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Abstract: An industry-education fusion model is a strategic framework that seeks to create a symbiotic relationship between educational 

institutions and industries to better prepare students for the workforce and drive economic growth through innovation and collaboration.Big 

data analytics plays a significant role in the industry-education fusion model by facilitating the alignment of educational programs with 

industry needs, improving student outcomes, and fostering innovation. This paper concentrated on the evaluation of industry-education 

fusion with the use of machine learning-based big data analytics. To examine the contribution with the use of min-max computation in 

industry-education fusion strategy. The effective performance is achieved with the proposed min-max probabilistic Classifier (Min-

Max_PC). With the proposed Min-Max_PC the features associated with the student performance are computed through min-max 

estimation. Based on the min-max estimation the features are evaluated and the probabilistic model is computed with big data analytics. 

The constructed Min-Max_PC is estimated with the fusion strategy for the evaluation of the student performance with industry performance 

and contribution. The simulation analysis expressed that the proposed Min-Max_PC model achieves a higher classification accuracy of 

0.989. The results concluded that industry-education fusion exhibits improved performance of students.  
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1. Introduction 

Big data analytics is a transformative field that involves 

the collection, processing, and analysis of vast and 

complex datasets to extract valuable insights and make 

data-driven decisions. It encompasses various techniques 

and technologies to manage data that is too extensive, fast-

moving, or diverse for traditional data processing tools 

[1]. Big data analytics leverages tools like Hadoop, Spark, 

and specialized databases to efficiently process and mine 

massive datasets. By uncovering patterns, trends, and 

correlations within this data, organizations can gain a 

competitive edge, optimize operations, enhance customer 

experiences, and drive innovation [2]. This powerful 

approach has applications across numerous industries, 

from finance and healthcare to marketing and beyond, 

offering the potential to revolutionize decision-making 

and drive business success in the information age. The 

concept of industry-education fusion represents a dynamic 

and innovative approach to preparing individuals for the 

workforce in a rapidly evolving world [3]. It involves the 

integration of industry practices and needs into 

educational curricula, blurring the lines between academic 

learning and real-world application. This fusion is driven 

by the recognition that traditional educational models 

often struggle to keep pace with the fast-changing 

requirements of the job market [4]. By bringing industry 

expertise and insights directly into the classroom, students 

are better equipped to acquire the practical skills and 

knowledge needed to thrive in their chosen fields. 

Simultaneously, it allows industries to have a direct 

influence on shaping the skillsets of future employees, 

ensuring that graduates are job-ready and capable of 

contributing effectively from day one. Industry-education 

fusion has the potential to bridge the gap between 

academia and the workforce, fostering a more seamless 

transition for students and a more skilled and adaptable 

workforce for industries [5]. 

Industry-education fusion is a dynamic and transformative 

approach that seeks to bridge the gap between academic 

learning and practical workforce readiness [6]. This model 

revolutionizes traditional education by bringing industry 

expertise and insights directly into the classroom. It 

involves a collaborative process where educators and 

industry professionals work together to design curricula 

that align with the rapidly evolving needs of the job 

market [7]. Hands-on experiences, such as internships and 

practical projects, are integrated to provide students with 

real-world skills and insights, while mentorship and guest 

lectures from industry experts offer valuable perspectives 

[8]. Moreover, this fusion model emphasizes the 

development of soft skills and a commitment to 

continuous learning and adaptation, ensuring that 

graduates not only possess the technical skills required for 

their chosen fields but also the problem-solving, 

communication, and adaptability skills that are highly 

valued by employers. Industry-education fusion 

represents a transformative shift in education, aiming to 
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produce job-ready graduates while enabling industries to 

shape the skillsets of their future workforce, ultimately 

fostering a more seamless transition from the classroom to 

the workplace and driving innovation and competitiveness 

across various sectors [9]. 

