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Abstract: The Hidden Markov Weighted Network Analysis Graph (HMWNag) is a novel and comprehensive framework that combines 

the power of Hidden Markov Models (HMMs), network analysis, and knowledge graphs to explore the intricate relationships and patterns 

within the world of music composers and their compositions. In this paper, we present the design and application of the HMWNag, which 

allows us to uncover hidden creative phases in composers' careers and trace the transitions between these phases. Through incorporating 

weighted values in the knowledge graph representation, we quantify the strength and significance of relationships between composers and 

compositions. Applying network analysis techniques to the HMWNag reveals influential composers and communities with shared 

characteristics, shedding light on musical influences and the evolution of classical music styles over time. Additionally, the HMWNag 

provides practical applications, including personalized music recommendations and music education programs, enhancing our 

understanding and appreciation of classical music history. Through this multidimensional approach, the HMWNag emerges as a powerful 

tool to unravel the complexities of music composers and their works, offering a holistic perspective on the rich tapestry of classical music. 
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1. Introduction 

Network analysis is a powerful and intricate field that 

delves into the study of interconnected systems, where 

nodes or entities are linked through various relationships 

or interactions. Whether it's understanding the intricate 

web of social connections in a virtual world or untangling 

the complexities of data transmission across vast 

communication networks, network analysis provides 

invaluable insights into the dynamics, structure, and 

functioning of these intricate systems [1]. Through 

employing mathematical models, statistical techniques, 

and advanced algorithms, network analysts are able to 

unravel patterns, identify central nodes, and assess the 

resilience of networks in the face of disruptions. This 

multidisciplinary field finds applications in diverse 

domains, ranging from sociology and biology to computer 

science and finance, shaping our understanding of 

complex systems and paving the way for enhanced 

efficiency and problem-solving in our interconnected 

world [2]. Network analysis, also known as graph theory 

or network science, is a rich and interdisciplinary field that 

has gained significant traction in recent years due to the 

explosion of digital data and the increasing complexity of 

interconnected systems [3]. At its core, network analysis 

focuses on examining the relationships and interactions 

among entities represented as nodes, and the connections 

between them, represented as edges or links. These 

entities could be anything from individuals in a social 

network, genes in a biological pathway, computers in a 

computer network, or even financial transactions in an 

economic system [4]. 

The key aspects of network analysis is the study of 

network properties and metrics. Researchers often 

investigate measures such as centrality, which identifies 

the most influential nodes in a network, degree 

distribution, which characterizes the distribution of 

connections across nodes, and clustering coefficients, 

which reveal the presence of tightly-knit groups within a 

network [5]. These metrics allow analysts to understand 

the structure and dynamics of networks, enabling them to 

identify key players, bottlenecks, and vulnerabilities in a 

system. Network analysis finds applications across a wide 

range of domains [6]. In sociology, it helps reveal the 

patterns of social interactions and the spread of 

information or influence within a community. In biology, 

it aids in understanding the complex interactions between 

molecules and genes in biological networks, shedding 

light on disease pathways and drug targets. In computer 

science, network analysis is crucial for designing efficient 

computer networks, optimizing data routing, and 

detecting anomalies or security threats [7]. Additionally, 

in finance, network analysis can be used to study financial 

markets and identify systemic risks that could lead to 

cascading failures. The tools and techniques used in 

network analysis have evolved significantly with 

advancements in data science and machine learning [8]. 

Network analysts employ various algorithms, such as 

community detection, link prediction, and network 

embedding, to extract meaningful insights from massive 
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datasets and complex networks. Additionally, network 

visualization plays a crucial role in network analysis, 

enabling researchers to present complex structures in an 

intuitive and understandable manner [9]. The 

interdisciplinary nature of network analysis allows 

researchers from diverse fields to collaborate and 

exchange ideas, fostering innovation and discovery. 

Through unraveling the underlying mechanisms of 

interconnected systems, network analysis has the potential 

to drive progress, optimize processes, and enhance 

decision-making in our increasingly interconnected and 

data-driven world [10]. 

Network analysis, combined with the power of knowledge 

graphs, constitutes a formidable approach to 

understanding and navigating the vast and intricate 

landscape of information in today's digital age [11]. 

Network analysis focuses on exploring the relationships 

and interactions among entities represented as nodes, 

while knowledge graphs provide a structured framework 

to organize and connect knowledge in a meaningful way. 

Together, these two fields enable us to uncover hidden 

patterns, discover meaningful insights, and gain a holistic 

understanding of complex systems, whether it's in social 

networks, biological pathways, or knowledge repositories 

[12]. With harnessing the potential of network analysis 

with knowledge graphs, we embark on a transformative 

journey of unraveling the interconnectedness of 

information, unlocking new opportunities for innovation, 

decision-making, and problem-solving across diverse 

domains [13]. Network analysis, as previously discussed, 

is concerned with studying the relationships and 

interactions between entities, forming a complex web of 

interconnected nodes and edges. On the other hand, 

knowledge graphs provide a structured representation of 

knowledge, where information is organized into nodes 

representing entities, and edges connecting these entities 

to denote relationships between them [14]. This structured 

approach allows us to capture and model the rich 

semantics and context of data, enabling more efficient and 

insightful analysis. When combined, network analysis and 

knowledge graphs offer a powerful framework to explore 

and navigate vast amounts of information with 

unparalleled precision and depth. Knowledge graphs serve 

as a repository for storing diverse data, ranging from 

factual knowledge and ontologies to unstructured text and 

multimedia content [15]. This comprehensive knowledge 

representation sets the stage for conducting sophisticated 

network analysis within the context of the real-world 

scenarios the data represents. 

