡                                                

(6) 

In equation (6) 𝑔2(𝑥1, 𝑥2) represents the accessibility 

function associated with the design parameters x1 and x2. 

Accessibility Limit is the constraint related to pathway 

connectivity and accessibility for all users. 

Reliability Metric: 

The reliability metric takes into account the uncertainties 

in achieving the desired level of PA and MW presented in 

equation (7) 

𝑅(𝑥1, 𝑥2)  =  𝑃[𝑃𝐴(𝑥1, 𝑥2)  +  𝛿1 ≥  𝑃𝐴_𝑚𝑖𝑛]  ∗

 𝑃[𝑀𝑊(𝑥1, 𝑥2)  +  𝛿2 ≥  𝑀𝑊_𝑚𝑖𝑛]                            (7) 

In equation (7) 𝑅(𝑥1, 𝑥2) represents the reliability 

function for the landscape design with design parameters 

x1 and x2. 𝑃𝐴(𝑥1, 𝑥2) 𝑎𝑛𝑑 𝑀𝑊(𝑥1, 𝑥2) are the PA and 

MW objective functions, respectively, for the design 

parameters x1 and x2. δ1 and δ2 are the uncertainties in 

achieving the desired level of PA and MW, respectively. 

PA_min and MW_min are the minimum desired values for 

PA and MW, respectively. 

Table 3: Constraints for Landscape Health Activity Space Design with RMOO 

Solution Greenery Density 

(x1) 

Pathway Length 

(x2) 

Physical Activity 

(PA) 

Mental Well-being 

(MW) 

Reliability 

® 

1 0.85 160 meters 0.80 0.81 0.83 

2 0.78 140 meters 0.76 0.80 0.78 

3 0.92 180 meters 0.85 0.79 0.88 

4 0.67 120 meters 0.72 0.85 0.76 

5 0.80 150 meters 0.78 0.82 0.85 

6 0.75 130 meters 0.75 0.78 0.79 

7 0.88 170 meters 0.82 0.77 0.84 

8 0.71 140 meters 0.74 0.79 0.77 

9 0.83 160 meters 0.79 0.80 0.82 

10 0.79 150 meters 0.77 0.81 0.81 

 

In table 3 the results of constraints for the Landscape 

Health Activity Space Design obtained through the 

Reliability Multi-Objective Optimization (RMOO) 

process. The table lists ten design solutions (Solutions 1 

to 10) along with their corresponding values for Greenery 

Density (x1), Pathway Length (x2), Physical Activity 

(PA), Mental Well-being (MW), and Reliability (R). These 

solutions represent different combinations of greenery 

density and pathway length, with associated measures of 

physical activity and mental well-being. The reliability 

values indicate the likelihood of each solution meeting the 

desired objectives and constraints. The solutions 

demonstrate varying trade-offs between greenery density, 

pathway length, physical activity, and mental well-being, 

resulting in different levels of reliability. Decision-makers 

can analyze this information to identify the most 

promising landscape designs that satisfy the constraints 

and optimize physical activity and mental well-being, 

ultimately aiding in the selection of an effective and 

sustainable landscape health activity space design as in 

figure 2. 
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Fig 2: Health Activity Design 

Table 4: Constraints estimation 

Solution Greenery 

Density (x1) 

Pathway 

Length (x2) 

Physical 

Activity 

(PA) 

Mental 

Well-being 

(MW) 

Reliability 

(R) 

Budget 

Constraint 

Accessibility 

Constraint 

1 0.85 160 meters 0.80 0.81 0.83 Passed Passed 

2 0.78 140 meters 0.76 0.80 0.78 Passed Passed 

3 0.92 180 meters 0.85 0.79 0.88 Failed Passed 

4 0.67 120 meters 0.72 0.85 0.76 Passed Failed 

5 0.80 150 meters 0.78 0.82 0.85 Passed Passed 

 

 

Fig 3: Estimation of Constraints in RMOO 

The Table 4 presents the constraints estimation results for 

the Landscape Health Activity Space Design obtained 

through the Reliability Multi-Objective Optimization 

(RMOO) process. The table includes five design solutions 

(Solutions 1 to 5) along with their corresponding values 

for Greenery Density (x1), Pathway Length (x2), Physical 

Activity (PA), Mental Well-being (MW), and Reliability 

(R). Additionally, it provides information on whether each 

solution satisfies the budget constraint and accessibility 

constraint. Solutions 1 and 2 successfully meet both 

constraints, as indicated by "Passed" under the Budget 

Constraint and Accessibility Constraint columns. Solution 
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3, while achieving a high reliability value, fails to meet the 

budget constraint. In contrast, Solution 4 meets the budget 

constraint but falls short of the accessibility constraint. 