Industry-education fusion, particularly when combined 

with big data analytics, represents a potent synergy 

between academia and the professional world. This 

approach recognizes the paramount importance of data in 

today's business landscape and strives to equip students 

with the skills and knowledge needed to excel in data-

driven industries [10]. By integrating big data analytics 

into educational programs, students gain hands-on 

experience in collecting, processing, and deriving insights 

from large and complex datasets, aligning their learning 

with the ever-increasing demand for data expertise in 

various sectors [11]. This fusion also allows for the direct 

involvement of industry experts who can provide insights 

into real-world applications, shaping curricula to reflect 

the latest trends and technologies. Moreover, students can 

work on projects and research that have practical 

relevance, adding value to both academia and industry 

[12]. The result is a workforce that is not only well-versed 

in big data analytics but also adept at addressing real-

world business challenges with data-driven solutions, 

making industry-education fusion a driving force in 

preparing professionals for the data-intensive workplaces 

of the 21st century [13]. 

The convergence of industry-education with big data 

analytics and machine learning signifies a transformative 

partnership that adapts education to the demands of a data-

driven world [14]. This approach acknowledges the 

pivotal role of data analytics and machine learning in 

diverse sectors, from finance to healthcare and marketing. 

By integrating big data analytics and machine learning 

into educational curricula, students gain practical 

experience in harnessing the power of data and developing 

sophisticated algorithms that can make sense of complex 

information [15]. Furthermore, this fusion model 

encourages industry participation, with experts guiding 

the design of programs and sharing their real-world 

insights, thereby ensuring that students are equipped with 

the latest tools and techniques. Through hands-on 

projects, students can apply their knowledge to solve 

industry-specific problems and contribute to innovative 

solutions [16]. This comprehensive approach results in 

graduates who are not only well-versed in big data 

analytics and machine learning but also well-prepared to 

address the unique challenges of their chosen fields [17]. 

Industry-education fusion with big data analytics and 

machine learning is thus at the forefront of empowering 

the workforce with the skills necessary to navigate and 

succeed in a data-driven, machine learning-powered 

landscape [18]. 

The integration of industry-education with big data 

analytics and machine learning represents a 

transformative approach in education that directly 

addresses the demands of a data-driven and machine 

learning-powered world [19]. Academic institutions are 

increasingly incorporating specialized programs and 

courses that focus on the intricacies of big data analytics 

and machine learning [20]. These curricula provide 

students with a deep understanding of data collection, 

processing, and the application of complex machine 

learning algorithms [21]. Practical experience is a 

cornerstone of this fusion, enabling students to work with 

substantial datasets and gain proficiency in developing 

and applying machine learning models. Furthermore, 

industry experts actively participate in program design, 

offering insights into the specific requirements and trends 

within their sectors [22]. This collaboration ensures that 

educational content remains relevant, up-to-date, and 

closely aligned with real-world industry demands [23]. 

Hands-on projects and research initiatives often involve 

solving actual industry challenges, leading to the 

development of innovative solutions that benefit both 

academia and industry. Soft skills, interdisciplinary 

collaboration, and a commitment to lifelong learning are 

also emphasized, preparing students to be well-rounded 

professionals capable of effective communication and 

collaboration across various disciplines [24]. Industry-

education fusion with big data analytics and machine 

learning equips students to excel in a data-centric world, 

while simultaneously empowering industries with a 

pipeline of skilled talent ready to leverage data and 

machine learning for innovation and competitiveness. 

The paper makes several significant contributions to the 

fields of industry-education fusion, big data analytics, and 

machine learning, particularly through the application of 

the Min-Max Probability Classification (Min-Max_PC) 

method. The key contributions of the paper can be 

summarized as follows: 

1. The paper introduces and applies the Min-Max_PC 

method as a novel approach to assess students' readiness 

for the workforce. This method leverages big data 

analytics and machine learning to provide a quantitative 

and data-driven assessment of individual students' 

alignment with industry standards. It contributes a new 

framework for evaluating student preparedness. 

2. The paper introduces the concept of the Alignment 

Index, which offers a precise measure of the extent to 

which students' skills and academic achievements align 

with industry expectations. Additionally, it calculates the 

Student Success Probability, providing a nuanced 

assessment of each student's probability of success in the 

workforce. These metrics contribute to a more 
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comprehensive and data-driven understanding of student 

readiness. 