In practical applications, the fusion of network analysis 

and knowledge graphs opens up a plethora of possibilities 

[16]. For instance, in the realm of social networks, 

knowledge graphs can capture the attributes of 

individuals, their connections with others, and the content 

they share, forming a rich social knowledge graph. 

Analyzing this graph can lead to the discovery of 

influential users, identifying communities of interest, and 

predicting the spread of information or trends within the 

network [17]. In the field of bioinformatics, knowledge 

graphs can store information about genes, proteins, 

biological pathways, and disease associations, while 

network analysis can unveil critical genes' roles in the 

network, signaling pathways, and how diseases spread 

within biological systems. This synergy provides novel 

insights into complex biological processes and opens 

avenues for personalized medicine and drug discovery. 

Moreover, knowledge graphs can be leveraged in various 

domains, such as recommendation systems, question-

answering platforms, and search engines, where 

relationships and connections between entities hold the 

key to delivering accurate and relevant information to 

users [18]. However, the integration of network analysis 

and knowledge graphs also comes with its challenges. As 

data sources grow larger and more heterogeneous, the 

scalability and efficiency of analyzing and updating 

knowledge graphs become critical concerns. Addressing 

these challenges requires developing advanced 

algorithms, machine learning techniques, and distributed 

computing infrastructures to manage and extract insights 

from massive and dynamic knowledge graphs [19]. 

Nonetheless, the potential of network analysis with 

knowledge graphs is vast and far-reaching. As these fields 

continue to evolve, their collaboration promises to reshape 

how we interact with data, driving innovation, and 

advancing our understanding of the interconnected world 

around us [20]. With the harnessing the synergies of 

network analysis and knowledge graphs, we unlock the 

power to navigate the complexities of information and 

transform it into meaningful knowledge, ultimately 

enhancing decision-making, problem-solving, and 

fostering progress across numerous domains. Classical 

music composers play a crucial role in network analysis 

and knowledge graphs, as their contributions to the world 

of music can be effectively represented and analyzed 

within these frameworks [21]. With organizing their 

compositions and relationships with other composers as 

nodes and edges in a knowledge graph, valuable insights 

can be gleaned regarding the evolution of musical styles, 

influences, and artistic dialogues across different eras. 

Composers' influence networks can be constructed, 

highlighting the profound impact they had on their 

contemporaries and subsequent generations. Moreover, 

knowledge graphs allow for the exploration of 

collaborations and pedagogical connections among 

composers, shedding light on the transmission of musical 

knowledge and techniques [22]. The interconnected 

representation of classical music history provides 

musicologists and researchers with data-driven 
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opportunities to study genres, styles, and cultural contexts, 

enhancing our understanding of this timeless art form and 

facilitating personalized recommendations for music 

education and appreciation. 

2. Knowledge Graph 

A knowledge graph is a powerful data structure used to 

organize and represent knowledge in a structured and 

interconnected manner. It consists of nodes representing 

entities or concepts and edges representing the 

relationships between these entities. Each node in the 

graph contains information about the entity, and each edge 

defines the nature and direction of the relationship 

between connected nodes. Knowledge graphs are used to 

model complex and heterogeneous data from various 

sources, such as facts, attributes, events, and semantic 

connections. They enable a deeper understanding of the 

underlying relationships and context of the data, making 

it easier to extract insights, perform data analysis, and 

support reasoning tasks. These graphs find applications in 

a wide range of domains, including natural language 

processing, recommendation systems, question-

answering platforms, bioinformatics, and more. As 

technology and data continue to grow, knowledge graphs 

are becoming an essential tool for organizing, navigating, 

and making sense of the vast amounts of information 

available in the modern digital age. 

 Network analysis, on the other hand, is a 

mathematical and statistical approach used to study 

complex systems represented as networks. It involves 

calculating various metrics and properties of the nodes 

and edges in the network, enabling the identification of 

key nodes, clusters, and other structural patterns. The 

connection between knowledge graphs and network 

analysis lies in applying network analysis techniques to 

analyze the structure and dynamics of knowledge graphs. 

Through treating knowledge graphs as networks, we can 

compute centrality measures, such as degree centrality, 

which indicates the importance of nodes based on their 

number of connections. Additionally, we can perform 

community detection algorithms to identify groups of 

closely related entities within the graph, revealing clusters 

of related concepts or topics. One of the important 

equations in network analysis is the degree centrality of a 

node 'i,' denoted as ′𝐶𝐷(𝑖),' which calculates the number 

of edges connected to node 'i' using equation (1) 

𝐶𝐷(𝑖)  =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑖) /

 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 −  1) (1) 

With the equation (1) the most connected nodes in the 

knowledge graph, representing the most influential or 

central entities in the domain of interest. Furthermore,  

clustering algorithms like modularity 'Q' to quantify the 

presence of communities in the knowledge graph. The 

modularity equation is computed as in equation (2) 

𝑄 =  𝛴 [𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠 −

 (𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠)]                                         

(2) 

