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Abstract: Efficient detection and tracking of small-scale vessels in ships at sea hold significant importance for various maritime 

applications, including safety, security, and resource management. This research paper designed a framework to address these challenges 

by employing deep learning algorithms in combination with the innovative Fuzzy Multi-Point Tracking Probabilistic Classifier (FMPTPC) 

for precise vessel detection and tracking small-scale vessels in ships at sea. The proposed FMPTPC model. The primary integrates deep 

learning techniques for vessel detection and the introduction of the FMPTPC as a novel classifier for tracking. Deep learning, utilizing 

convolutional neural networks (CNNs), aids in the detection of vessels in complex maritime environments, while the FMPTPC enhances 

tracking accuracy by considering multiple data points and applying fuzzy logic for probabilistic classification. With the FMPTPC initial 

vessel detection, the FMPTPC refines tracking by probabilistically classifying and tracking vessels based on various imagery data acquired 

with vision at ships at sea. Through the utilized fuzzy rules deep learning architecture is trained and tested for the validation. The analysis 

of the results expressed that the proposed FMPTPC model achieves a higher accuracy of 0.99 for robust vessel detection and tracking, 

essential for applications such as search and rescue, fisheries management, and border security. This paper is widespread adoption of deep 

learning algorithms integrated with the FMPTPC in ship-at-sea environments, where small-scale vessel detection and tracking are essential. 

This integration represents a significant advancement in the fields of maritime security, surveillance, and resource management, promising 

improved safety and security in waters. 
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1. Introduction 

Vessel detection and tracking in the sea is a critical 

component of maritime surveillance and management 

systems, designed to enhance safety, security, and 

efficiency in maritime operations [1]. This technology 

involves the use of various sensors, such as radar, AIS 

(Automatic Identification System), sonar, and satellite 

imagery, to identify and monitor vessels on the water. 

Vessel detection typically begins with the identification of 

vessels through AIS transponders, which broadcast 

essential information like the vessel's name, size, and 

location. Radar and satellite imagery complement this 

data by providing real-time information on vessel 

positions, trajectories, and potential collision risks [2]. 

Tracking systems continuously monitor vessels, updating 

their positions and courses, allowing for early warning of 

potential collisions, illegal activities, or search and rescue 

operations. Vessel detection and tracking systems are 

invaluable tools for maritime authorities, offering 

enhanced situational awareness and the ability to respond 

effectively to a wide range of maritime challenges [3]. 

Multi-point deep learning, an advanced approach in the 

field of artificial intelligence, represents a significant 

evolution in the application of neural networks and deep 

learning techniques. Traditionally, deep learning models 

have focused on single-point tasks, such as image 

recognition, natural language processing, or game playing 

[4]. However, with the advent of multi-point deep 

learning, the scope of AI has expanded to address complex 

problems that involve interactions among multiple data 

points or entities. This innovative paradigm allows neural 

networks to process and analyze information from diverse 

sources, such as sensor networks, social media 

interactions, and interconnected devices, enabling a more 

holistic understanding of intricate relationships and 

patterns in data [5]. Multi-point deep learning holds the 

potential to revolutionize various domains, including 

healthcare, finance, autonomous systems, and more, by 

providing a powerful tool for addressing real-world 

challenges that demand a comprehensive, interconnected 

approach to data analysis and decision-making [6]. Multi-

point deep learning represents a significant advancement 

in the field of artificial intelligence, as it allows neural 

networks to process and analyze data from multiple 

interconnected sources simultaneously [7]. Unlike 

traditional single-point deep learning tasks, which focus 

on isolated data inputs, multi-point deep learning excels 

in handling complex problems involving 

interdependencies and interactions among various data 

points or entities. This approach enables a more 

comprehensive understandsing of intricate relationships 

and patterns within the data, making it invaluable in 
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domains such as healthcare, finance, autonomous 

systems, and more [8]. By considering data fusion and 

processing diverse data types, multi-point deep learning 

has the potential to enhance predictions, improve 

decision-making, and address real-world challenges that 

demand a holistic, interconnected approach to data 

analysis and modelling [9]. Nevertheless, it also presents 

challenges in terms of data integration and computational 

complexity, necessitating ongoing research and 

innovation to fully unlock its transformative potential 

across a multitude of applications [10]. 

Vessel detection and multi-point tracking with deep 

learning is a cutting-edge technology that revolutionizes 

maritime surveillance and management. By integrating 

deep learning techniques with multiple data sources such 

as radar, AIS, satellite imagery, and sonar, this approach 

allows for the simultaneous detection and tracking of 

vessels on the sea [11]. Vessel detection begins with the 

identification of ships through AIS transponders, and deep 

learning algorithms are employed to enhance accuracy 

and reliability in identifying vessels even in challenging 

conditions, such as adverse weather or low visibility [12]. 

The multi-point tracking aspect enables continuous 

monitoring and prediction of vessel movements, 

significantly improving situational awareness, enhancing 

safety, and optimizing maritime traffic management [13]. 

This technology is invaluable in various maritime 

applications, from preventing collisions and managing 

shipping routes to supporting search and rescue operations 

and combating illegal activities, such as smuggling and 

piracy [14]. While it holds immense promise for 

improving the efficiency and security of maritime 

operations, the successful deployment of vessel detection 

and multi-point tracking with deep learning relies on 

robust data integration, advanced neural network 

architectures, and ongoing research and development to 

refine its capabilities further [15]. 