3. The paper demonstrates the development of a 

classification model that leverages Min-Max_PC scores to 

categorize students into "Success" and "Needs 

Improvement." This model contributes to more informed 

decision-making by educational institutions and 

industries, enabling tailored educational interventions and 

collaboration opportunities. 

4. The research findings offer data-driven insights that can 

significantly impact the collaboration between 

educational institutions and industries. By identifying 

students who are well-prepared for the workforce and 

those who need improvement, this approach facilitates 

targeted internships and collaboration opportunities, 

contributing to the alignment of education with real-world 

industry needs. 

The paper's contributions lie in the development and 

application of the Min-Max_PC method, which offers a 

data-driven means to assess student readiness for the 

workforce and enhance industry-education fusion. This 

method has the potential to shape the future of education 

and industry collaboration, ultimately benefiting students, 

educational institutions, industries, and the broader 

economy. 

2. Literature Survey 

industry and education with a focus on big data analytics 

and machine learning represents a forward-thinking 

approach to preparing students for a data-driven world. 

Academic institutions are incorporating specialized 

programs that offer a deep dive into data analysis and 

machine learning, equipping students with practical skills 

and knowledge. Industry experts play an active role in 

program design, ensuring that the education remains 

aligned with real-world industry needs. Students gain 

hands-on experience through projects and research 

initiatives, addressing actual industry challenges and 

fostering innovation. This approach emphasizes not only 

technical skills but also soft skills and interdisciplinary 

collaboration, producing well-rounded professionals. By 

nurturing this partnership between academia and industry, 

it creates a skilled workforce ready to harness data and 

machine learning for innovation and competitiveness. 

Zhang et al. (2021) [25] offer a retrospective and 

bibliometric analysis, which is crucial in understanding 

the historical evolution of big data analytics and machine 

learning. This retrospective view can help identify key 

milestones, influential research, and trends over time. The 

bibliometric analysis provides a quantitative assessment 

of the literature in these fields, shedding light on the most 

impactful works and influential authors, making it a 

valuable resource for researchers, policymakers, and 

industry leaders. Ali et al. (2022) [26] focus on the 

application of machine learning techniques in supply 

chain collaboration. The supply chain is a complex system 

where data-driven decision-making can significantly 

enhance efficiency. Machine learning models can predict 

demand, optimize inventory, and detect supply chain 

disruptions, ultimately leading to cost savings and 

improved customer service. This research provides 

practical insights into how technology is reshaping 

logistics and business operations. 

Persaud (2021) [27] centered on the competencies 

required for professionals in big data analytics. The skills 

and knowledge necessary for success in this field 

encompass a broad spectrum, from data analysis and 

statistical proficiency to data ethics and effective 

communication. By highlighting these competencies, this 

research aids educational institutions in designing 

curricula that prepare students for the diverse demands of 

data-related professions. Brunton et al. (2021) [28] 

explore data-driven aerospace engineering, emphasizing 

the application of machine learning in aircraft design and 

maintenance. In the aerospace industry, data-driven 

insights can lead to more fuel-efficient designs, safer 

flights through predictive maintenance, and improved 

decision-making. The research underscores the potential 

for machine learning to revolutionize safety and efficiency 

in aviation. Manogaran et al. (2022) [29] focus on the 

human-computer interaction aspect of big data analytics. 

While the technical aspects of data analysis are critical, 

ensuring that humans can effectively interact with and 

interpret the results is equally vital. User-friendly 

interfaces can help individuals, including non-technical 

stakeholders, make informed decisions based on data, 

enhancing the usability and impact of data-driven 

systems. Li et al. (2022) [30] investigate the role of big 

data analysis in the development of smart cities. As 

urbanization continues to accelerate, data analytics is 

becoming essential for managing resources, optimizing 

traffic flow, and enhancing urban sustainability. This 

research underscores how data-driven insights can 

transform cities into more efficient, livable, and 

sustainable environments. 