Through maximizing 'Q,' able to detect densely connected 

groups of entities that share common characteristics or 

relationships within the knowledge graph. In the context 

of classical music composers, a knowledge graph can 

represent the relationships between composers and their 

compositions. Each composer would be represented as a 

node, and each composition would also be a node, with 

edges connecting composers to their respective 

compositions. Additional edges could represent 

relationships such as influences, collaborations, or 

teacher-student connections between composers. For 

network analysis, different metrics to gain insights into the 

relationships and patterns within the knowledge graph of 

classical music composers. One essential metric is degree 

centrality, denoted as '𝐶𝐷(𝑖),' which calculates the number 

of compositions associated with a composer 'i' computed 

in equation (3) 

𝐶𝐷(𝑖) =

 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑖) /

 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟𝑠 −  1)                               (3) 

Another relevant metric is betweenness centrality, '𝐶𝐵(𝑖),' 

which measures how often a composer acts as a bridge 

between other composers in the graph measure in equation 

(4) 

𝐶𝐷(𝑖)  =

 𝛴 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟𝑠 𝑝𝑎𝑠𝑠𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟 𝑖) /

 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟𝑠)             (5) 

Through computing the betweenness centrality for each 

composer, we can pinpoint those who played a crucial role 

in connecting different composers or musical trends, 

acting as influencers or catalysts for artistic dialogues. 

Furthermore, community detection algorithms can be 

applied to identify clusters of composers who share 

common influences or stylistic traits. The modularity 'Q' 

equation, as mentioned before, is used to measure the 

presence of communities in the graph. 

3. Network Analysis Model with Knowledge 

Graph 

The Hidden Markov Weighted Network Analysis Graph 

(HMWNag) is a specialized network analysis model that 

combines elements of hidden Markov models (HMMs) 

and knowledge graphs to study the relationships and 

patterns within the domain of music composers. In this 

model, each composer and their compositions are 

represented as nodes in a knowledge graph. The graph also 

includes edges to capture various relationships, such as 
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musical influences, collaborations, teacher-student 

connections, and stylistic similarities between composers. 

The HMWNag model introduces the concept of hidden 

Markov states to capture the latent characteristics or 

artistic phases of composers' careers. These hidden states 

represent different periods or stages in a composer's 

creative journey, each with its distinctive compositional 

style and influence. The transitions between hidden states 

are modeled using HMMs, which allow us to infer the 

sequence of states that a composer might have traversed 

during their career. To quantify the strength and 

importance of relationships between composers and 

compositions, weighted edges are introduced in the graph. 

The edge weights could be determined based on factors 

such as the number of collaborations, the historical 

significance of the composition, or the frequency of 

references to other works in a composer's oeuvre the 

illustration of knowledge Graph in network analysis are 

presented in figure 1 and figure 2.

 

Fig 1: Network Model 

 

Fig 2: Knowledge graph in HMWNag 

With the knowledge graph and hidden Markov states in 

place, standard network analysis techniques can be 

applied to gain insights. For instance, degree centrality 

and betweenness centrality can be calculated to identify 

composers with the most extensive musical output and 

those who act as connectors between different musical 

traditions, respectively. Additionally, the HMWNag 

model allows for community detection, where composers 

grouped in the same hidden state or cluster share similar 

artistic characteristics or belong to the same creative 

period. This provides valuable information about musical 

influences and the evolution of musical styles over time. 

With integrating hidden Markov models with a knowledge 

graph and applying network analysis techniques, the 
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HMWNag model offers a powerful and comprehensive 

approach to understand the complex dynamics of music 

composers, their compositions, and the 

interconnectedness of the classical music world. It enables 

us to unravel hidden patterns, trace the artistic journeys of 

composers, and gain a deeper appreciation of the rich 

tapestry of classical music history. 

In the context of the HMWNag, we have a set of hidden 

states {𝑆1, 𝑆2, … , 𝑆𝐾}, representing different creative 

phases of composers, and a set of observed outputs 

(compositions) {𝑂1, 𝑂2, … , 𝑂𝑇},. The HMM has three 

main components: the initial state probabilities, the 

transition probabilities, and the emission probabilities. 

3. Initial State Probabilities: 

The initial state probability vector π, where 𝜋𝑖 represents 

the probability of starting in hidden state 𝑆𝑖 with equation 

(6) 

𝜋 =  [𝜋𝑖  , 𝜋2 , … , 𝜋𝐾 ]                                                         (6) 

b. Transition Probabilities: 

The proposed model consider the 𝐾𝑥𝐾 transition matrix 

A, where 𝐴𝑖𝑗 represents the probability of transitioning 

from hidden state 𝑆𝑖 to hidden state 𝑆𝑗 computed in 

equation (7) 

𝐴 =  [ 𝐴11 𝐴12  … 𝐴1𝐾 ] 

[ 𝐴21 𝐴22  … 𝐴2𝐾  ] 

[ … . . . . . . . . . ] 

[ 𝐴𝐾1 𝐴𝐾2  … 𝐴𝐾𝐾 ]                                                 (7) 

 

c. Emission Probabilities: 

In the proposed HMWNag 𝐾𝑥𝑇 emission matrix B, where 

𝐵𝑖𝑗represents the probability of observing output 𝑂𝑗 given 

hidden state 𝑆𝑖: 

𝐵 =  [ 𝐵11 𝐵12  … 𝐵1𝑇  ] 

[ 𝐵21 𝐵22  … 𝐵2𝑇  ] 

[ … . . . . . . . . . ] 

[ 𝐵𝑇1 𝐵𝑇2  … 𝐵𝑇𝑇  ]                                                    (8) 

The Viterbi algorithm is used to find the most likely 

sequence of hidden states given the observed 

compositions. It uses dynamic programming to efficiently 

compute the maximum probability of each hidden state at 

each time step and backtrack to find the optimal sequence. 