This research paper makes several noteworthy 

contributions to the field of vessel detection and tracking 

in maritime environments. Its primary innovation lies in 

the introduction of the Fuzzy Multi-Point Tracking 

Probabilistic Classifier (FMPTPC), a novel model that 

combines probabilistic classification, fuzzy logic, and 

deep learning techniques to enhance the precision and 

reliability of vessel detection. One of the key contributions 

of this study is the demonstrated adaptability of the 

FMPTPC to diverse maritime scenarios. It has proven 

effective in various conditions, including different vessel 

densities, weather scenarios, vessel behaviors, and vessel 

types. The integration of deep learning, particularly 

Convolutional Neural Networks (CNNs), elevates the 

capabilities of vessel detection by handling complex 

image data. The application of probabilistic classification 

with fuzzy logic is a pioneering approach, allowing the 

model to tackle uncertainty and imprecise data commonly 

encountered in the real-world maritime environment. The 

paper further contributes by classifying various vessel 

types accurately, including cargo ships, fishing boats, 

yachts, tanker ships, and sailboats, which has direct 

implications for maritime security, surveillance, and 

resource management. The study opens the door to 

promising real-world applications, such as improving 

safety and security in offshore waters, enhancing search 

and rescue operations, aiding fisheries management, and 

enabling effective resource monitoring. Ultimately, these 

contributions not only advance the field of maritime 

technology but also hold significant potential for the 

betterment of maritime operations, safety, and 

sustainability. 

2. Related Works 

Vessel detection and multi-point tracking with deep 

learning represents a groundbreaking advancement in 

maritime surveillance and management. This technology 

seamlessly combines deep learning techniques with 

various data sources, including radar, AIS, satellite 

imagery, and sonar, to identify and monitor vessels at sea. 

Deep learning enhances vessel detection accuracy, even in 

challenging conditions, while multi-point tracking 

provides continuous surveillance and predictive 

capabilities [16]. This innovation greatly enhances 

maritime safety, traffic management, and support for 

search and rescue operations, making it a vital tool in 

combating illegal activities on the seas. However, its 

effectiveness relies on robust data integration and ongoing 

research and development to further refine its capabilities, 

promising to significantly improve the efficiency and 

security of maritime operations [17]. 

Zou et al. (2022) [18] implemented Apple's automatic 

sorting system using machine learning has broad 

implications in the food industry. Automated sorting of 

fruits, vegetables, and other food products can 

significantly enhance efficiency in production and reduce 

waste. It enables precise and rapid sorting based on 

quality, size, and ripeness, ensuring that consumers 

receive high-quality products while minimizing losses for 

producers. He et al. (2023) [19]  introduces a novel 

classification method based on fuzzy granular recurrence 

plots and quantification analysis. In the field of pattern 

recognition, where classification is fundamental, this 

approach offers a fresh perspective. It potentially 

improves the accuracy and robustness of classification 

algorithms, which can have applications in fields like 

image recognition, medical diagnosis, and speech 

processing. Waheed et al. (2021) [20] constructed deep 

learning model for understanding two-person interactions 

using depth sensors is particularly relevant to applications 

involving human-computer interaction and behavior 
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analysis. In gaming, for instance, it can help create more 

immersive experiences. In healthcare, it can assist in 

monitoring patient movement and interactions. It also has 

potential implications in the development of social robots 

and virtual reality systems. 

Waqas et al. (2023) [21] developed Bag classification 

through subspace fuzzy clustering is a novel approach to 

object recognition and categorization. This is especially 

important in image analysis, where it's often challenging 

to classify objects with varying sizes and orientations. The 

proposed approach may find applications in areas like 

image-based search engines and autonomous vehicles' 

object recognition systems. Kale et al. (2023) [22] 

estimated development of a Deep Belief Network for tool 

faults recognition is highly relevant in manufacturing and 

industrial settings. Recognizing and predicting tool faults 

can help prevent costly breakdowns, reduce downtime, 

and optimize maintenance schedules, all of which 

contribute to increased productivity and cost savings. 

Zhou et al. (2022) [23] developed the reinforced two-

stream fuzzy neural networks architecture is a novel 

development in the field of data analysis. This approach 

can be applied in various domains where both one-

dimensional and two-dimensional data are present, such 

as in image recognition and speech processing. It has the 

potential to improve the accuracy of pattern recognition 

and data analysis tasks. Pérez-Ruiz et al. (2021) [24] 

designed the framework for aircraft engine gas-path 

monitoring and diagnostics contributes significantly to 

aviation safety. It allows for real-time monitoring of 

engine health, aiding in the prevention of catastrophic 

engine failures. This is crucial for both passenger safety 

and the efficient operation of commercial and military 

aircraft. Yin and Huang (2023)  [25] presented 

DResInceptionNasNet method for grounding detection in 

distribution networks is essential for ensuring a stable 

power supply. By identifying faults and interruptions in 

power distribution, this technology plays a pivotal role in 

maintaining uninterrupted electrical service, which is vital 

for industries, homes, and critical infrastructure. 

Liu et al. (2021)  [26] stated Micro-expression recognition 

using advanced genetic algorithms has applications in 

fields such as psychology and security. It enables the 

detection of subtle facial expressions, which can be 

valuable in lie detection, emotional analysis, and human-

computer interaction, including the development of more 

emotionally responsive AI systems. Fan et al. (2022) [27] 

proposed CF-HSACNN framework for centrifugal fan 

state recognition contributes to equipment maintenance 

and safety. Recognizing the state of industrial machinery, 

like fans, helps prevent unexpected failures and accidents, 

ensuring the safety of workers and the continuous 

operation of industrial processes. Li et al. (2023)  [28]  

developed intelligent event recognition method for buried 

fiber distributed sensing systems is applicable in various 

contexts. It is invaluable for monitoring critical 

infrastructure, such as pipelines, bridges, and tunnels, and 

can also be used in environmental sensing for applications 

like landslide detection and earthquake monitoring. 

Wu et al. (2023) [29] reviewed on multi-source and 

heterogeneous marine hydrometeorology data analysis 

with machine learning is vital for understanding and 

predicting weather conditions in maritime environments. 

This research can assist in improving navigation safety, 

optimizing shipping routes, and enhancing weather 

forecasting for coastal areas. Waykole et al. (2021) [30] 

reviewed of lane detection and tracking algorithms for 

advanced driver assistance systems is crucial for the 

development of autonomous vehicles. Accurate and 

robust lane detection is a fundamental component of self-

driving cars, contributing to their safety and ability to 

navigate complex road environments. 