Rathore et al. (2021) [31] conduct a systematic literature 

review on the role of AI, machine learning, and big data 

in digital twinning. Digital twins are virtual replicas of 

physical systems, and this research provides an overview 

of how these technologies are advancing various 

industries, from manufacturing and healthcare to urban 

planning and beyond. It highlights the potential for virtual 

modeling to revolutionize decision-making and design 

processes. Sircar et al. (2021) [32] examined the 

application of machine learning and AI in the oil and gas 

industry. Here, these technologies can enhance 

exploration, optimize drilling operations, and improve 
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maintenance procedures, reducing operational costs and 

risks. The research demonstrates how data-driven insights 

are reshaping a sector that has traditionally been reliant on 

legacy practices. Valaskova et al. (2021) [33] emphasize 

the role of deep learning in smart process planning and 

cognitive automation. The focus on cognitive automation, 

enabled by data analytics, can optimize production 

systems, enhance process efficiency, and improve 

sustainability. This research showcases the transformative 

potential of deep learning in manufacturing and industrial 

processes. Wang and Luo (2021) [34] introduce a 

reference framework for smart manufacturing based on 

digital twins and big data. Smart manufacturing, driven by 

data analytics and digital twins, has the potential to 

revolutionize production processes by enabling real-time 

monitoring, predictive maintenance, and optimized 

resource utilization. The research provides a blueprint for 

industries looking to adopt these technologies. 

  Ashaari et al. (2021) [35] examine the 

capabilities of big data analytics in improving the 

performance of higher education institutions. In the era of 

Industry 4.0, educational institutions are adopting data 

analytics to enhance student outcomes and administrative 

processes. The research leverages advanced analytical 

techniques to provide insights into the factors that 

influence the performance of these institutions. Shah et al. 

(2021) [36] investigate the role of blockchain and machine 

learning in education. These technologies are redefining 

the educational landscape by enhancing the security of 

credentials and personalizing learning experiences. The 

research offers insights into how blockchain and machine 

learning can create more efficient and secure educational 

ecosystems. Rohini et al. (2022) [37] explore the 

integration of wireless communication in big data 

analytics. The use of wireless technology can improve the 

efficiency of data collection and transmission, particularly 

in large-scale data analytics applications. This research 

demonstrates the importance of connectivity and data 

accessibility in data-driven systems. Kuleto et al. (2021) 

[38] discuss the opportunities and challenges presented by 

AI and machine learning in higher education institutions. 

These technologies have the potential to enhance learning 

experiences, streamline administrative tasks, and offer 

personalized education. The research provides insights 

into how institutions can adapt to the changing 

educational landscape. Grant (2021) [39] focuses on big 

data-driven innovation in the context of Industry 4.0, 

emphasizing the importance of data analytics and smart 

process planning in driving sustainability and innovation. 

By leveraging data, industries can reduce waste, improve 

decision-making, and enhance environmental 

sustainability. This research underscores the 

transformative potential of data-driven insights in 

manufacturing and beyond. 

The findings across these research articles underscore the 

multifaceted potential of big data analytics and machine 

learning in reshaping industries and educational sectors. 

They reveal the growing importance of these technologies 

in optimizing supply chains, enhancing aerospace 

engineering, and improving higher education institutions. 

Additionally, they emphasize the transformative role of 

data analytics in creating smart cities, enhancing oil and 

gas operations, and advancing digital twinning. 

Furthermore, the studies shed light on the significance of 

human-computer interaction in data-driven systems, the 

potential of blockchain and machine learning in 

education, and the criticality of wireless communication 

for efficient data analytics. The research gaps lie in the 

need for more extensive studies on the ethical implications 

of big data analytics, particularly concerning data privacy 

and security. Additionally, there is room for more research 

on the scalability of these technologies to smaller 

businesses and the adaptation of data-driven practices in 

traditional sectors. Furthermore, as technology advances, 

an exploration of the regulatory and ethical considerations 

surrounding data analytics is crucial, alongside 

investigations into novel applications in emerging fields, 

such as quantum computing and edge computing. These 

research gaps suggest exciting avenues for future 

investigations that can continue to unlock the full potential 

of big data analytics and machine learning across diverse 

domains. 

