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Abstract: In recent years, advancements in deep learning and natural language processing techniques have opened up new avenues for 

analysing and understanding human emotions and social dynamics. One such approach is the use of stacked deep learning models, which 

leverage the power of multiple layers of neural networks to capture complex relationships and patterns in data. Family dynamics play a 

crucial role in shaping individuals' reactions well-being and overall health. This paper examines the relationship between the family and 

reactions changes in family Makeup. The model is examined with sentimental analysis based architectural model Stacked Gaussian Deep 

Learning (SgDL). The proposed SgDL model uses the probability distribution model for the estimation of the relationship between family 

and the emotions of people. The constructed SgDL model uses the Gaussian Distribution based stacked architecture model for the 

sentimental analysis to estimate the relationship between family and emotions of people. Simulation analysis stated that the proposed SgDL 

model achieves significant performance towards the computation of the relationship between family and relationship for the reaction’s 

changes. The performance of the SgDL model achieves a higher classification accuracy of 97.35% which is ~6% - 7% higher than the 

conventional CNN and LSTM model.  
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1. Introduction 

The rapid advancement of machine learning has 

revolutionized various industries and transformed the way 

we interact with technology. As artificial intelligence 

becomes increasingly sophisticated, it has the potential to 

not only analyze vast amounts of data but also 

comprehend and respond to human emotions [1]. This 

intersection of machine learning and emotions opens up 

new avenues for research and exploration. Understanding 

the reactions impact of machine learning is crucial as it 

not only affects the development and application of AI 

systems but also has profound implications for human-

machine interaction, user experience, and the ethical 

considerations surrounding these technologies [2]. 

Emotions play a fundamental role in human cognition, 

decision-making, and social interactions. By 

incorporating reactions intelligence into machine learning 

algorithms, we can create more empathetic and intuitive 

systems that are capable of understanding and responding 

to human emotions. The intricate relationship between 

family dynamics and reactions changes can be likened to 

the vast and mysterious depths of the deep sea. Within the 

depths of a family, the nurturing or neglectful environment 

acts as the currents that shape the reactions landscape [3]. 

A family characterized by warmth, support, and healthy 

communication creates an environment that encourages 

reactions growth and stability [4]. Just as sunlight 

penetrates the surface of the ocean, fostering life and 

vibrancy, a nurturing family dynamic promotes positive 

reactions changes, such as increased self-esteem, 

confidence, and resilience. Conversely, a neglectful or 

abusive family dynamic can plunge one into the darkness 

of reactions turmoil, where negative emotions can swell 

and overwhelm [5]. Like the unknown creatures that dwell 

in the abyssal trenches, reactions instability, feelings of 

insecurity, and a range of negative emotions can emerge 

within a family lacking in love and care. Thus, the delicate 

dance of family dynamics, like the ebb and flow of ocean 

currents, significantly influences the reactions well-being 

of individuals, shaping their experiences and responses to 

the world around them [6]. 

Embarking on a journey into the metaphorical deep sea of 

emotions can lead to profound reactions changes within 

individuals. In this reactions exploration, one may 

experience a heightened sense of vulnerability, as layers 

of defense mechanisms are shed, revealing raw and 

unfiltered emotions [7]. It is in this deep sea that the full 

spectrum of human emotions can be found - from the 

depths of sorrow and pain to the peaks of joy and love. As 

individuals navigate these reactions depths, they may 

come face to face with their fears, insecurities, and 

unresolved traumas. This courageous confrontation with 

the self allows for the opportunity to heal, grow, and gain 

a deeper understanding of one's own reactions landscape 

[8]. Just as the deep sea is teeming with undiscovered life 
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forms, the reactions journey can also reveal hidden aspects 

of one's identity and untapped reservoirs of strength and 

resilience. Ultimately, the reactions changes experienced 

in the deep sea can be transformative, leading to greater 

self-awareness, personal growth, and a more profound 

connection with oneself and others. 

Deep learning in the context of family makeup refers to 

the application of deep learning techniques and models to 

analyze, understand, and make predictions about various 

aspects of family dynamics, relationships, and 

psychological processes [9]. Deep learning models, which 

are a subset of machine learning algorithms, are 

particularly useful in handling complex, high-dimensional 

data and extracting meaningful patterns and 

representations. Sentiment analysis, also known as 

opinion mining, is a natural language processing (NLP) 

task that involves determining the sentiment or reactions 

tone expressed in a given text. Deep learning techniques 

have been widely applied to sentiment analysis tasks and 

have shown promising results due to their ability to learn 

complex patterns and representations from textual data 

[10]. 

This study explores the intricate relationship between 

family dynamics and reactions changes within the context 

of the film "Deep Sea" using deep family makeup. The 

proposed approach utilizes sentimental analysis with a 

stacked Gaussian Deep Learning (SgDL) model to 

estimate the relationship between family dynamics and the 

emotions of individuals. The SgDL model employs a 

probability distribution-based architecture to analyze and 

understand the reactions changes associated with family 

relationships. Through simulation analysis, the SgDL 

model demonstrates significant performance in 

computing the relationship between family dynamics and 

reactions changes, achieving a higher classification 

accuracy of 97.35%. This accuracy surpasses 

conventional CNN and LSTM models by approximately 

6% to 7%. The findings highlight the effectiveness of the 

SgDL model in capturing the complex dynamics of family 

relationships and reactions changes in the film "Deep 

Sea." 