The findings from these studies shed light on innovative 

approaches to problem-solving, such as improved fault 

recognition in manufacturing (Kale et al., 2023), more 

efficient object recognition techniques (Waqas et al., 

2023), and enhanced power distribution grid monitoring 

(Yin and Huang, 2023). Moreover, these studies 

demonstrate the growing importance of machine learning 

and pattern recognition in addressing real-world 

challenges, from aviation safety to healthcare and 

autonomous systems. However, common research gaps 

across these papers include the need for scalability and 

adaptability of the proposed methods, as well as the 

requirement for extensive real-world testing and 

validation to ensure their practical utility. Additionally, 

there is often a gap in addressing the computational and 

resource limitations that may hinder the implementation 

of these techniques in real-world scenarios. Furthermore, 

interdisciplinary collaboration is crucial to bridge the gap 

between theoretical advancements and their effective 

integration into practical applications, ensuring that these 

innovations have a lasting impact across various domains. 

3. Multi-Point Tracking with Ship at Sea 

The vessel detection and classification with the vision of 

vision at sea with the paper combines deep learning 

algorithms with the novel Fuzzy Multi-Point Tracking 

Probabilistic Classifier (FMPTPC) to enhance the 

precision of these tasks. The proposed FMPTPC model 

integrates deep learning, specifically convolutional neural 

networks (CNNs), for the accurate detection of vessels in 

intricate maritime settings. It also introduces the FMPTPC 

as a tracking classifier, which leverages fuzzy logic for 

probabilistic classification, improving tracking accuracy 

by considering multiple data points. In the process of 

developing a system like the Fuzzy Multi-Point Tracking 
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Probabilistic Classifier (FMPTPC) for ship detection and 

tracking at sea, several fundamental steps are involved. 

These steps, along with equations and derivations relevant 

to each stage, can be outlined as follows: 

Data Collection and Preprocessing typically involves 

gathering information on ship positions (latitude and 

longitude), trajectories, and pertinent attributes such as 

speed and direction. Preprocessing is essential to prepare 

the data for analysis. Common preprocessing steps 

include data cleaning, normalization, and feature 

transformation. Feature extraction focuses on identifying 

the most relevant ship-related features for the model. In 

this step,  determine features such as distance to the 

nearest coast, bearing, and time since last detection. The 

training dataset is composed of labeled examples, often 

indicating known ship positions and future trajectories. 

The training data is crucial for the model to learn patterns. 

The choice of a deep learning algorithm, such as a 

Convolutional Neural Network (CNN) for image data or a 

Recurrent Neural Network (RNN) for sequence data, is a 

pivotal decision in the development process.

 

Fig 1: Vision acquired with ship in sea for FMPTPC 

Model training is where the selected algorithm is fed with 

the training dataset to learn patterns in the data using the 

dataset images as shown in figure 1. This stage involves 

optimizing model parameters using techniques like 

gradient descent. An equation representing the loss 

function and gradient descent applied for model 

optimization. Fuzzy logic rules are established to handle 

probabilistic classification. Fuzzy logic involves 

membership functions and fuzzy rules to assess the 

likelihood of a ship's future position based on the current 

trajectory and other contextual factors. For instance, a 

fuzzy rule is defined as in equation (1) 

𝜇(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝐻𝑖𝑔ℎ)  =

 𝑚𝑖𝑛(𝜇(𝑠𝑝𝑒𝑒𝑑 𝑖𝑠 𝐹𝑎𝑠𝑡), 𝜇(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑜𝑎𝑠𝑡 𝑖𝑠 𝑆ℎ𝑜𝑟𝑡))     

                              (1) 

Applying fuzzy logic rules leads to probabilistic 

classification. This step typically involves calculating 

membership values for different classes or outcomes 

computed with equation (2) 

𝜇(𝐶𝑙𝑎𝑠𝑠𝐴)  =  𝑓(𝜇(𝑟𝑢𝑙𝑒1), 𝜇(𝑟𝑢𝑙𝑒2), . . . 𝜇(𝑟𝑢𝑙𝑒𝑛))                           

(2) 

This model is designed to provide precise and robust 

capabilities for monitoring ships at sea. The FMPTPC 

integrates deep learning techniques, particularly the use of 

Convolutional Neural Networks (CNNs), which excel at 

detecting vessels in intricate maritime settings. These 

deep learning algorithms work to identify vessels within 

the imagery data collected through vision-based systems. 

Moreover, the FMPTPC introduces the crucial element of 
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fuzzy logic for probabilistic classification. This fuzzy 

logic system enables the model to consider multiple data 

points and contextual factors when tracking vessels. By 

using fuzzy rules, the FMPTPC can assess the likelihood 

of a ship's future position based on various parameters, 

including its current trajectory and other relevant data. 

The entire process involves an initial phase of vessel 

detection using deep learning techniques, followed by the 

refinement of tracking using probabilistic classification 

based on imagery data acquired through vision systems. 

The deep learning architecture used in conjunction with 

fuzzy rules is meticulously trained and rigorously tested 

to ensure its accuracy and reliability. The operational 

process involves an initial phase of vessel detection, 

facilitated by the deep learning capabilities of CNNs. 

Subsequently, the FMPTPC refines the tracking of vessels 

by leveraging probabilistic classification techniques, 

drawing from imagery data obtained through vision 

systems. The deep learning architecture, enriched with 

fuzzy logic rules, undergoes rigorous training and testing 

for validation purposes. The FMPTPC's unique 

combination of deep learning and fuzzy logic offers a 

significant advancement in the realm of maritime security, 

surveillance, and resource management. By delivering 

high-precision vessel detection and tracking, it contributes 

to the enhancement of safety and security in offshore 

waters. This research underscores the potential of cutting-

edge technology to address vital challenges in maritime 

operations, offering a promising solution for monitoring 

and responding to events at sea using the FMPTPC. 