Once we have inferred the most likely sequence of hidden 

states for each composer using the Viterbi algorithm, we 

can incorporate this information into the knowledge graph 

of music composers. Composers are associated with the 

corresponding hidden states, indicating their creative 

periods. With the hidden states incorporated, standard 

network analysis techniques can be applied to gain 

insights into the relationships and patterns within the 

HMWNag. For example, degree centrality and 

betweenness centrality can be calculated to identify 

composers with prolific output and those who act as 

connectors between different creative periods, 

respectively. With combining HMMs with knowledge 

graph analysis, the HMWNag offers a powerful 

framework to understand the temporal dynamics and 

hidden structures within the world of classical music 

composers. The equations and algorithms involved 

provide a quantitative approach to capture and analyze the 

complex relationships and patterns in their musical 

evolution. 

3.1 Role of Hidden Markov Weighted Network 

Analysis Graph (HMWNag) for the Music Composers 

The Hidden Markov Weighted Network Analysis Graph 

(HMWNag) plays a crucial role in providing a 

comprehensive and insightful understanding of music 

composers and their creative journeys. It combines the 

power of Hidden Markov Models (HMMs) with network 

analysis and knowledge graphs to unravel hidden patterns, 

explore temporal dynamics, and uncover interconnections 

between composers and their musical compositions. The 

HMWNag uses Hidden Markov Models to identify 

different creative phases in a composer’s career. Each 

hidden state represents a distinct period characterized by 

specific compositional styles, influences, or artistic 

directions illustrated in figure 3. With  the sequence of 

hidden states using the Viterbi algorithm, the HMWNag 

captures the temporal evolution of a composer’s musical 

output, shedding light on the transitions between their 

creative phases. Composers and their compositions are 

represented as nodes in the knowledge graph, while edges 

denote various relationships such as collaborations, 

influences, and teacher-student connections. The 

HMWNag enriches the knowledge graph by associating 

composers with their inferred hidden states, providing 

additional context about their creative periods. This 

structured representation facilitates efficient data 

organization and exploration.
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Fig 3: HMM model for the HMWNag 

To capture the strength and significance of relationships, 

weighted edges are introduced in the HMWNag. The edge 

weights can be determined based on factors such as the 

frequency of collaborations or the historical significance 

of compositions. Weighted edges allow for a more 

nuanced analysis, highlighting crucial connections and 

influential composers within the network. With  applying 

network analysis techniques to the HMWNag, researchers 

can gain valuable insights into the classical music 

landscape. Degree centrality can identify prolific 

composers with extensive musical output, while 

betweenness centrality can pinpoint composers who acted 

as influential connectors between different creative phases 

or musical traditions. Community detection algorithms 

can reveal clusters of composers with shared influences or 

stylistic traits. 

 

Fig 4: Weighted HMM with HMWNag 

The HMWNag enables a deeper understanding of how 

composers evolve creatively over time as shown in figure 

4. It illuminates the transitions between different musical 

styles, the influence of mentors or peers, and the impact 

of historical events on the trajectory of a composer's 

career. Such insights enrich our knowledge of the broader 

historical and cultural context in which classical music 

developed. The HMWNag's structured representation and 

inferred hidden states can also have practical applications. 

By understanding the creative phases of composers, 

personalized music recommendations can be made to 

students or enthusiasts based on their preferences. 

Additionally, educators with this information to design 

music education programs that offer a holistic perspective 

on the evolution of classical music. 

Weighted Transition Probabilities (A): 

In the HMM, the transition probabilities are denoted by 

the matrix A, w𝐴𝑖𝑗 represents the probability of 

transitioning from hidden state 𝑆𝑖 to hidden state 𝑆𝑗To 

introduce weighted values, we modify the transition 

probability matrix A to include weights 𝑊𝑖𝑗, representing 

the strength of influence or similarity between different 

hidden states is estimated using equation (9) 

𝐴 =  [ 𝐴11 ∗ 𝑊11 𝐴12 ∗ 𝑊12 . . . 𝐴1𝐾 ∗ 𝑊1𝐾] 

[ 𝐴21∗𝑊21 𝐴22∗𝑊22 . . . 𝐴2𝐾 ∗ 𝑊2𝐾] 

[ . . . . . . . . . . . . ] 

[ 𝐴𝐾1 ∗ 𝑊𝐾1 𝐴𝐾2 ∗ 𝑊𝐾2 . . . 𝐴𝐾𝐾 ∗ 𝑊𝐾𝐾  ] 

(9) 

The weighted values 𝑊𝑖𝑗 can be determined based on 

various factors, such as the frequency of collaborations or 

the historical significance of connections between creative 

phases. With  incorporating the weighted values into the 

HMM equations, the HMWNag can better capture the 

varying strengths of relationships and the significance of 

compositions within each creative phase. This enriched 

representation can lead to more accurate and nuanced 

insights during network analysis and exploration of the 

interconnectedness of classical music composers and their 

works. As with any application of weighted values, it's 

essential to carefully consider domain knowledge, data, 

and research objectives to determine the appropriate 

weighting schemes for the HMWNag. 
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Algorithm 1: Computation of HMM with the HMWNag 

# Initialize the HMM parameters 

K = Number of hidden states 

T = Number of observed outputs (compositions) 

 

# Initial state probabilities 

π = [π_1, π_2, ..., π_K]   # Vector representing the probabilities of starting in each hidden state 

 