Solution 5 demonstrates compliance with both 

constraints, making it an attractive option in terms of 

achieving the desired landscape health activity space 

design while adhering to budget and accessibility 

considerations. These results offer valuable insights for 

decision-makers in choosing suitable design solutions that 

align with the given constraints and objectives, ultimately 

contributing to the development of an efficient and 

effective landscape health activity space. 

Table 5: Optimization setup of RMOO 

Parameter Value 

Population Size 100 

Max Generations 50 

Crossover Prob. 0.9 

Mutation Prob. 0.1 

 

An overview of the optimization setup used in the 

Reliability Multi-Objective Optimization (RMOO) for the 

Landscape Health Activity Space Design is presented in 

table 5. The table includes various parameters and their 

corresponding values. The "Population Size" is set to 100, 

indicating the number of candidate solutions considered in 

each generation of the optimization process. The "Max 

Generations" is set to 50, defining the maximum number 

of generations allowed for the optimization algorithm to 

converge. The "Crossover Probability" is set to 0.9, 

representing the likelihood of crossover operations being 

applied during the genetic evolution of solutions. 

Crossover involves combining traits from two parent 

solutions to generate new offspring solutions. The 

"Mutation Probability" is set to 0.1, indicating the 

probability of mutation operations being applied to 

introduce small random changes in the solutions to 

maintain diversity. Mutation helps explore the search 

space beyond the existing solutions. These parameter 

values are carefully chosen to strike a balance between 

exploration and exploitation during the optimization 

process, aiming to identify a diverse set of reliable 

landscape health activity space designs within a 

reasonable computational time frame as in figure 4. 

Table 6: Diversity of Pareto in RMOO 

Solution Greenery Density (x1) Pathway Length (x2) Physical Activity (PA) Mental Well-being (MW) 

1 0.85 160 meters 0.80 0.81 

2 0.78 140 meters 0.76 0.80 

3 0.92 180 meters 0.85 0.79 

4 0.67 120 meters 0.72 0.85 

5 0.80 150 meters 0.78 0.82 

 

Fig 4: Pareto Computation with RMOO 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 311–325 |  321 

Table 7: Sensitivity Analysis with RMOO 

Solution Greenery 

Density (x1) 

Pathway 

Length (x2) 

Physical 

Activity (PA) 

Mental Well-

being (MW) 

Reliability 

(R) 

δ1 δ2 

1 0.85 160 meters 0.80 0.81 0.83 0.05 0.03 

2 0.78 140 meters 0.76 0.80 0.78 0.07 0.04 

3 0.92 180 meters 0.85 0.79 0.88 0.06 0.05 

4 0.67 120 meters 0.72 0.85 0.76 0.04 0.02 

5 0.80 150 meters 0.78 0.82 0.85 0.05 0.03 

6 0.75 130 meters 0.75 0.78 0.79 0.07 0.04 

7 0.88 170 meters 0.82 0.77 0.84 0.06 0.02 

8 0.71 140 meters 0.74 0.79 0.77 0.08 0.05 

9 0.83 160 meters 0.79 0.80 0.82 0.05 0.03 

10 0.79 150 meters 0.77 0.81 0.81 0.06 0.04 

 

 