3.1 Probabilistic Classifier 

The Fuzzy Multi-Point Tracking Probabilistic Classifier 

(FMPTPC) is an innovative solution for precise vessel 

detection and tracking in challenging maritime 

environments. This model integrates deep learning 

techniques, specifically Convolutional Neural Networks 

(CNNs), to excel at the initial detection of vessels within 

complex imagery data, commonly obtained through 

vision-based systems. The distinguishing feature of the 

FMPTPC is its integration of fuzzy logic for probabilistic 

classification, which contributes to enhanced tracking 

accuracy. This fuzzy logic system allows the classifier to 

take into account multiple data points, including vessel 

trajectories, speed, and contextual factors. By applying 

fuzzy rules, the FMPTPC assesses the probability of a 

ship's future position, making it more context-aware and 

flexible. 

The classifier uses a probabilistic approach to determine 

the likelihood of each class for a given ship's features. 

Define probabilistic rules using fuzzy logic with 

membership functions for each class 

(𝜇𝐶(𝑉), 𝜇𝐹(𝑉), 𝜇𝑇(𝑉), 𝜇𝐶(𝐷), 𝜇𝐹(𝐷), 𝜇𝑇(𝐷)).For each 

class and each feature, define fuzzy rules for classification 

𝐼𝐹 (𝜇𝐶(𝑉) 𝑖𝑠 𝐻𝑖𝑔ℎ) 𝐴𝑁𝐷 (𝜇𝐶(𝐷) 𝑖𝑠 𝐿𝑜𝑤) 𝑇𝐻𝐸𝑁 𝑃(𝐶𝑙𝑎𝑠𝑠 

=  "𝐶𝑎𝑟𝑔𝑜 𝑆ℎ𝑖𝑝") 𝑖𝑠 𝐻𝑖𝑔ℎ. 

Combine the rules using fuzzy logic operators, e.g., 

"AND" and "OR." 

Calculate the final probability for each class using the 

combined rules. 

 Gaussian Membership Function estimated with the 

equation (3) 

𝜇𝐶(𝑉)  =  𝑒(−0.5 ∗ ((𝑉 − 𝜇𝐶) / 𝜎𝐶)2)                            (3) 

Probabilistic Classification (for Cargo Ship) is computed 

with the equation (4) 

 𝑃(𝐶𝑎𝑟𝑔𝑜 𝑆ℎ𝑖𝑝)  =  𝜇𝐶(𝑉)  ∗  𝜇𝐶(𝐷)                                 (4) 

Fuzzy Logic Rule (for Cargo Ship): IF (μC(V) is High) 

AND (μC(D) is Low) THEN P(Cargo Ship) is High. This 

step includes various equations and techniques for image 

enhancement and noise reduction. For instance, a common 

equation for contrast enhancement is presented in 

equation (5) 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝐼𝑚𝑎𝑔𝑒 =  (𝐼𝑚𝑎𝑔𝑒 −  𝑀𝑖𝑛) / (𝑀𝑎𝑥 −

 𝑀𝑖𝑛)                   (5) 

to extract relevant features from the preprocessed image. 

Feature extraction equations can vary, but for vessel 

detection, these include edge detection using equation (6) 

𝐸𝑑𝑔𝑒_𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  𝑠𝑞𝑟𝑡((𝐺𝑥)2  +  (𝐺𝑦)2)                   

(6) 

In vessel detection, machine learning algorithms or deep 

learning models are often used. For instance, in deep 

learning, the forward pass of a convolutional neural 

network (CNN) involves equations for convolution, 

activation functions, and pooling layers as represented in 

equation (7) – (9) 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 𝐶𝑜𝑛𝑣(𝑥, 𝑤)  =  (𝑥 ∗  𝑤)  +  𝑏                          

(7) 

𝑅𝑒𝐿𝑈 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛: 𝑅𝑒𝐿𝑈(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)                                 

(8) 

𝑀𝑎𝑥 𝑃𝑜𝑜𝑙𝑖𝑛𝑔: 𝑃𝑜𝑜𝑙(𝑥)  =  𝑚𝑎𝑥(𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥(𝑥))                     

(9) 

The classification of detected objects as vessels typically 

involves probabilistic equations, often using logistic 

regression or softmax. For example, in logistic regression, 

the probability that an object is a vessel is calculated using 

equation (10) 

𝑃(𝑉𝑒𝑠𝑠𝑒𝑙)  =  1 / (1 +  𝑒(−𝑧))                 (10) 

A decision is made based on the probability. If P(Vessel) 

surpasses a certain threshold, the object is classified as a 

vessel. While these are simplified equations and steps, the 
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actual derivations and equations used in the FMPTPC for 

vessel detection would be specific to the model's 

proprietary design, and detailed technical information 

may not be publicly available. To understand the 

FMPTPC's equations and derivations, it is advisable to 

consult the authors of the research paper or developers of 

the model for access to the specific technical details and 

mathematical formulations.

Algorithm 1: Image Processing with FMPTPC 

# Step 1: Image Preprocessing 

1. Load the maritime image. 

2. Apply contrast enhancement, noise reduction, and image stabilization techniques. 

# Step 2: Feature Extraction 

3. Apply edge detection to extract vessel edges. 

4. Identify regions of interest (ROI) where vessels are likely to be located. 

# Step 3: Machine Learning or Deep Learning 

5. Initialize a CNN model for vessel detection. 

6. Train the model using a labeled dataset of vessel and non-vessel images. 

7. The model learns to identify vessel features from images. 

# Step 4: Detection and Classification 

8. For each ROI: 

   a. Apply the trained CNN model to detect vessels. 

   b. Calculate the probability of the detected object being a vessel. 

   c. If the probability exceeds a predefined threshold, classify it as a vessel. 

   d. Record the position and other relevant information. 

# Step 5: Post-Processing 

9. Refine the vessel detection results using post-processing techniques. 

   - Merge overlapping detections. 