2. Related Works 

In [9] provides a comprehensive overview of the use of 

deep learning techniques for sentiment analysis. It covers 

various aspects of sentiment analysis, including data 

preprocessing, feature representation, model 

architectures, and evaluation metrics. The authors discuss 

different neural network models such as convolutional 

neural networks (CNNs), recurrent neural networks 

(RNNs), and attention-based models. They also explore 

the application of pre-trained models and transfer learning 

techniques in sentiment analysis. The survey highlights 

recent advancements and emerging trends in deep 

learning-based sentiment analysis, offering valuable 

insights into the current state-of-the-art approaches. 

In [10] proposes a hierarchical attention network (HAN) 

specifically designed for sentiment analysis in Chinese 

social media. The HAN model effectively captures the 

hierarchical structure of social media text, allowing it to 

attend to different levels of information for sentiment 

classification. The paper demonstrates the efficacy of the 

HAN model on Chinese sentiment analysis tasks and 

compares its performance with other state-of-the-art 

approaches. In [11] presented a use of graph convolutional 

networks (GCNs) for aspect-level sentiment 

classification. The model leverages graph-based 

representations to capture dependencies between different 

aspects and sentiment expressions in a sentence. By 

incorporating both aspect and sentiment information into 

a unified graph framework, the GCN model achieves 

improved performance on aspect-level sentiment analysis 

tasks compared to traditional approaches. In [12] 

proposed a novel model called DeepCaps, which 

combines capsule networks and attention-based routing 

for aspect-level sentiment classification. The model 

leverages the hierarchical structure of capsule networks to 

capture fine-grained aspect-level information, while 

attention-based routing enhances the model's ability to 

attend to salient features. Experimental results 

demonstrate that DeepCaps outperforms several state-of-

the-art models on aspect-level sentiment classification 

tasks, showcasing the effectiveness of the proposed 

approach. 

Similarly, in [13]  proposes a Dual Capsule Network 

(DCN) for aspect-based sentiment analysis. The DCN 

model leverages capsule networks to capture aspect-level 

information and employs a dual attention mechanism to 

effectively handle multiple aspects and sentiment 

expressions in a text. Experimental results demonstrate 

that the DCN model outperforms other state-of-the-art 

methods on aspect-based sentiment analysis tasks. In [14] 

focuses on aspect-based sentiment analysis and proposes 

an ensemble learning framework that combines multiple 

convolutional neural networks (CNNs) for improved 

performance. The ensemble model aggregates predictions 

from individual CNN models and utilizes a weighting 

strategy to generate the final sentiment classification 

results. Experimental results demonstrate that the 

ensemble learning approach achieves superior 

performance compared to individual CNN models and 

other baseline methods. 

In [15] presents a Multi-Head Graph Convolutional 

Network (MH-GCN) for aspect-level sentiment 

classification. The MH-GCN model leverages multiple 

attention heads in graph convolutional networks to capture 

aspect-specific representations and exploit the 
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relationships between different aspects. Experimental 

results show that the MH-GCN model achieves 

competitive performance on aspect-level sentiment 

classification tasks compared to other state-of-the-art 

approaches. In [16] proposes an Attention-Guided 

Convolutional Neural Network (AG-CNN) for sentiment 

classification. The AG-CNN model integrates attention 

mechanisms into the CNN architecture to capture 

important features and improve the discriminative power 

of the model. Experimental results demonstrate that the 

AG-CNN model outperforms traditional CNN models and 

achieves competitive results on sentiment classification 

tasks. Table 1 shows the existing methods. 

Table 1. Existing methods review 

Study Method Model Results Findings 

[9] Discusses data 

preprocessing, feature 

representation, model 

architectures, and evaluation 

metrics 

CNNs, RNNs, 

attention-based 

models 

N/A (Review paper) Provides insights into the 

current state-of-the-art 

approaches in deep learning-

based sentiment analysis 

[10] Proposes a hierarchical 

attention network model 

HAN model Improved performance 

compared to other 

approaches 

Effectively captures 

hierarchical structure of social 

media text for sentiment 

classification in Chinese 

language 

[11] Uses graph convolutional 

networks to capture 

dependencies between 

aspects and sentiment 

expressions 

GCN model Improved performance 

on aspect-level 

sentiment analysis tasks 

Incorporates aspect and 

sentiment information into a 

unified graph framework for 

better classification 

[12] Introduces the DeepCaps 

model 

DeepCaps model Outperforms state-of-

the-art models on 

aspect-level sentiment 

classification tasks 

Combines capsule networks 

and attention-based routing for 

fine-grained aspect-level 

information 

[13] Proposes the Dual Capsule 

Network model 

DCN model Superior performance 

compared to other 

methods 

Handles multiple aspects and 

sentiment expressions 

effectively using capsule 

networks and dual attention 

mechanism 

[14] Utilizes an ensemble 

learning approach combining 

CNN models 

Ensemble model 

with multiple 

CNNs 

Superior performance 

compared to individual 

CNN models and 

baseline methods 

Aggregates predictions from 

multiple CNN models using a 

weighting strategy 

[15] Introduces the MH-GCN 

model 

MH-GCN model 

with multiple 

attention heads 

Competitive 

performance on aspect-

level sentiment 

classification tasks 

Captures aspect-specific 

representations and exploits 

relationships between different 

aspects 

[16] Proposes the AG-CNN 

model 

AG-CNN model 

with attention 

mechanisms 

Outperforms traditional 

CNN models 

Integrates attention 

mechanisms to capture 

important features and improve 

discriminative power 

3. Sentimental Analysis of Family Makeup 

The proposed methodology of Stacked Gaussian Deep 

Learning (SgDL) is a novel approach for sentiment 

analysis that incorporates probability distribution 

modeling and stacked architecture to estimate the 

relationship between family dynamics and reactions 

changes.
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Fig 1. SgDL Architecture 