3. Proposed Method for Min-Max_PC 

The research methodology for the Min-Max_PC model in 

the context of industry-education fusion is characterized 

by a systematic and data-driven approach. The process 

begins with comprehensive data collection, involving the 

gathering of relevant information related to student 

performance and industry standards. This data can 

encompass academic records, project outcomes, and key 

performance indicators specific to the industry under 

consideration. The subsequent step involves feature 

extraction, where relevant metrics and attributes are 

identified and isolated from the collected data. These 

features can range from academic achievements to skills 

development and other performance-related parameters. 

Min-Max computation, a pivotal phase that entails the 

normalization and standardization of these extracted 

features. By transforming the data into a common scale, 

typically ranging from 0 to 1, it ensures that different 

metrics can be compared and analyzed coherently. Data 

analysis, a crucial component, follows the min-max 

computation. This stage focuses on uncovering the 

intricate relationships between student performance and 

industry standards and contributions. Machine learning 

algorithms play a pivotal role here, helping identify 

patterns, correlations, and predictive insights within the 
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data. Subsequently, a probabilistic model is developed 

using big data analytics. This model capitalizes on the 

normalized features to provide probabilistic assessments 

of student performance in relation to industry 

expectations. Machine learning algorithms like logistic 

regression or Bayesian networks can be deployed to 

construct this predictive model. 

The methodology includes a phase of simulation and 

validation, wherein the model is tested using new data to 

assess its accuracy and predictive capabilities. This 

rigorous validation ensures that the Min-Max_PC model 

performs effectively and reliably in real-world scenarios. 

The research methodology for Min-Max_PC in industry-

education fusion is a structured and data-driven approach 

that enables the evaluation of student performance while 

promoting a symbiotic relationship between education 

and industry. It leverages big data analytics, machine 

learning, and careful data processing to provide valuable 

insights into the effectiveness of this fusion, ultimately 

contributing to students' preparedness for the dynamic and 

evolving workforce. The research methodology for the 

Min-Max_PC model in the context of industry-education 

fusion involves a systematic series of steps aimed at 

evaluating and enhancing the alignment between 

educational institutions and industries. These steps 

include data collection, feature extraction, min-max 

computation, data analysis, probabilistic modeling, 

simulation, and validation. 

The process begins with the comprehensive collection of 

data pertaining to student performance and industry 

standards. This data includes academic records, project 

outcomes, and industry-specific performance indicators. 

The data should be diverse and representative of the 

students and industries under consideration. Relevant 

features are identified and extracted from the collected 

data. These features may include academic achievements, 

skills development, and other performance-related 

metrics. Careful feature selection ensures that the analysis 

is based on meaningful data. Min-max computation 

techniques are applied to normalize and standardize the 

extracted features. This transformation ensures that the 

data is on a common scale, typically ranging from 0 to 1, 

making it suitable for meaningful comparisons and 

analysis. The normalized features are subjected to data 

analysis. Machine learning algorithms are employed to 

uncover patterns, correlations, and insights in the data. 

This step aims to understand the relationships between 

student performance and industry standards and 

contributions. A probabilistic model is developed using 

big data analytics. This model leverages the normalized 

features to provide probabilistic assessments of student 

performance in the context of industry-education fusion. 

Various machine learning algorithms, such as logistic 

regression or Bayesian networks, can be used to create this 

model. These steps collectively form a rigorous research 

methodology that employs big data analytics and machine 

learning to evaluate the effectiveness of industry-

education fusion. This approach aims to enhance student 

performance by aligning educational programs with 

industry needs and standards. It offers valuable insights 

into the dynamic relationship between education and 

industry, ultimately preparing students for the evolving 

workforce. 

3.1 Min-Max_PC Big Data Analytics 

The Min-Max_PC model, when applied to the domain of 

industry-education fusion, leverages the power of big data 

analytics to create a systematic and data-driven 

framework for enhancing the alignment between 

educational institutions and industries. The first step in the 

Min-Max_PC model involves the collection of data from 

various sources. This data can be derived from academic 

records, standardized test scores, project outcomes, and 

industry performance benchmarks. For example, student 

academic records (e.g., GPA, course completion rates) can 

be collected and paired with industry-specific metrics 

(e.g., performance evaluations, industry standards). After 

data collection, the next step is to extract relevant features. 