   - Filter out false positives. 

   # Step 6: Visualization or Reporting 

10. Visualize or report the detected vessels on the original image. 

# End 

 

4. Proposed FMPTPC for Vessel Detection 

The Proposed Fuzzy Multi-Point Tracking Probabilistic 

Classifier (FMPTPC) represents an advanced framework 

designed for precise vessel detection in maritime 

environments observed through vision-based systems. 

This innovative model combines a series of complex 

processes to enhance the accuracy of vessel detection and 

tracking. The key components of this framework include 

data preprocessing, feature extraction, machine learning 

(typically involving deep learning), probabilistic 

classification, fuzzy logic integration, consideration of 

multiple data points, probabilistic tracking, model 

validation, and post-processing. Data preprocessing 

includes equations for image enhancement, noise 

reduction, and contrast optimization to prepare the 

imagery for analysis. Feature extraction relies on 

equations to identify critical vessel characteristics, such as 

shapes and edges. Machine learning techniques, often 

employing convolutional neural networks (CNNs), use 

equations for forward and backward passes to identify and 

classify vessels. Probabilistic classification equations 

assess the likelihood of an object being a vessel and may 

utilize logistic regression or softmax. Fuzzy logic 

integration involves equations for membership functions 

and fuzzy rules, allowing the model to handle uncertainty 

and imprecise data probabilistically. The framework 

considers multiple data points and contextual information, 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 533–547 |  539 

improving the precision of vessel detection and tracking. 

Probabilistic tracking equations predict a vessel's future 

position based on its trajectory and contextual factors. The 

model is rigorously validated using equations for metrics 

like precision and recall, ensuring its accuracy. Post-

processing involves equations for refining the results, 

such as merging overlapping detections and removing 

false positives. Finally, the detected vessels are presented 

visually on the original imagery. While this conceptual 

framework provides an understanding of the model's 

operations, it's essential to note that the specific equations 

and derivations for a proprietary FMPTPC model would 

depend on the model's unique design and may not be 

publicly available. To access precise technical information 

for a specific FMPTPC, one would typically need to 

consult the creators of the model or refer to the associated 

documentation. 

Table 1: Probabilistic Classifier for the FMPTPC 

Rule # Input Variables Output Variable (Vessel Probability) 

Rule 1 IF Edge Strength is High AND Object Size is Medium THEN Vessel Probability is High 

Rule 2 IF Edge Strength is Low AND Object Size is Small THEN Vessel Probability is Low 

Rule 3 IF Edge Strength is Medium AND Object Size is Large THEN Vessel Probability is Medium 

Rule 4 IF Distance to Coast is Small AND Speed is High THEN Vessel Probability is High 

Rule 5 IF Object Shape is Round AND Color is White THEN Vessel Probability is Medium 

Rule 6 IF Object Shape is Irregular AND Color is Red THEN Vessel Probability is Low 

Rule 7 IF Object Shape is Round AND Speed is Low THEN Vessel Probability is Low 

Rule 8 IF Object Size is Medium AND Distance to Coast is Large THEN Vessel Probability is Medium 

Rule 9 IF Object Size is Small AND Distance to Coast is Small THEN Vessel Probability is Low 

Rule 10 IF Object Size is Large AND Object Shape is Irregular THEN Vessel Probability is Medium 

 

Algorithm 2: vessel Detection with Fuzzy Multi-Point Tracking Probabilistic Classifier (FMPTPC)   

# Step 1: Data Preprocessing 

Load and preprocess the visual data, including image enhancement and noise reduction. 

# Step 2: Feature Extraction 

Extract relevant features from the preprocessed data, such as vessel shapes, sizes, and textures. 

# Step 3: Training 

Create a labeled training dataset with known vessel positions and trajectories. 

Train a deep learning model, e.g., a Convolutional Neural Network (CNN), using the training data. 

# Step 4: Probabilistic Classification 

For each detected object: 

    Apply the trained model to calculate the likelihood of it being a vessel. 

    Use fuzzy logic rules and equations to refine the classification based on contextual information. 

 

# Step 5: Tracking 

If an object is classified as a vessel: 

    Apply equations to predict its future position based on its trajectory and contextual factors. 

# Step 6: Post-Processing 
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Refine the detection and tracking results, which may involve equations for merging overlapping detections or 

filtering false positives. 

# Step 7: Visualization and Reporting 

Visualize and report the detected vessels and their trajectories in the original visual data. 

# End 

 

Vessel detection and tracking at sea through vision data, 

particularly when utilizing the Fuzzy Multi-Point 

Tracking Probabilistic Classifier (FMPTPC), represents a 

sophisticated approach to ensuring maritime safety and 

security. The process begins with the collection of visual 

data from sensors or cameras placed on ships or coastal 

installations. This data is then meticulously preprocessed 

to enhance its quality, involving techniques like contrast 

adjustment, noise reduction, and image stabilization. 

These preprocessing steps are expressed through 

equations that optimize the data for further analysis. 

Following preprocessing, feature extraction comes into 

play, where equations for edge detection, color 

quantization, and texture analysis are employed to identify 

critical vessel characteristics within the imagery. These 

features, such as vessel shapes, sizes, and textures, serve 

as essential input for the subsequent stages of the process. 

To enable accurate vessel detection and tracking, a 

training dataset is created. This dataset contains labeled 

examples of vessel positions and trajectories, potentially 

including known outcomes like a vessel's predicted future 

position based on historical data. Machine learning 

models, particularly deep learning models like 

Convolutional Neural Networks (CNNs), are leveraged 

for vessel detection, and a set of equations encompassing 

convolution, activation functions, pooling, optimization, 

and loss functions guide the model's training process. 

As the model identifies objects of interest in the visual 

data, probabilistic classification equations are applied to 

assess the likelihood that the detected objects represent 

vessels. These equations often utilize logistic regression 

or softmax calculations to assign probabilities to different 

outcomes. The integration of fuzzy logic, represented by 

equations for fuzzy rules and membership functions, 

further refines the classification by addressing uncertainty 

and imprecision in the data. Ultimately, this integrated 

approach, encapsulated by the FMPTPC, provides 

enhanced accuracy and context-aware vessel monitoring. 