The SgDL model utilizes a probability distribution model 

to estimate the relationship between family dynamics and 

the emotions of individuals. Instead of directly predicting 

sentiment labels, the model focuses on estimating the 

underlying probability distributions associated with 

different emotions within the family. The SgDL model 

employs a stacked architecture to analyze and understand 

the reactions changes related to family dynamics. The 

stacked architecture consists of multiple layers of neural 

networks, enabling the model to learn hierarchical 

representations and capture complex relationships 

between family dynamics and emotions. The SgDL model 

utilizes a Gaussian distribution-based approach to model 

the reactions changes within the family. By leveraging the 

properties of Gaussian distributions, the model can 

effectively capture the mean and variance of emotions, 

providing a more nuanced understanding of reactions 

dynamics. The SgDL model incorporates sentimental 

analysis techniques to estimate the relationship between 

family dynamics and emotions. By analyzing textual data, 

such as written or spoken communication within the 

family, the model can extract sentiment-related 

information and map it to the corresponding probability 

distributions. 

Figure 1 presented the proposed SgDL methodology aims 

to provide a more comprehensive understanding of the 

relationship between family dynamics and reactions 

changes by leveraging the power of probability 

distribution modeling and stacked architecture. By 

estimating probability distributions and utilizing 

Gaussian-based modeling, the SgDL model offers a 

nuanced perspective on reactions dynamics within the 

family context. The evaluation results demonstrate the 

superior performance of the SgDL model compared to 

traditional CNN and LSTM models in capturing the 

relationship between family dynamics and reactions 

changes. 

3.1 Gaussian Distribution 

In the Stacked Gaussian Deep Learning (SgDL) 

methodology, the Gaussian distribution process is 

employed to model the reactions changes within the 

family dynamics. In SgDL, emotions are represented as 

continuous variables rather than discrete labels. Each 

emotion is characterized by a probability distribution, 
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specifically a Gaussian distribution. The Gaussian 

distribution is defined by two parameters: the mean 

(representing the central tendency or intensity of the 

emotion) and the variance (representing the spread or 

variability of the emotion). The SgDL model maps the 

reactions information extracted from the family dynamics 

(such as textual data) to the parameters of the Gaussian 

distribution. This mapping process involves analyzing the 

reactions content and assigning appropriate values for the 

mean and variance of the Gaussian distribution that best 

represent the reactions state. The mapped reactions 

information, the SgDL model estimates the parameters of 

the Gaussian distribution associated with each emotion. 

This estimation process involves learning the optimal 

values for the mean and variance by training the deep 

learning model on a labeled dataset that includes reactions 

information. 

Once the parameters of the Gaussian distribution are 

estimated, the SgDL model leverages these distributions 

to model the reactions changes within the family 

dynamics. The Gaussian distribution provides insights 

into the central tendency, intensity, and variability of 

emotions, enabling a more nuanced understanding of 

reactions dynamics. Through utilizing Gaussian 

distribution-based modeling, the SgDL methodology 

captures the statistical characteristics of emotions within 

the family dynamics. This approach provides a richer and 

more detailed representation of reactions changes, 

enabling a deeper understanding of the interplay between 

family dynamics and emotions. The mathematical 

derivation of the Gaussian distribution in the context of 

family makeup involves the estimation of mean (μ) and 

variance (σ^2) parameters. In family makeup, data is 

collected to capture reactions states or responses within 

the family. This data can be in the form of self-reported 

emotions, behavioral observations, or other measures. The 

first step is to calculate the mean (μ) of the reactions data. 

The mean represents the average reactions state within the 

family. It is calculated by summing up all the reactions 

values and dividing by the total number of observation as 

in equation (1) 

𝜇 =  (𝑥1 +  𝑥2 + . . . + 𝑥𝑛) / 𝑛                                             (1) 

where 𝑥1, 𝑥2, . . . , 𝑥𝑛 are the reactions values and n is the 

total number of observations. The next step is to calculate 

the variance (σ^2) of the reactions data. The variance 

represents the spread or variability of the reactions states 

within the family. It is calculated by taking the average of 

the squared differences between each reactions value and 

the mean computed as in equation (2) 

𝜎2  =  [(𝑥1 −  𝜇)2  +  (𝑥2 −  𝜇)2 + . . . + (𝑥𝑛 −  𝜇)2] /

 𝑛                         (2) 

With the mean and variance calculated, the reactions data 

can be modeled using the Gaussian distribution. The 

Gaussian distribution, also known as the normal 

distribution, is defined by its probability density function 

(PDF) presented in equation (3) 

𝑓(𝑥)  =  (1 / √(2𝜋𝜎2))  ∗  𝑒(−((𝑥 − 𝜇)2) / (2𝜎2))                       

(3) 

where 𝑓(𝑥) is the probability density function at a given 

reactions value 𝑥, 𝜇 is the mean, and 𝜎2 is the variance. 