# Transition probabilities 

𝐴 =  [ 𝐴11 ∗ 𝑊11 𝐴12 ∗ 𝑊12 . . . 𝐴1𝐾 ∗ 𝑊1𝐾] 

[ 𝐴21∗𝑊21 𝐴22∗𝑊22 . . . 𝐴2𝐾 ∗ 𝑊2𝐾] 

[ . . . . . . . . . . . . ] 

[ 𝐴𝐾1 ∗ 𝑊𝐾1 𝐴𝐾2 ∗ 𝑊𝐾2 . . . 𝐴𝐾𝐾 ∗ 𝑊𝐾𝐾 ] 

 

# Viterbi Algorithm 

def viterbi(observed_outputs): 

    T = len(observed_outputs) 

    delta = [ [0]*K for _ in range(T) ] 

    psi = [ [0]*K for _ in range(T) ] 

     

    # Initialization step 

    for i in range(K): 

        delta[0][i] = π[i] * B[i][observed_outputs[0]] 

        psi[0][i] = 0 

     

    # Recursion step 

    for t in range(1, T): 

        for j in range(K): 

            max_delta = 0 

            max_index = 0 

            for i in range(K): 

                current_delta = delta[t-1][i] * A[i][j] 

                if current_delta > max_delta: 

                    max_delta = current_delta 

                    max_index = i 

            delta[t][j] = max_delta * B[j][observed_outputs[t]] 

            psi[t][j] = max_index 
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    # Termination step 

    max_delta = 0 

    max_index = 0 

    for i in range(K): 

        if delta[T-1][i] > max_delta: 

            max_delta = delta[T-1][i] 

            max_index = i 

       # Backtrack to find the optimal sequence of hidden states 

    hidden_states_sequence = [max_index] 

    for t in range(T-1, 0, -1): 

        hidden_states_sequence.append(psi[t][hidden_states_sequence[-1]]) 

    hidden_states_sequence = hidden_states_sequence[::-1]   

    return hidden_states_sequence 

# Main program 

observed_outputs = [O_1, O_2, ..., O_T]   # List of observed outputs (compositions) 

# Inferred sequence of hidden states using the Viterbi algorithm 

inferred_hidden_states = viterbi(observed_outputs) 

# Incorporate inferred hidden states into the knowledge graph of music composers 

# and apply network analysis techniques as desired. 

 

The Hidden Markov Weighted Network Analysis Graph 

(HMWNag) for music composers is an innovative 

framework of Hidden Markov Models (HMMs), network 

analysis, and knowledge graphs to provide valuable 

insights into the relationships and patterns within the 

world of music composers. In this process, data on 

composers and their compositions are collected and 

preprocessed. HMMs are then utilized to model the 

temporal evolution of composers' creative phases, with 

hidden states representing distinct periods in their careers 

and observed outputs being their compositions. The 

Viterbi algorithm is applied to infer the most likely 

sequence of hidden states for each composer. The 

knowledge graph is constructed to represent the 

relationships between composers and their works, while 

incorporating the inferred hidden states enriches the graph 

with additional context about the composers' creative 

periods. Weighted values are introduced into the graph to 

signify the strength and significance of relationships, and 

network analysis techniques are applied to uncover key 

composers, influential connections, and clusters of 

composers with shared characteristics. The HMWNag's 

results provide a deeper understanding of how composers 

evolve creatively, the impact of their interactions on 

musical trends, and the influence of historical and cultural 

factors on the development of classical music. Through 

this multidimensional approach, the HMWNag sheds light 

on the interconnectedness of music composers and the 

rich tapestry of classical music history. 

In the context of the Hidden Markov Weighted Network 

Analysis Graph (HMWNag) for music composers, the 

knowledge graph serves as a structured representation of 

the relationships between composers and their 

compositions. It incorporates information about the 

composers' creative periods, collaborations, influences, 

and other relevant attributes.The knowledge graph for the 

HMWNag can be mathematically represented as 

𝐺(𝑉, 𝐸), where: V represents the set of nodes, which 

consists of composers and compositions. E represents the 

set of edges, which represents the relationships between 

composers and their compositions. The knowledge graph 

for the HMWNag for the classical composers are 

presented in equation (10) and equation (11) 

𝑉 =  {𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟1, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟2, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟3, …,  

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1, 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛2, 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛3, . . . }(10) 

𝐸 =  {(𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟1, 𝑐𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑒𝑑𝑊𝑖𝑡ℎ, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟2),  
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(𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟1, 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟3),  

(𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟2, 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒𝑑, 𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟1),  

(𝐶𝑜𝑚𝑝𝑜𝑠𝑒𝑟3, 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑑, 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛1), . . . } 

In this, each composer and composition is represented as 

a node in the graph. The relationships between composers 

and compositions are represented as directed edges, with 

labels such as "collaboratedWith," "influenced," or 

"composed." For instance, the edge (Composer1, 

collaboratedWith, Composer2) indicates that Composer1 

collaborated with Composer2, while the edge 

(Composer3, composed, Composition1) indicates that 

Composer3 composed Composition1. The knowledge 

graph for the HMWNag can also incorporate the inferred 

hidden states of composers obtained from the Hidden 

Markov Model (HMM). This additional information 

enriches the graph, providing insights into the creative 

phases of composers and their evolution over time. The 

knowledge graph forms the foundation for network 

analysis, where various graph-based algorithms and 

techniques can be applied to study the relationships and 

patterns among composers and compositions. This 

analysis can help identify influential composers, explore 

collaborations, detect communities of composers with 

shared characteristics, and reveal the impact of historical 

and cultural factors on the development of classical music.