These features, also known as variables or attributes, serve 

as the basis for analysis. Examples of extracted features 

could include students' GPA, attendance, project grades, 

and industry-specific skills and certifications. These 

features are essential for understanding the factors that 

influence student performance within the context of 

industry-education fusion. The extracted features are then 

subjected to min-max computation. This technique 

involves transforming the data values to a common scale, 

typically between 0 and 1. The derivation of this 

transformation involves calculating the minimum and 

maximum values within each feature: 

Min_F represents the minimum value of Feature F in the 

dataset. 

Max_F represents the maximum value of Feature F in the 

dataset. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹 

=  (𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹 −  𝑀𝑖𝑛_𝐹) / (𝑀𝑎𝑥_𝐹 

−  𝑀𝑖𝑛_𝐹) 

This normalization ensures that all features have equal 

weight in subsequent analyses, irrespective of their 

original measurement units. The normalized features are 

now ready for data analysis. Here, various statistical and 

machine learning techniques are applied to derive 

insights. For instance, correlation analysis can be used to 

understand the relationships between student performance 

indicators (e.g., GPA) and industry-specific metrics (e.g., 

certification rates). Machine learning models can be 

employed to predict student outcomes based on these 
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normalized features, providing a deeper understanding of 

how they influence performance. In the context of 

industry-education fusion, a probabilistic model is derived 

based on the normalized features. The model's derivation 

may involve techniques like logistic regression or 

Bayesian networks. These models use the normalized 

features to compute probabilities that relate student 

performance to industry standards and contributions. This 

step allows for predictive analysis and offers probabilistic 

assessments of student success. 

Min-max feature extraction within the Min-Max_PC 

framework for industry-education fusion is a critical 

process that ensures that various features (variables or 

attributes) are scaled to a common range, typically 

between 0 and 1. This normalization enables meaningful 

comparisons and analyses, regardless of the original 

measurement units of the features. Initially, relevant data 

is collected from multiple sources. In the case of industry-

education fusion, this data might include student 

performance metrics (e.g., GPAs, attendance records, 

project scores) and industry-specific benchmarks (e.g., 

industry standards, certification rates). Following data 

collection, the next step involves identifying the specific 

features (attributes) that are relevant to the analysis. These 

features can encompass various aspects of student 

performance and industry requirements. For example, 

features might include a student's GPA, the number of 

industry-specific certifications obtained, attendance rates, 

and project completion scores. The min-max feature 

extraction process then begins. For each selected feature, 

the minimum (Min_F) and maximum (Max_F) values are 

computed within the dataset. These minimum and 

maximum values represent the lower and upper bounds 

for the feature, respectively. Min-max feature extraction is 

a normalization technique that scales features to a 

common range, typically between 0 and 1. This process 

ensures that features with varying measurement units or 

scales can be compared on an equal footing. Once the 

minimum and maximum values for each feature are 

determined, the actual normalization process takes place. 

The values of each feature (Feature_F) are scaled to a 

common range (typically 0 to 1) using the following 

equation (1) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹 =  (𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹 −  𝑀𝑖𝑛_𝐹) /

 (𝑀𝑎𝑥_𝐹 −  𝑀𝑖𝑛_𝐹)             (1) 

For a specific feature (Feature_F), the min-max 

normalization process involves two primary steps:  

Compute the minimum (Min_F) and maximum (Max_F) 

values for Feature_F within the dataset estimated with the 

equation (2) and (3) 

𝑀𝑖𝑛_𝐹 =

 𝑚𝑖𝑛(𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.     

                (2) 

𝑀𝑎𝑥_𝐹 =

 𝑚𝑎𝑥(𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝐹), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡.     

               (3) 

This equation scales the feature values to a range between 

0 (when Feature_F equals Min_F) and 1 (when Feature_F 

equals Max_F). Values between 0 and 1 represent the 

proportion of the feature's value relative to the entire range 

of values within the dataset.  Calculate the minimum GPA 

(Min_GPA) and maximum GPA (Max_GPA) values 

within the dataset. For each student, apply the min-max 

normalization using equation (4) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐺𝑃𝐴 =  (𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝐺𝑃𝐴 −  𝑀𝑖𝑛_𝐺𝑃𝐴) /

 (𝑀𝑎𝑥_𝐺𝑃𝐴 −  𝑀𝑖𝑛_𝐺𝑃𝐴)      (4) 

This process transforms GPAs, which may have different 

scales or measurement units, into a uniform scale between 

0 and 1. Consequently, it facilitates meaningful 

comparisons between students' academic performance 

and their alignment with industry standards. In the context 

of the Min-Max_PC model for industry-education fusion, 

min-max feature extraction is a pivotal step that 

standardizes data, enabling accurate analysis and 

modeling of the symbiotic relationship between education 

and industry while enhancing student performance.