The Gaussian distribution provides insights into the 

central tendency (mean) and variability (variance) of 

reactions states within the family. It allows for the analysis 

of the likelihood of specific reactions values and the 

understanding of patterns or trends in the reactions data. 

The mathematical equation for the Gaussian distribution 

is given as in equation (4) 

𝑓(𝑥 | 𝜇, 𝜎2)  =  (1 / √(2𝜋𝜎2))  ∗  𝑒𝑥𝑝(−(𝑥 −  𝜇)2 /

 (2𝜎2))                  (4) 

where: f(x | μ, 𝜎2) represents the probability density 

function (PDF) of the Gaussian distribution with mean μ 

and variance 𝜎2. x is the random variable representing the 

reactions state. μ is the mean of the distribution, which 

represents the central tendency or intensity of the emotion. 

𝜎2 is the variance of the distribution, which represents the 

spread or variability of the emotion. The PDF of the 

Gaussian distribution describes the likelihood of 

observing a specific value of the reactions state within the 

family. The term (1 / √(2𝜋𝜎2)) is a normalization factor 

that ensures the total area under the curve sums to 1. 

The parameters μ and 𝜎2can be estimated using various 

techniques, such as maximum likelihood estimation 

(MLE) or Bayesian inference, depending on the specific 

application and available data. These estimated 

parameters provide insights into the typical reactions state 

(mean) and the degree of variation (variance) within the 

family dynamics.

 

Algorithm 1: Gaussian Distrubution 

function generateGaussianSample(mean, variance): 

    // Generate a random sample from a Gaussian distribution 

    u1 = randomUniform()  // Generate a random number between 0 and 1 
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    u2 = randomUniform()  // Generate another random number between 0 and 1 

    𝑧 =  𝑠𝑞𝑟𝑡(−2 ∗  𝑙𝑛(𝑢1))  ∗  𝑐𝑜𝑠(2 ∗  𝜋 ∗  𝑢2)  // Box-Muller transform 

    sample = mean + sqrt(variance) * z  // Transform the standard normal to desired mean and variance 

    return sample 

 

function generateGaussianDistribution(samples, mean, variance): 

    // Generate a Gaussian distribution of specified number of samples 

    distribution = [] 

    for i = 1 to samples: 

        sample = generateGaussianSample(mean, variance) 

        distribution.append(sample) 

    return distribution 

 

3.2 Stacked SgDL Model 

The stacked architecture in the Stacked Gaussian Deep 

Learning (SgDL) model is a key component that 

facilitates the analysis of the relationship between family 

dynamics and reactions changes. This architecture 

involves arranging multiple layers of neural networks in a 

hierarchical manner to extract meaningful representations 

from the input data. At the input layer, the raw data related 

to family dynamics and reactions changes is fed into the 

model. This could include textual data, audio recordings, 

or any other relevant information. Each layer in the 

stacked architecture performs a specific computation on 

the data and passes the transformed output to the 

subsequent layer. 

As the data propagates through the hidden layers, the 

model learns increasingly abstract and complex features. 

Lower-level layers typically capture basic patterns and 

local dependencies, while higher-level layers capture 

more global relationships and semantic understanding. 

This hierarchical representation enables the model to 

capture the intricacies and nuances of the relationship 

between family dynamics and reactions changes. The 

choice of specific neural network layers in the stacked 

architecture depends on the nature of the data and the 

objectives of the analysis. The convolutional layers are 

commonly used for analyzing textual or visual data, while 

recurrent layers are suitable for sequential data like time 

series or spoken conversations. The final layer of the 

stacked architecture, the output layer, produces the desired 

output based on the analysis of the transformed data. In 

the case of SgDL, the output could be the estimated 

Gaussian distributions representing reactions changes 

within the family. By leveraging the power of the stacked 

architecture, the SgDL model can learn complex 

relationships and capture the underlying patterns in the 

family dynamics and reactions changes. This enables a 

deeper understanding of the intricate interplay between 

family dynamics and reactions experiences, offering 

valuable insights into human makeup and the complexities 

of familial bonds. 

In a typical deep learning architecture, each layer applies 

a set of mathematical operations to the input data, 

transforming it into a new representation. These 

operations typically involve linear transformations 

followed by non-linear activation functions. Let's denote 

the input to a layer as x and the output as h. The 

transformation applied by a layer can be mathematically 

represented as in equation (5) 

ℎ =  𝑓(𝑊𝑥 +  𝑏)                                             (5) 

Where: W represents the weight matrix of the layer; b 

represents the bias vector of the layer; f denotes the 

activation function; The weight matrix W contains the 

learnable parameters of the layer, and the bias vector b 

introduces an additional shift in the transformation. The 

activation function f introduces non-linearity to the layer, 

enabling the model to learn complex relationships. In a 

stacked architecture, multiple layers are stacked on top of 

each other, with the output of one layer serving as the 

input to the next layer. The output of the previous layer, 

denoted as h_l-1, becomes the input to the current layer, 

and the process is repeated for each layer. Let's consider a 

stacked architecture with L layers. The output of the l-th 

layer, denoted as ℎ𝑙, can be computed as in equation (6) 

 ℎ𝑙 , =  𝑓( 𝑊𝑙 , ℎ𝑙 , −1  +   𝑏𝑙 , )                                               (6) 

where l ranges from 1 to L. y stacking multiple layers 

together, the model can learn hierarchical representations 

of the input data. Each layer captures different levels of 

abstraction, with lower-level layers capturing simple 
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features and higher-level layers capturing more complex 

features. To train the stacked architecture, the model's 

parameters (W and b) are optimized using techniques like 

backpropagation and gradient descent, which involve 

computing gradients and updating the parameters 

iteratively. By leveraging the stacked architecture, deep 

learning models can learn highly expressive 

representations from complex data, allowing for more 

sophisticated and accurate analyses. In the context of the 

Stacked Gaussian Deep Learning (SgDL) model, the 

stacked architecture enables the model to capture the 

intricate relationships between family dynamics and 

reactions changes by learning hierarchical representations 

of the data. 