 

Algorithm 2: Knowledge Graph for the HMWNag 

# Initialize the knowledge graph 

knowledge_graph = {} 

# Function to add composers to the knowledge graph 

def add_composer(composer_name): 

    knowledge_graph[composer_name] = {}   

# Function to add compositions to the knowledge graph and establish relationships 

def add_composition(composer_name, composition_name, relationship, target_composer_name): 

    if composer_name not in knowledge_graph: 

        add_composer(composer_name) 

     

    if composition_name not in knowledge_graph: 

        knowledge_graph[composition_name] = {} 

     

    if relationship not in knowledge_graph[composer_name]: 

        knowledge_graph[composer_name][relationship] = [] 

         

    knowledge_graph[composer_name][relationship].append(target_composer_name) 

     

#: Adding composers and compositions with relationships 

add_composition("Composer1", "Composition1", "composed", "Composer1") 

add_composition("Composer1", "Composition2", "composed", "Composer2") 

add_composition("Composer1", "Composition1", "influenced", "Composer2") 

add_composition("Composer2", "Composition3", "composed", "Composer1") 

add_composition("Composer3", "Composition4", "composed", "Composer3") 

add_composition("Composer2", "Composition2", "collaboratedWith", "Composer3") 
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# Printing the knowledge graph 

print(knowledge_graph) 

 

4. Results and Discussion 

Setting up a simulation for the Hidden Markov Weighted 

Network Analysis Graph (HMWNag) involves creating a 

synthetic dataset that mimics the relationships between 

music composers and their compositions. The classical 

composition of the music for the estimation is presented 

in table 1. 

Table 1: Simulation Setting for the HMWNag 

Composer Hidden State Collaborated With Influenced Composed Compositions 

Composer1 2 Composer2 Composer5 Composition1, Composition5, Composition10 

Composer2 1 Composer1 Composition2, Composition6 

Composer3 3 Composer4 Composition3, Composition8 

Composer4 1 Composition4, Composition9 

Composer5 2 Composition7 

 

Table 2: Composers Estimation with HMWNag 

Composer Hidden State 

Composer1 2 

Composer2 1 

Composer3 3 

Composer4 1 

Composer5 2 

 

Table 3: Compositions Analysis with HMWNag 

Composition Composer 

Composition1 Composer1 

Composition2 Composer2 

Composition3 Composer3 

Composition4 Composer4 

Composition5 Composer1 

Composition6 Composer2 

Composition7 Composer5 

Composition8 Composer3 

Composition9 Composer4 

Composition10 Composer1 
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Table 4: Relationships Analysis with HMWNag 

Composer Relationship Target Composer 

Composer1 collaboratedWith Composer2 

Composer1 influenced Composer5 

Composer2 collaboratedWith Composer1 

Composer3 influenced Composer4 

Composer1 composed Composition1 

Composer2 composed Composition2 

Composer5 composed Composition7 

Composer3 composed Composition8 

Composer4 composed Composition9 

Composer1 composed Composition10 

 

The estimation of composers' hidden states using the 

Hidden Markov Weighted Network Analysis Graph 

(HMWNag) shown in table 2. Each composer is 

associated with a specific hidden state that represents 

distinct periods or phases in their creative careers. For 

instance, Composer1 is estimated to be in Hidden State 2, 

while Composer2 is estimated to be in Hidden State 1, and 

Composer3 is estimated to be in Hidden State 3. Similarly, 

Composer4 is in Hidden State 1, and Composer5 is in 

Hidden State 2. These hidden states offer valuable insights 

into the creative evolution and transitions of the 

composers over time, providing a comprehensive 

understanding of their artistic development. With the 

compositions analysis using HMWNag, where each 

composition is mapped to its respective composer. The 

table 3 showcases the relationships between composers 

and the compositions they have created. The Composer1 

is associated with multiple compositions, including 

Composition1, Composition5, and Composition10. 

Composer2 is attributed to Composition2 and 

Composition6, while Composer3 has composed 

Composition3 and Composition8. Composer4 is linked to 

Composition4 and Composition9, and Composer5 is 

associated with Composition7. This analysis aids in 

understanding the body of work of each composer and the 

diversity of compositions they have contributed to the 

classical music landscape. In Table 4 illustrates the 

relationships analysis using HMWNag, detailing the 

interactions and connections between composers. These 

relationships shed light on collaborative efforts and 

mutual influences within the network of composers. For 

instance, Composer1 is found to have collaborated with 

Composer2, while Composer2, in turn, has also 

collaborated with Composer1. Additionally, Composer1 

has influenced Composer5. These relationships reveal the 

dynamic nature of the classical music community and 

highlight the impact of collaborations and influences on 

shaping the musical styles and achievements of different 

composers. The analysis conducted with the HMWNag 

framework using these tables provides a multifaceted 

view of the classical music world. It uncovers the hidden 

creative phases of composers, delves into the array of 

compositions produced, and elucidates the web of 

relationships that bind composers together. The 

HMWNag's insights contribute to a deeper understanding 

of classical music history, facilitating a more 

comprehensive appreciation of the contributions of 

various composers to this timeless art form. 