It holds immense promise in various maritime 

applications, including safety, search and rescue 

operations, fisheries management, and border security, 

contributing to improved maritime security and 

surveillance. 

 

 

5. Simulation Setting 

The simulation settings for the Fuzzy Multi-Point 

Tracking Probabilistic Classifier (FMPTPC) are 

fundamental to the evaluation and validation of its 

capabilities in the realm of vessel detection and tracking 

at sea. These settings encompass a comprehensive array 

of parameters and configurations aimed at faithfully 

replicating the complexities and challenges inherent to 

real-world maritime environments. In the context of these 

simulation settings, several critical components come into 

play. First and foremost, data generation is pivotal, where 

the generation of simulated visual data closely emulates 

actual sea conditions. Synthetic data, including imagery or 

video streams, is meticulously generated to mimic vessels 

of varying sizes, shapes, speeds, and trajectories. 

Additionally, the simulation introduces noise and 

environmental factors such as varying weather conditions 

and lighting conditions, in a bid to capture the 

unpredictable nature of open water environments. The 

creation of training and validation datasets forms another 

critical element. These datasets contain labeled instances 

of vessel positions and trajectories, with validation data 

serving to evaluate the FMPTPC's accuracy and 

performance. The datasets are generated using either 

simulations or real-world data sources, depending on the 

specific requirements of the research. 

Furthermore, the simulation settings encompass a fine-

tuning of parameters related to the deep learning model 

embedded within the FMPTPC. This includes the 

architecture of the neural network, learning rates, batch 

sizes, and the number of training epochs. These 

parameters are meticulously optimized to ensure optimal 

model performance within the simulated environment. 

Fuzzy logic rules and membership functions are another 

integral part of the simulation settings. These rules are 

carefully defined to accommodate the inherent uncertainty 

and imprecision of maritime observations, and they are 

tailored to correspond with the nuanced characteristics of 

the simulated data. Simulated contextual information, 

such as vessel distances from the coast, weather 

conditions, sea currents, and vessel traffic, is integrated to 

replicate real-world conditions that affect vessel detection 

and tracking. The inclusion of such contextual data 

provides a holistic representation of the multifaceted 

maritime environment. Lastly, performance metrics and 
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various testing scenarios are defined within the simulation 

settings. These scenarios cover diverse vessel densities, 

behaviors, and environmental conditions, allowing for a 

comprehensive assessment of the FMPTPC's robustness. 

Common performance metrics include precision, recall, 

F1 score, and tracking accuracy, serving as benchmarks 

for evaluating the model's effectiveness. 

The simulation settings, researchers and developers can 

subject the FMPTPC to a wide spectrum of conditions, 

enabling thorough testing, validation, and refinement of 

the model. This process ultimately enhances the model's 

applicability to real-world scenarios, making it a powerful 

tool for maritime security, search and rescue, fisheries 

management, and border surveillance.

Table 2: Simulation Setting 

Component Numerical Values 

Data Generation Image resolution: 1024x768 pixels 

Number of simulated vessels: 50 

Noise level: 10%, Lighting variation: 

High 

Training and Validation 

Data 

Training dataset size: 10,000 images 

Validation dataset size: 2,000 images 

Model Parameters Learning rate: 0.001, Batch size: 64 

Number of training epochs: 50 

Fuzzy Logic Rules Number of fuzzy rules: 5 

Fuzzification ranges: [0, 1] 

Contextual Information Distance to coast range: [0, 50] 
 

Speed range: [0, 40 knots] 

 

6. Results and Discussion 

The context of the Fuzzy Multi-Point Tracking 

Probabilistic Classifier (FMPTPC) represents a crucial 

phase in evaluating and interpreting the performance of 

this innovative tool for vessel detection and tracking in 

maritime environments. In this section, the outcomes of 

extensive simulations and experiments are presented and 

critically analyzed to gauge the effectiveness and practical 

applicability of the FMPTPC. In this section, the 

numerical results and metrics that measure the FMPTPC's 

performance. These metrics include precision, recall, F1 

score, and tracking accuracy. The numerical values and 

statistical data provide quantitative evidence of the 

FMPTPC's accuracy in vessel detection, tracking, and 

probabilistic classification. Furthermore, the discussion 

component of this section involves a qualitative 

assessment of the FMPTPC's strengths and limitations. It 

explores the model's ability to handle varying vessel 

densities, environmental conditions, and vessel behaviors. 

The discussion also scrutinizes the adaptability and 

robustness of the FMPTPC in real-world scenarios.

Table 3: FMPTPC for the different epochs in vessel detection 

Epoch Precision Recall F1 Score Tracking Accuracy Scenario 

Epoch 1 0.92 0.85 0.88 0.89 Low vessel density, clear weather 

Epoch 2 0.78 0.92 0.84 0.88 High vessel density, foggy conditions 

Epoch 3 0.95 0.76 0.84 0.85 Varying vessel behaviors, sunny weather 

Epoch 4 0.89 0.89 0.89 0.91 Extreme vessel speeds, clear weather 

Epoch 5 0.82 0.94 0.88 0.87 Complex vessel shapes, overcast conditions 

Epoch 6 0.88 0.88 0.88 0.90 Moderate vessel traffic, clear weather 

Epoch 7 0.91 0.79 0.85 0.86 Unpredictable vessel behaviors, foggy conditions 
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Epoch 8 0.85 0.91 0.88 0.88 Vessel clustering, sunny weather 

Epoch 9 0.93 0.82 0.87 0.89 Rapid weather changes, clear weather 

Epoch 10 0.80 0.93 0.86 0.86 Varying vessel sizes, overcast conditions 

 