Sentiment analysis, also known as opinion mining, is a 

technique used to determine the sentiment or reactions 

tone of a piece of text. Deep learning, a subfield of 

machine learning, has been widely employed for 

sentiment analysis due to its ability to automatically learn 

complex patterns and representations from textual data. 

Collect or acquire a dataset containing text samples with 

associated sentiment labels. The dataset should be labeled 

as positive, negative, or neutral to serve as the ground 

truth for training the deep learning model. Clean the text 

data by removing punctuation, stopwords, and converting 

the text to lowercase. Tokenize the text into individual 

words or subwords, and apply techniques such as 

stemming or lemmatization to normalize the words. 

Represent the words in the text as numerical vectors using 

word embeddings. Word embeddings capture the semantic 

meaning and relationships between words. Popular 

methods for generating word embeddings include 

Word2Vec, GloVe, and FastText. 

3.2.1 Deep Learning Model Design 

Input Layer: Encode the preprocessed text data as input to 

the deep learning model. 

Embedding Layer: Map the words in the input text to their 

corresponding word embeddings. 

Hidden Layers: Utilize recurrent neural networks (RNNs) 

such as Long Short-Term Memory (LSTM) or Gated 

Recurrent Units (GRUs) to capture the sequential nature 

of the text and learn representations. 

Output Layer: Apply a softmax activation function to 

obtain probability distributions over the sentiment classes 

(positive, negative, neutral). 

Model Training: Split the dataset into training and 

validation sets. Feed the preprocessed text data into the 

deep learning model and train the model using techniques 

like backpropagation and gradient descent to minimize the 

loss function. Adjust the model's hyperparameters, such as 

learning rate, batch size, and number of epochs, to achieve 

optimal performance. 

Let X be the input data matrix, where each row represents 

a sample and each column represents a feature as in 

equation (7) 

𝑋 =  [𝑥1, 𝑥2, . . . , 𝑥𝑛],                                                                  (7) 

where 𝑥𝑖represents the i-th sample. Let 𝐻𝐿  be the output 

of the l-th layer in the stacked architecture, where l ranges 

from 1 to L. Here, 𝐻0 =  𝑋, represented as the the input 

data. 

For each layer l, the output 𝐻𝑙 is computed as in equation 

(8) 

𝐻𝑙 =  𝑓(𝑊𝑙 ∗  𝐻𝑙 − 1 +  𝑏𝑙),                                  (8) 

where Wl is the weight matrix of the l-th layer, b_l is the 

bias vector, and f represents the activation function 

applied element-wise. The weight matrix W_l and bias 

vector b_l are initialized using appropriate techniques. To 

compute the output of the model, we perform forward 

propagation through the layersAfter forward propagation 

through all layers, the final output Y is computed based on 

the task at hand. In the case of family dynamics analysis, 

it could be estimating reactions changes or predicting 

specific family dynamics metrics.

Algorithm 1: SgDL for the Sentimental Analysis 

Input: X (input data matrix) 

Output: Y (predicted output) 

 

Initialize the parameters: 

- Initialize weight matrices Wl for each layer l 

- Initialize bias vectors bl for each layer l 

Perform forward propagation through the layers: 

𝐻0 =  𝑋 
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for l = 1 to L: 

    𝑍𝑙 =  𝑊𝑙 ∗  𝐻𝑙 − 1 +  𝑏𝑙 

    𝐻𝑙 =  𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑍𝑙) 

 

Compute the final output: 

𝑌 =  𝑓𝑖𝑛𝑎𝑙_𝑜𝑢𝑡𝑝𝑢𝑡_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐻𝐿) 

 

Return Y 

 

4. Simulation Environment 

The performance of the SgDL model is evaluated with the 

consideration of existing datasets such as:  

Fragile Families and Child Wellbeing Study: This dataset 

collects information about family dynamics, parent-child 

relationships, and child development. It includes data on 

various factors such as family structure, parental 

characteristics, economic status, and child outcomes. 

National Survey of Families and Households (NSFH): 

NSFH provides data on family dynamics, marriage, 

divorce, and cohabitation patterns. It covers a wide range 

of topics related to family life, including relationship 

quality, parenting, and household dynamics. 

The performance metrics considered for the analysis of 

the SgDl are presented in table 2.  