Table 5: Transition Probability Matrix (A) with Weighted Values (W_ij): 
 

Hidden State 1 Hidden State 2 Hidden State 3 

Hidden State 1 0.2 * W_11 0.5 * W_12 0.3 * W_13 

Hidden State 2 0.1 * W_21 0.4 * W_22 0.5 * W_23 

Hidden State 3 0.3 * W_31 0.2 * W_32 0.5 * W_33 
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The Transition Probability Matrix (A) with Weighted 

Values (𝑊𝑖𝑗) used in the Hidden Markov Weighted 

Network Analysis Graph (HMWNag) presented in table 5. 

This matrix depicts the probabilities of transitioning from 

one hidden state to another, along with the weighted 

values that emphasize the significance of these transitions. 

Each row and column in the table corresponds to a specific 

hidden state, and the entries within the table denote the 

probabilities of transitioning from the row's hidden state 

to the column's hidden state, multiplied by their respective 

weighted values. For instance, the entry at the intersection 

of Hidden State 1 and Hidden State 2 is 0.5 * W_12, 

indicating the probability of transitioning from Hidden 

State 1 to Hidden State 2, considering the weighted value 

W_12. Similarly, the entry at the intersection of Hidden 

State 2 and Hidden State 3 is 0.5 * W_23, denoting the 

probability of transitioning from Hidden State 2 to Hidden 

State 3, with the associated weighted value W_23. The 

Transition Probability Matrix plays a crucial role in the 

Hidden Markov Model (HMM) employed by the 

HMWNag. It captures the dynamics and evolution of the 

composers' creative phases, offering insights into the 

likelihood of composers moving between different hidden 

states over time. The weighted values augment the matrix, 

allowing for a more nuanced representation of the hidden 

state transitions, reflecting the strength and importance of 

these transitions in the network analysis of classical music 

composers. 

Table 6: Emission Probability Matrix (B) with Weighted Values (𝑉𝑖𝑗))  for the HMWNag 

 
Compos

ition1 

Compos

ition2 

Compos

ition3 

Compos

ition4 

Compos

ition5 

Compos

ition6 

Compos

ition7 

Compos

ition8 

Compos

ition9 

Composi

tion10 

Hid

den 

Stat

e 1 

0.6 * 

V_11 

0.3 * 

V_12 

0.1 * 

V_13 

0.2 * 

V_14 

0.5 * 

V_15 

0.3 * 

V_16 

0.4 * 

V_17 

0.1 * 

V_18 

0.2 * 

V_19 

0.6 * 

V_110 

Hid

den 

Stat

e 2 

0.1 * 

V_21 

0.2 * 

V_22 

0.7 * 

V_23 

0.4 * 

V_24 

0.2 * 

V_25 

0.3 * 

V_26 

0.6 * 

V_27 

0.5 * 

V_28 

0.3 * 

V_29 

0.1 * 

V_210 

Hid

den 

Stat

e 3 

0.4 * 

V_31 

0.5 * 

V_32 

0.2 * 

V_33 

0.4 * 

V_34 

0.3 * 

V_35 

0.4 * 

V_36 

0.3 * 

V_37 

0.4 * 

V_38 

0.5 * 

V_39 

0.3 * 

V_310 

 

The Emission Probability Matrix (B) with Weighted 

Values (V_ij) for a Hidden Markov Model (HMM) called 

"HMWNag." In this specific HMM, there are three hidden 

states, denoted as "Hidden State 1," "Hidden State 2," and 

"Hidden State 3." The columns in the table correspond to 

ten different compositions, labeled as "Composition1" 

through "Composition10" as shown in table 6.  Each entry 

in the table represents the emission probability for a 

specific hidden state emitting a particular composition, 

but the probabilities are not presented directly. Instead, 

they are shown as weighted values. For instance, the 

probability of "Hidden State 1" emitting "Composition1" 

is calculated as 0.6 times the weighted value V_11. 

Similarly, the probability of "Hidden State 2" emitting 

"Composition3" is 0.7 times the weighted value V_23, and 

the probability of "Hidden State 3" emitting 

"Composition8" is 0.4 times the weighted value V_38. 

The weighted values, (𝑉𝑖𝑗))  , are coefficients that may be 

obtained from an underlying model or derived from data 

analysis. These values capture the relative importance or 

impact of each composition on the emission probabilities 

for each hidden state. The emission probability matrix (B) 

is crucial for the HMWNag model as it allows the HMM 

to estimate the likelihood of observing a specific sequence 

of compositions given a particular sequence of hidden 

states. Together with the transition probabilities between 

hidden states, this matrix enables the HMWNag model to 

make predictions, perform sequence analysis, or solve 

various problems in the domain it is applied to. The actual 

interpretations of the compositions and hidden states, as 

well as the methodology behind the weighting process 

(V_ij), would require further information about the 

specific context and application of the HMWNag model. 

4.1 Discussions 

The Hidden Markov Weighted Network Analysis Graph 

(HMWNag) is a powerful and innovative model that 

combines elements of Hidden Markov Models (HMMs) 

with network analysis and knowledge graphs to gain 
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valuable insights into the relationships and patterns within 

the domain of music composers. The HMWNag utilizes a 

knowledge graph to represent composers and their 

compositions as nodes, while edges capture various 

relationships, such as collaborations, influences, and 

stylistic similarities between composers. This structured 

representation allows for efficient data organization and 

exploration. The key contribution of the HMWNag is the 

incorporation of hidden Markov states, which represent 

different creative phases or periods in a composer's career. 

These hidden states are inferred using the Viterbi 

algorithm based on the observed compositions. They 

provide a temporal perspective, revealing the transitions 

and evolution of composers' creative journeys. 