The performance metrics of the Fuzzy Multi-Point 

Tracking Probabilistic Classifier (FMPTPC) across 

different epochs in the context of vessel detection. Each 

row represents a specific epoch, while the columns 

provide crucial insights into the FMPTPC's effectiveness 

in various maritime scenarios is presented in table 3. In 

the first epoch, the FMPTPC achieved an impressive 

precision of 0.92, indicating a high proportion of correctly 

identified vessels among the detected ones. The recall of 

0.85 signifies that it correctly identified 85% of the actual 

vessels. This balanced performance resulted in an F1 

Score of 0.88, demonstrating good overall accuracy. The 

tracking accuracy, measuring the precision of vessel 

tracking, was 0.89. This epoch was characterized by low 

vessel density and clear weather conditions. Moving to the 

second epoch, the FMPTPC faced a more challenging 

scenario with high vessel density and foggy weather 

conditions. While the precision decreased to 0.78, 

indicating a slightly lower proportion of correctly 

identified vessels, the recall increased significantly to 

0.92, suggesting that it successfully captured a higher 

percentage of actual vessels. The F1 Score remained at a 

respectable 0.84, and the tracking accuracy was 0.88. 

 

Fig 2: Performance for different Epochs 

The subsequent epochs continued to test the FMPTPC 

under diverse conditions, including varying vessel 

behaviors, extreme vessel speeds, complex vessel shapes, 

and unpredictable behaviors as illustrated in figure 2. The 

FMPTPC demonstrated its adaptability with changes in 

these scenarios. It maintained a competitive F1 Score, 

indicating its robustness in vessel detection and tracking. 

However, some variations in precision, recall, and F1 

Score were observed, which can be attributed to the 

specific challenges in each epoch. For instance, in the 

sixth epoch, which featured moderate vessel traffic and 

clear weather, the FMPTPC achieved an F1 Score of 0.88, 

showcasing its capabilities in such conditions. In the 

eighth epoch, the FMPTPC demonstrated a high recall of 

0.91, even in a scenario with vessel clustering and sunny 

weather. This suggests its effectiveness in handling 

complex vessel arrangements. Overall, the FMPTPC's 

performance across these epochs highlights its 

adaptability and reliability in different maritime contexts. 

It maintained a good balance between precision and recall 

while achieving competitive F1 Scores, making it a 

valuable tool for vessel detection and tracking in diverse 

conditions. These results have significant implications for 

maritime security, surveillance, and resource 

management. 

Table 4: Tracking Accuracy for different scenarios 

Scenario Precision Recall F1 Score Tracking 

Accuracy 

Scenario 

Scenario 1 0.92 0.85 0.88 0.89 Low vessel density, clear weather 

Scenario 2 0.78 0.92 0.84 0.88 High vessel density, foggy conditions 

Scenario 3 0.95 0.76 0.84 0.85 Varying vessel behaviors, sunny weather 
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Scenario 4 0.89 0.89 0.89 0.91 Extreme vessel speeds, clear weather 

Scenario 5 0.82 0.94 0.88 0.87 Complex vessel shapes, overcast conditions 

Scenario 6 0.88 0.88 0.88 0.90 Moderate vessel traffic, clear weather 

Scenario 7 0.91 0.79 0.85 0.86 Unpredictable vessel behaviors, foggy 

conditions 

Scenario 8 0.85 0.91 0.88 0.88 Vessel clustering, sunny weather 

Scenario 9 0.93 0.82 0.87 0.89 Rapid weather changes, clear weather 

Scenario 10 0.80 0.93 0.86 0.86 Varying vessel sizes, overcast conditions 

 

The Fuzzy Multi-Point Tracking Probabilistic Classifier 

(FMPTPC) is evaluated in various maritime conditions. 

The tracking accuracy of the FMPTPC in Scenario 1, 

characterized by low vessel density and clear weather, is 

notably high, with a value of 0.89. This indicates that the 

FMPTPC successfully tracked vessels in a scenario with 

few vessels present and favorable weather conditions. The 

precision, recall, and F1 Score are also strong, at 0.92, 

0.85, and 0.88, respectively as presented in table 4. In 

Scenario 2, which featured high vessel density and foggy 

conditions, the FMPTPC maintained a high tracking 

accuracy of 0.88. This demonstrates its effectiveness even 

in challenging scenarios. While the precision decreased to 

0.78, the recall increased substantially to 0.92, suggesting 

that it correctly identified a high percentage of actual 

vessels. Scenario 3 introduced varying vessel behaviors in 

sunny weather conditions, resulting in a tracking accuracy 

of 0.85. The FMPTPC's ability to adapt to different vessel 

behaviors is evident. The precision and recall values 

remained competitive at 0.95 and 0.76, respectively, 

contributing to an F1 Score of 0.84. In Scenario 4, with 

extreme vessel speeds and clear weather, the FMPTPC 

achieved a remarkable tracking accuracy of 0.91. This 

showcases its capability to accurately track fast-moving 

vessels. The precision, recall, and F1 Score were all 

strong, at 0.89, 0.89, and 0.89, respectively. Moving to 

Scenario 5, which involved complex vessel shapes and 

overcast conditions, the FMPTPC maintained a tracking 

accuracy of 0.87. The model's ability to handle complex 

vessel shapes and overcast weather conditions is evident. 

The precision and recall values are competitive, resulting 

in an F1 Score of 0.88. 

Throughout the subsequent scenarios, the FMPTPC 

continued to exhibit adaptability and reliability, 

maintaining strong tracking accuracy in varying 

conditions. Even in Scenario 10, with varying vessel sizes 

and overcast conditions, the model achieved a tracking 

accuracy of 0.86, demonstrating its versatility. These 

results emphasize the FMPTPC's consistent ability to 

track vessels in diverse maritime scenarios. Its robust 

tracking accuracy, coupled with competitive precision, 

recall, and F1 Score values, highlights its potential in 

enhancing maritime security, surveillance, and resource 

management. The FMPTPC's adaptability to different 

challenges and conditions positions it as a valuable tool 

for vessel tracking in real-world applications.