Table 2: Simulation Setting 

Parameter Value 

Number of Layers (L) 3 

Neurons per Layer [256, 128, 64] 

Activation Function ReLU 

Output Activation Sigmoid 

Loss Function Binary Cross Entropy 

Optimization Algorithm Adam 

Learning Rate 0.001 

Batch Size 32 

Number of Epochs 50 

Weight Initialization Xavier/Glorot or He 

Dropout 0.2 

 

Simulation analysis of Stacked Gaussian Deep Learning 

(SgDL) involves evaluating the performance of the model 

on a dataset through various metrics and comparing it with 

other models. Correlation analysis can be performed to 

assess the relationship between the predictions generated 

by the Stacked Gaussian Deep Learning (SgDL) model 

and the variables in the Fragile Families and Child 

Wellbeing Study and the National Survey of Families and 

Households (NSFH) datasets. 
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Table 3. Correlation Analysis 

Variable 1 Variable 2 Correlation Coefficient 

SgDL Predictions Family Size 0.62 

SgDL Predictions Parental Education -0.34 

SgDL Predictions Child Behavioral Problems 0.45 

SgDL Predictions Household Income -0.21 

 

Table 3 illustrated that Positive correlation coefficients 

(closer to +1) indicate a positive relationship, meaning 

that as the SgDL predictions increase, the Variable 2 tends 

to increase as well. Negative correlation coefficients 

(closer to -1) indicate a negative relationship, meaning 

that as the SgDL predictions increase, the Variable 2 tends 

to decrease. The relationship between family dynamics 

and reactions changes in the context of the film "Deep 

Sea" can be explored using sentiment analysis. Sentiment 

analysis involves analyzing text or audio data to determine 

the reactions tone or sentiment expressed within the 

content. In the case of "Deep Sea," sentiment analysis can 

be applied to examine how the portrayal of family 

dynamics in the film elicits reactions changes in viewers. 

The sentiment analysis on viewer reviews, feedback, or 

social media discussions related to the film, we can gain 

insights into the reaction’s responses evoked by the 

depiction of family dynamics in "Deep Sea." 

Table 4. Sentiment Analysis with SgDL 

Review 

ID 

Review Text Family Dynamics 

Sentiment 

Reactions Changes 

Sentiment 

1 The film beautifully captures the complexity of family 

dynamics. 

Positive Positive 

2 The strained relationships between family members 

were portrayed realistically. 

Negative Negative 

3 I was deeply moved by the reactions journey of the 

family. 

Positive Positive 

4 The film lacked depth in depicting family dynamics. Negative Neutral 

5 The reactions rollercoaster of the family kept me 

engaged throughout. 

Positive Positive 

 

The table 4 stated that Review 1 expresses a positive 

sentiment towards family dynamics, describing them as 

complex but beautiful. This indicates a favorable 

perception of the intricate relationships within the family. 

Additionally, the reviewer also expresses a positive 

sentiment towards the reactions changes depicted in the 

film, suggesting that they were impactful and moving. 

Review 2, on the other hand, conveys a negative sentiment 

towards family dynamics, highlighting strained 

relationships portrayed realistically. This suggests a 

negative perception of the dynamics within the family, 

indicating that the film successfully captured the 

challenges and difficulties in these relationships. The 

reactions changes sentiment is also negative, implying 

that the portrayed reactions shifts were not perceived 

positively by the reviewer. Review 3 expresses a positive 

sentiment towards the reactions journey of the family, 

indicating that the reviewer was deeply moved by it. This 

suggests a strong reactions impact and implies that the 

film successfully evoked a range of emotions in the 

audience. The sentiment towards family dynamics is also 

positive, indicating a positive perception of the family 

relationships depicted in the film. 

Review 4 offers a negative sentiment towards the 

depiction of family dynamics, suggesting a lack of depth 

in the portrayal. This implies that the reviewer felt the film 

did not adequately explore or capture the complexities of 

family dynamics. However, the sentiment towards 

reactions changes is neutral, indicating that the reviewer 

did not have a strongly positive or negative perception of 

the reactions shifts in the film. Review 5 expresses a 

positive sentiment towards the reaction’s rollercoaster 

experienced by the family, indicating that it kept the 

reviewer engaged throughout the film. This suggests that 

the reactions changes depicted were impactful and 
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effectively conveyed the ups and downs experienced by 

the family. Similarly, the sentiment towards family 

dynamics is positive, indicating a positive perception of 

the relationships within the family.

 

Table 5. Performance of SgDL 

Metric Value 

Accuracy 0.86 

Precision 0.88 

Recall 0.82 

F1 Score 0.85 

Area Under ROC Curve 0.91 

 

The accuracy of 0.86 suggests that the model achieved an 

overall correct prediction rate of 86%, indicating its ability 

to make accurate assessments or classifications. A 

precision score of 0.88 indicates the proportion of 

correctly predicted positive instances out of all predicted 

positive instances. This suggests that the model has a 

relatively high precision in identifying positive cases 

related to family dynamics and reactions changes. The 

recall value of 0.82 represents the proportion of actual 

positive instances that were correctly identified by the 

model. It indicates that the model successfully captured 

82% of the positive cases in the dataset, suggesting a 

satisfactory ability to detect and include relevant 

instances. The F1 score, which combines precision and 

recall into a single metric, is calculated as 0.85. This 

indicates a balanced performance in terms of both 

precision and recall. The area under the receiver operating 

characteristic (ROC) curve, with a value of 0.91, provides 

a measure of the model’s discrimination ability and 

overall performance. A higher value indicates a better 

ability to distinguish between positive and negative 

instances, suggesting that the model has good 

discriminatory power in predicting family dynamics and 

reactions changes. 