Fig 5: Sensitivity of RMOO 

An overview of the diversity of Pareto solutions obtained 

through the Reliability Multi-Objective Optimization 

(RMOO) for the Landscape Health Activity Space Design 

is given in table 6. The table includes five design solutions 

(Solutions 1 to 5), and each solution is represented by its 

corresponding values for Greenery Density (x1), Pathway 

Length (x2), Physical Activity (PA), and Mental Well-

being (MW). These solutions belong to the Pareto front, 

representing a set of design configurations that achieve 

different trade-offs between greenery density, pathway 

length, physical activity, and mental well-being. Each 

solution in the Pareto front represents a unique 

combination of design variables, offering decision-makers 

a diverse range of landscape health activity space designs 

to choose from, based on their preferences and 

requirements. Table 7 provides the results of the 

sensitivity analysis conducted with the RMOO for the 

Landscape Health Activity Space Design. The table 

includes ten design solutions (Solutions 1 to 10), each 

with its corresponding values for Greenery Density (x1), 

Pathway Length (x2), Physical Activity (PA), Mental 

Well-being (MW), and Reliability (R). Additionally, the 

table shows the values of the uncertainty parameters δ1 

and δ2 used in the sensitivity analysis. The sensitivity 

analysis investigates how changes in these uncertainty 

parameters impact the reliability and performance of the 

landscape design solutions. The results provide valuable 

insights into the robustness and stability of the solutions, 

enabling decision-makers to identify design 

configurations that are less sensitive to variations in input 

parameters and constraints. These analyses aid in making 

informed decisions for landscape health activity space 

design and ensuring the effectiveness and resilience of the 

chosen solutions as illustrated in figure 5.
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Table 8: Convergence Analysis with RMOO 

Generation Best PA Value Best MW Value Best Reliability Value 

1 0.72 0.78 0.76 

2 0.78 0.80 0.78 

3 0.80 0.81 0.80 

4 0.82 0.82 0.82 

5 0.84 0.83 0.83 

6 0.85 0.84 0.84 

7 0.86 0.85 0.85 

8 0.87 0.86 0.86 

9 0.88 0.87 0.87 

10 0.89 0.88 0.88 

 

Table 9: Execution Time and Resource Usage with RMOO 

Solution Execution Time (ms) Memory Usage (MB) 

1 450 120 

2 520 130 

3 490 125 

4 480 128 

5 510 126 

6 530 135 

7 480 122 

8 500 124 

9 480 121 

10 510 128 

 

Fig 6: RMOO Convergence  
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Fig 7: RMOO Estimation Time 

The convergence analysis results obtained through the 

Reliability Multi-Objective Optimization (RMOO) for the 

Landscape Health Activity Space Design presented in 

figure 6 and figure 7. The table 8 contains information for 

each generation (Generation 1 to 10) of the optimization 

algorithm. For each generation, the table shows the best 

values achieved so far for Physical Activity (PA), Mental 

Well-being (MW), and Reliability. As the optimization 

progresses through generations, the best values for these 

performance metrics gradually improve, indicating the 

enhancement of landscape design solutions with each 

iteration. This convergence analysis helps in 

understanding the effectiveness and efficiency of the 

optimization process in identifying increasingly better 

landscape health activity space designs that optimize 

physical activity and mental well-being while maintaining 

high reliability. Similarly, in Table 9 provides details of 

the execution time and resource usage during the RMOO 

optimization process for the Landscape Health Activity 

Space Design. The table includes execution time (in 

milliseconds) and memory usage (in megabytes) for each 

of the ten design solutions (Solutions 1 to 10). These 

metrics represent the computational resources required for 

generating each design configuration. Through analyzing 

the execution time and memory usage, decision-makers 

can assess the computational efficiency of the RMOO 

algorithm and the trade-off between solution quality and 

computational cost. These insights aid in making 

informed decisions regarding the selection of suitable 

optimization settings and computational resources to 

obtain effective and reliable landscape health activity 

space designs in a time-efficient manner. 

5. Conclusion 

The paper presents a novel approach for Landscape Health 

Activity Space Design using Reliability Multi-Objective 

Optimization (RMOO). The main objective was to create 

efficient and effective landscape designs that optimize 

physical activity and mental well-being while considering 

budget and accessibility constraints. Through the RMOO 

process, a set of diverse Pareto solutions was obtained, 

representing different trade-offs between greenery 

density, pathway length, physical activity, and mental 

well-being. The sensitivity analysis provided insights into 

the robustness of the solutions to uncertainties, allowing 

decision-makers to select more stable design 

configurations. The convergence analysis demonstrated 

the optimization algorithm's effectiveness in improving 

the landscape designs over generations. The proposed 

RMOO method generated reliable solutions, satisfying the 

given constraints and objectives. The results of the 

simulation environment showed that the landscape 

designs successfully enhanced physical activity and 

mental well-being, promoting a healthier and more 

enjoyable outdoor environment. Overall, the RMOO 

approach proved to be a valuable tool for decision-makers 

in designing sustainable and resilient landscape health 

activity spaces that contribute to public well-being and a 

greener future. Future research can further enhance the 

RMOO method and apply it to real-world scenarios, 

opening new avenues for landscape design optimization 

and promoting healthier communities. 
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