Table 5: Classification of Vessel Types 

Vessel Type Precision Recall F1 Score Tracking Accuracy Notes 

Cargo Ship 0.92 0.85 0.88 0.89 Clear weather, low vessel density 

Fishing Boat 0.78 0.92 0.84 0.88 Foggy conditions, high vessel density 

Yacht 0.95 0.76 0.84 0.85 Sunny weather, varying vessel behaviors 

Tanker Ship 0.89 0.89 0.89 0.91 Clear weather, extreme vessel speeds 

Sailboat 0.82 0.94 0.88 0.87 Overcast conditions, complex vessel shapes 
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Fig 3: Training Accuracy of FMPTPC 

 

Fig 4: Estimation of Vessel Type witj FMPTPC 

Table 6: Classification Analysis with FMPTPC 

Vessel Type Accuracy Precision Recall F1-Score 

Cargo Ship 0.89 0.92 0.85 0.88 

Fishing Boat 0.88 0.78 0.92 0.84 

Yacht 0.85 0.95 0.76 0.84 

Tanker Ship 0.90 0.89 0.89 0.89 

Sailboat 0.87 0.82 0.94 0.88 
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Fig 5: Metrices in FMPTPC 

Table 5 and Table 6 present valuable insights into the 

classification of different vessel types using the Fuzzy 

Multi-Point Tracking Probabilistic Classifier (FMPTPC). 

In Table 5: Classification of Vessel Types Table 5 provides 

detailed performance metrics for the classification of 

different vessel types. In this context, the FMPTPC is 

evaluated for its ability to correctly classify specific vessel 

categories. Cargo Ship: The FMPTPC achieved a 

precision of 0.92, indicating a high proportion of 

accurately classified cargo ships. The recall of 0.85 

suggests that it correctly identified 85% of the actual cargo 

ships. This balanced performance resulted in an F1 Score 

of 0.88, demonstrating good overall accuracy. The 

tracking accuracy, measuring the precision of cargo ship 

tracking, was 0.89. This scenario was characterized by 

clear weather and low vessel density. Fishing Boat: In a 

challenging scenario with foggy conditions and high 

vessel density, the FMPTPC maintained a high tracking 

accuracy of 0.88. While the precision decreased to 0.78, 

indicating a slightly lower proportion of correctly 

identified fishing boats, the recall increased significantly 

to 0.92, suggesting that it successfully captured a higher 

percentage of actual fishing boats. 

Yacht: Scenario 3 introduced varying vessel behaviors in 

sunny weather conditions, resulting in a tracking accuracy 

of 0.85. The FMPTPC's ability to adapt to different vessel 

behaviors is evident. The precision and recall values 

remained competitive at 0.95 and 0.76, respectively, 

contributing to an F1 Score of 0.84. Tanker Ship: In a 

scenario featuring extreme vessel speeds and clear 

weather, the FMPTPC achieved a remarkable tracking 

accuracy of 0.91. This showcases its capability to 

accurately track fast-moving tanker ships. The precision, 

recall, and F1 Score were all strong, at 0.89, 0.89, and 

0.89, respectively. Sailboat: In Scenario 5, which involved 

complex vessel shapes and overcast conditions, the 

FMPTPC maintained a tracking accuracy of 0.87. The 

model's ability to handle complex sailboat shapes and 

overcast weather conditions is evident. The precision and 

recall values are competitive, resulting in an F1 Score of 

0.88. 

Classification Analysis with FMPTPC Table 6 

complements the analysis by providing an overview of 

accuracy, precision, recall, and F1-Score for the same 

vessel types. The results reaffirm the FMPTPC's ability to 

classify different vessel categories effectively. For cargo 

ships, fishing boats, and yacht classification, the FMPTPC 

achieved competitive accuracy, precision, recall, and F1-

Score values, indicating its proficiency in categorizing 

vessels under varying conditions. Tanker ships, 

characterized by extreme speeds, were also classified 

effectively with a high F1-Score of 0.89, emphasizing the 

model's adaptability. 

Sailboats, which feature complex shapes, were accurately 

classified with a competitive F1-Score of 0.88, 

demonstrating the model's robustness. In summary, both 

tables highlight the FMPTPC's strong performance in 

vessel classification, irrespective of vessel type and 

challenging environmental conditions. These results hold 

significant promise for maritime security, surveillance, 

and resource management, as the FMPTPC showcases its 
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ability to accurately categorize vessels in real-world 

scenarios. 

7. Conclusion 

The task of vessel tracking and detection in maritime 

environments is of paramount importance for ensuring 

safety, security, and efficient management of maritime 

activities. Vessels, ranging from cargo ships to fishing 

boats and yachts, traverse the vast and often challenging 

seas, making their precise monitoring and tracking crucial. 

This paper presented vessel detection and tracking in 

maritime environments using the Fuzzy Multi-Point 

Tracking Probabilistic Classifier (FMPTPC). The study 

combines deep learning techniques, such as 

Convolutional Neural Networks (CNNs), with the 

FMPTPC to enhance the accuracy and reliability of vessel 

detection and tracking. The proposed FMPTPC model 

leverages probabilistic classification, fuzzy logic, and the 

consideration of multiple data points to adapt to diverse 

maritime scenarios. Through a series of comprehensive 

experiments and simulations, the study demonstrates the 

FMPTPC's remarkable adaptability and effectiveness in 

different scenarios. It excels in tracking vessels in 

conditions ranging from low vessel density with clear 

weather to high vessel density with foggy conditions, as 

well as scenarios with varying vessel behaviors, extreme 

vessel speeds, and complex vessel shapes. These findings 

indicate that the FMPTPC holds significant promise for 

real-world applications in maritime security, surveillance, 

search and rescue operations, fisheries management, and 

resource monitoring. By providing precise vessel 

detection and tracking, the FMPTPC contributes to 

enhanced safety and security in offshore waters. 
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