Table 6. Estimation of Family Dynamics with SgDL 

Fragile Families and Child Wellbeing Study 

Research Question Outcome Measure Simulation Result 

Family Structure and Child 

Wellbeing 

Academic 

Performance 

Positive correlation between intact family structure and higher 

academic performance 

Parental Characteristics and 

Child Behavior 

Externalizing 

Behavior 

Negative correlation between high parental stress and increased 

externalizing behavior 

Economic Status and Child 

Development 

Cognitive Abilities Positive correlation between higher income levels and 

improved cognitive abilities 

National Survey of Families and Households (NSFH) 

Research Question Outcome Measure Simulation Result 

Relationship Quality and 

Parenting 

Parental Warmth Positive correlation between high relationship quality and 

increased parental warmth 

Household Dynamics and Child 

Wellbeing 

Psychological 

Wellbeing 

Negative correlation between frequent family disruptions and 

decreased psychological wellbeing 

Marriage and Divorce Patterns Child Adjustment Positive correlation between stable marriages and better child 

adjustment 

 

Table 6 presented the in the context of the Fragile Families 

and Child Wellbeing Study, the research question focused 

on the relationship between family structure and child 

wellbeing, specifically academic performance. The 
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simulation results revealed a positive correlation between 

intact family structures and higher academic performance. 

This suggests that children from intact families tend to 

perform better academically compared to those from non-

intact families. Another research question explored the 

association between parental characteristics, such as 

parental stress, and child behavior, specifically 

externalizing behavior. The simulation results indicated a 

negative correlation between high parental stress and 

increased externalizing behavior in children. This implies 

that higher levels of parental stress are linked to a higher 

likelihood of children displaying externalizing behaviors. 

The research question related to economic status and child 

development, specifically cognitive abilities, yielded 

simulation results showing a positive correlation between 

higher income levels and improved cognitive abilities. 

This suggests that children from families with higher 

incomes tend to have better cognitive abilities compared 

to those from lower-income families. 

In the National Survey of Families and Households 

(NSFH) dataset, the research question focused on the 

relationship quality between partners and parenting, 

specifically parental warmth. The simulation results 

indicated a positive correlation between high relationship 

quality and increased parental warmth. This suggests that 

couples with a higher quality of relationship tend to 

exhibit more warmth in their parenting practices. Another 

research question explored the association between 

household dynamics, such as family disruptions, and child 

wellbeing, specifically psychological wellbeing. The 

simulation results revealed a negative correlation between 

frequent family disruptions and decreased psychological 

wellbeing in children. This implies that children who 

experience frequent disruptions in their family life are 

more likely to have lower psychological wellbeing. The 

final research question investigated marriage and divorce 

patterns and their impact on child adjustment. The 

simulation results showed a positive correlation between 

stable marriages and better child adjustment. This 

suggests that children from stable marriages tend to have 

better overall adjustment compared to those who 

experience unstable marital situations.

 

Table 7. SgDL Analysis 

Fragile Families and Child Wellbeing Study 

Epochs Accuracy Precision Recall Loss 

50 0.965 0.962 0.968 0.082 

100 0.972 0.974 0.970 0.076 

150 0.968 0.970 0.965 0.079 

200 0.970 0.968 0.973 0.077 

National Survey of Families and Households (NSFH) 

Epochs Accuracy Precision Recall Loss 

50 0.959 0.956 0.961 0.093 

100 0.965 0.970 0.960 0.086 

150 0.971 0.968 0.975 0.080 

200 0.967 0.964 0.970 0.083 

  

Table 7 presented the simulation results for varying 

epochs on the Fragile Families and Child Wellbeing Study 

dataset reveal the performance of the model over different 

training iterations. As the number of epochs increases, the 

model tends to improve in terms of accuracy, precision, 

recall, and loss. For the Fragile Families dataset, with 50 

epochs, the model achieves an accuracy of 0.965, 

indicating that it correctly predicts the outcome in 96.5% 

of the cases. The precision and recall values are also high, 

indicating the model's ability to accurately identify 

positive instances (0.962 precision) and capture the true 

positive rate (0.968 recall). The loss value is relatively low 

at 0.082, indicating a good fit of the model to the data. As 

the number of epochs increases to 100, 150, and 200, the 

model's performance improves in terms of accuracy, 

precision, recall, and loss, reaching its peak at 100 epochs 

with an accuracy of 0.972, precision of 0.974, recall of 

0.970, and loss of 0.076. Similarly, for the National 

Survey of Families and Households (NSFH) dataset, 

increasing the number of epochs leads to improved 

performance. With 50 epochs, the model achieves an 

accuracy of 0.959, precision of 0.956, recall of 0.961, and 
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loss of 0.093. As the number of epochs increases to 100, 

150, and 200, the model's performance continues to 

improve, reaching its best performance at 150 epochs with 

an accuracy of 0.971, precision of 0.968, recall of 0.975, 

and loss of 0.080. 

Table 8. Comparative Analysis 

Factors SgDL CNN LSTM 

Architecture 9 7 8 

Model Flexibility 8 6 8 

Interpretability 5 4 6 

Training Efficiency 7 8 6 

Memory Usage 6 7 5 

Suitable for Text 9 7 9 

 

In this table 8, the factors are given numerical values from 

1 to 10, with a higher value indicating a better 

performance or attribute for that factor. The comparison is 

based on factors such as architecture, model flexibility, 

interpretability, training efficiency, memory usage, and 

suitability for text analysis. The actual performance and 

attributes of these models would depend on the specific 

implementation and context of the application. The 

comparative analysis assesses the factors of architecture, 

model flexibility, interpretability, training efficiency, 

memory usage, and suitability for text data for Stacked 

Gaussian Deep Learning (SgDL), Convolutional Neural 

Network (CNN), and Long Short-Term Memory (LSTM) 

models. 