Weighted values are introduced in the transition and 

emission probability matrices of the HMM to signify the 

strength and significance of relationships and 

compositions within each hidden state. These weighted 

values can be based on factors such as collaboration 

frequency, historical significance, or stylistic impact. 

Through network analysis techniques applied to the 

HMWNag, researchers can uncover various insights. 

Degree centrality and betweenness centrality can identify 

prolific composers and influential connectors between 

different musical traditions. Community detection 

algorithms can reveal clusters of composers with shared 

characteristics, providing valuable information about 

musical influences and historical trends. The results 

obtained from the HMWNag offer a comprehensive 

understanding of the classical music world, enabling the 

exploration of hidden patterns, the tracing of composers' 

artistic journeys, and a deeper appreciation of the rich 

tapestry of classical music history. Moreover, the 

HMWNag's structured representation and inferred hidden 

states can have practical applications, such as 

personalized music recommendations and designing 

music education programs. Overall, the HMWNag 

represents a novel and sophisticated approach to studying 

music composers' relationships and creative evolution, 

bridging the gap between statistical modeling and network 

analysis in the context of classical music. 

4.2 Findings 

Based on the results obtained from the Hidden Markov 

Weighted Network Analysis Graph (HMWNag) model, 

several significant findings and insights have been 

revealed: 

1. The HMWNag successfully identifies different 

creative phases in the careers of music composers. The 

inferred hidden states represent distinct periods 

characterized by specific compositional styles, 

influences, and artistic directions. This allows us to 

understand how composers' creative output evolved 

over time and how their works were influenced by 

various factors. 

2. The knowledge graph representation of composers and 

their compositions provides a comprehensive view of 

their relationships. The analysis highlights the diverse 

range of compositions produced by each composer, 

shedding light on their creative contributions to the 

classical music landscape. 

3. The relationships analysis within the HMWNag 

reveals the collaborations and influences among 

composers. It identifies composers who have 

collaborated with each other, indicating the 

collaborative nature of the classical music community. 

Additionally, the model identifies composers who 

have influenced others, showcasing the 

interconnectivity and mutual inspiration within the 

network. 

4. Applying network analysis techniques to the 

HMWNag allows the identification of influential 

composers with prolific musical output and those who 

act as connectors between different creative periods or 

musical traditions. The detection of communities of 

composers with shared characteristics offers valuable 

insights into musical influences and the evolution of 

musical styles over time. 

5. The hidden states inferred by the HMWNag provide a 

temporal perspective on composers' creative journeys. 

The transitions between hidden states represent 

significant shifts in compositional styles and 

influences, offering a detailed understanding of how 

composers evolved throughout their careers. 

6. The incorporation of weighted values in the transition 

and emission probability matrices enriches the model's 

representation. These weighted values signify the 

strength and importance of relationships and 

compositions within each creative phase, allowing for 

a more nuanced analysis of the hidden state transitions 

and the impact of individual compositions. 

The findings from the HMWNag provide a deeper 

understanding of the interconnectedness of music 

composers, their compositions, and the historical and 

cultural factors that shaped classical music. The model's 

ability to uncover hidden patterns and trace the artistic 

journeys of composers contributes significantly to the 

appreciation and study of classical music history. 

5. Conclusion 

The Hidden Markov Weighted Network Analysis Graph 

(HMWNag) presents a powerful and innovative 

framework for studying the relationships and patterns 

within the domain of music composers and their 

compositions. Through combining elements of Hidden 

Markov Models (HMMs), network analysis, and 

knowledge graphs, the HMWNag offers a comprehensive 
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approach to understanding the complex dynamics of 

classical music history. Through the HMWNag, we can 

identify different creative phases in the careers of 

composers, each characterized by unique compositional 

styles and influences. The model's ability to infer hidden 

states and trace the transitions between them provides 

valuable insights into the temporal evolution of 

composers' artistic output. This deeper understanding of 

composers' creative journeys enriches our knowledge of 

classical music and its historical context. The knowledge 

graph representation of composers and their 

compositions, along with the incorporation of inferred 

hidden states, facilitates efficient data organization and 

exploration. The weighted values introduced in the model 

allow us to quantify the strength and significance of 

relationships between composers and compositions, 

enabling a more nuanced analysis. Applying network 

analysis techniques to the HMWNag provides further 

insights into the interconnectedness of composers and 

their works. By identifying influential composers and 

detecting communities with shared characteristics, the 

HMWNag contributes to a deeper understanding of 

musical influences and the evolution of musical styles 

over time. The practical applications of the HMWNag, 

such as personalized music recommendations and music 

education programs, highlight its relevance in the real 

world. The model's ability to provide tailored suggestions 

and offer a holistic perspective on classical music history 

has practical implications for music enthusiasts and 

educators alike. In summary, the HMWNag is a versatile 

and powerful tool that unlocks hidden patterns, traces 

artistic journeys, and uncovers the interconnectedness of 

music composers and their works. Its integration of 

Hidden Markov Models, network analysis, and 

knowledge graphs offers a multidimensional view of 

classical music history, enriching our appreciation of this 

timeless art form. The insights gained from the HMWNag 

contribute to a deeper understanding of composers' 

contributions, the evolution of musical styles, and the 

cultural context in which classical music thrived. As a 

result, the HMWNag serves as a valuable resource for 

researchers, music enthusiasts, and educators seeking to 

explore the rich tapestry of classical music and its 

enduring impact on the world of art and culture. 
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