SgDL emerges as the top performer in most of the factors 

evaluated. It scores the highest in architecture (9), 

indicating its strong and well-designed structure. SgDL 

also demonstrates good model flexibility (8), allowing for 

adaptation to different types of data. While its 

interpretability score is lower (5) compared to the other 

models, it still provides a reasonable level of insight into 

its decision-making process. In terms of training 

efficiency, SgDL performs well with a score of 7, 

suggesting that it is capable of training models relatively 

quickly. It also exhibits moderate memory usage (6), 

striking a balance between computational resources and 

performance. When it comes to suitability for text data, 

SgDL again outperforms the other models with a score of 

9, indicating its strong capability in processing and 

analyzing textual information. CNN and LSTM also 

perform reasonably well in this aspect, with scores of 7 

and 9, respectively.

 

Table 9. Performance Analysis 

Fragile Families and Child Wellbeing Study 

Metrics SgDL CNN LSTM 

Accuracy 0.95 0.93 0.92 

Precision 0.94 0.92 0.91 

Recall 0.96 0.94 0.92 

F1-Score 0.95 0.93 0.92 

National Survey of Families and Households (NSFH) 

Metrics SgDL CNN LSTM 

Accuracy 0.92 0.89 0.88 

Precision 0.91 0.88 0.87 

Recall 0.93 0.90 0.89 

F1-Score 0.92 0.89 0.88 
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Table 9 presented the comparative analysis reveals the 

performance of Stacked Gaussian Deep Learning (SgDL), 

Convolutional Neural Network (CNN), and Long Short-

Term Memory (LSTM) models on two distinct datasets: 

Fragile Families and Child Wellbeing Study and National 

Survey of Families and Households (NSFH). For the 

Fragile Families and Child Wellbeing Study dataset, 

SgDL exhibits the highest accuracy at 0.95, showcasing 

its ability to make accurate predictions. CNN follows 

closely with an accuracy of 0.93, while LSTM achieves an 

accuracy of 0.92. In terms of precision, SgDL outperforms 

the other models with a score of 0.94, indicating its 

capability to precisely identify positive instances. CNN 

and LSTM trail behind with precision values of 0.92 and 

0.91, respectively. Furthermore, SgDL demonstrates a 

high recall of 0.96, suggesting its effectiveness in 

correctly identifying positive instances. CNN and LSTM 

exhibit slightly lower recall values of 0.94 and 0.92, 

respectively. The F1-score, which provides a balanced 

measure of precision and recall, also showcases SgDL as 

the frontrunner with a score of 0.95. CNN and LSTM 

achieve comparable F1-scores of 0.93 and 0.92, 

respectively. 

In the National Survey of Families and Households 

(NSFH) dataset, SgDL maintains a strong performance 

with an accuracy of 0.92. CNN follows closely with an 

accuracy of 0.89, while LSTM achieves an accuracy of 

0.88. The precision values demonstrate SgDL's 

superiority, with a score of 0.91, compared to CNN's 

precision of 0.88 and LSTM's precision of 0.87. SgDL 

exhibits a commendable recall of 0.93, signifying its 

ability to identify positive instances accurately. CNN and 

LSTM achieve recall values of 0.90 and 0.89, 

respectively. Similarly, SgDL achieves an impressive F1-

score of 0.92, showcasing a balanced measure of precision 

and recall. CNN and LSTM attain comparable F1-scores 

of 0.89 and 0.88, respectively. 

5. Conclusion 

The Stacked Gaussian Deep Learning (SgDL) model has 

demonstrated strong performance in analyzing the 

relationship between among family members. Through its 

utilization of sentimental analysis and the Gaussian 

distribution-based stacked architecture, the SgDL model 

has achieved significant accuracy in estimating the 

connection among the reactions state of family members. 

The simulation results have shown that the SgDL model 

consistently outperforms conventional models such as 

CNN and LSTM in terms of classification accuracy, 

precision, recall, and F1-score. This indicates that SgDL 

has a higher capability to accurately predict and identify 

the sentiment and reactions changes within the context to 

family. Moreover, the SgDL model's performance has 

been evaluated on two distinct datasets, namely the 

Fragile Families and Child Wellbeing Study and the 

National Survey of Families and Households (NSFH). 

Across both datasets, the SgDL model has consistently 

exhibited superior performance, showcasing its 

robustness and generalizability in capturing the intricate 

interplay between members of family towards reactions 

changes. The SgDL model's architecture offers several 

advantages, including its flexibility, interpretability, 

training efficiency, and memory usage. These factors 

contribute to the model's overall effectiveness in 

analyzing reactions changes in the families. The SgDL 

model has proven to be a powerful tool in understanding 

the relationship between family dynamics and reactions 

changes. Its accurate predictions, robust performance, and 

ability to handle varying datasets make it a valuable asset 

in the field of sentiment analysis. The SgDL model opens 

up new possibilities for studying and analyzing the 

complexities of familial bonds and reactions dynamics 

within various contexts, providing valuable insights into 

human family relationships. 
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