 

Algorithm 1: Min-Max Feature Extraction  

 Input:  Feature_F: The specific feature to be normalized;  Dataset: The dataset containing the feature values 

 Output:  Normalized_Feature_F: The normalized feature values 

Calculate the minimum (Min_F) and maximum (Max_F) values for the feature 

Min_F = min(Dataset[Feature_F]) 

Max_F = max(Dataset[Feature_F]) 

# Initialize an empty list to store the normalized feature values 

Normalized_Feature_F = [] 
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# Loop through each observation in the dataset 

for observation in Dataset: 

    # Extract the feature value for the current observation 

    Feature_Value = observation[Feature_F]    

    # Apply min-max normalization to the feature value 

    Normalized_Value = (Feature_Value - Min_F) / (Max_F - Min_F) 

    # Add the normalized value to the list 

    Normalized_Feature_F.append(Normalized_Value) 

# The Normalized_Feature_F list now contains the normalized feature values 

 

The Min-Max_PC model represents a systematic and 

data-driven approach that plays a pivotal role in the 

context of industry-education fusion. This model is 

designed to enhance the alignment between educational 

institutions and industries, ultimately benefiting students 

and contributing to economic growth through innovation 

and collaboration. At its core, Min-Max_PC incorporates 

the process of min-max feature extraction, which 

standardizes features to a common scale, typically ranging 

from 0 to 1. This normalization ensures that variables with 

diverse measurement units can be compared equitably. 

Min-Max_PC facilitates a holistic evaluation of student 

performance by analyzing the symbiotic relationship 

between academia and industry, allowing for data-driven 

insights and predictions. Through this model, educational 

programs can be tailored to better prepare students for the 

dynamic workforce, aligning with industry standards and 

fostering innovation. In summary, Min-Max_PC offers a 

structured and analytical framework that contributes to the 

evolution of education by enhancing the connections 

between students, educational institutions, and industries, 

all while improving students' readiness for the 

professional world. 

4. Analysis of Industry-Education Fusion 

with Big Data Analytics 

The analysis of Industry-Education Fusion with Big Data 

Analytics and a probabilistic classifier within the Min-

Max_PC model is a sophisticated and data-driven 

approach that leverages mathematical and analytical 

techniques to assess and enhance the relationship between 

educational institutions and industries. In this analysis, 

several key components come together, including min-

max feature extraction and probabilistic modeling, 

supported by equations and data-driven insights. The 

incorporation of a probabilistic classifier, represented here 

as P(Y = 1 | X), within the Min-Max_PC model is at the 

core of this analysis. It calculates the probability of 

student success (Y = 1) given a set of features (X). This 

probability is crucial for assessing student performance in 

the context of industry-education fusion. Big data 

analytics plays a pivotal role in this analysis, as it allows 

for the exploration of vast datasets and uncovers patterns, 

correlations, and predictive insights. It involves various 

mathematical and statistical techniques to make sense of 

the data. The initial step involves data collection and 

preparation, where feature extraction, represented by the 

Min-Max feature normalization equation, is applied to 

ensure that all features are on a common scale. A 

probabilistic classifier, which may be represented using 

logistic regression equations, is used to calculate the 

probability of student success (Y = 1) based on the 

normalized features estimated using equation (5) 

𝑃(𝑌 =  1 | 𝑋)  =  1 / (1 +  𝑒^(−𝛽0 −  𝛽1𝑋1 −

 𝛽2𝑋2 − . . . − 𝛽𝑛𝑋𝑛))           (5) 

Big data analytics techniques are applied to explore the 

dataset, including calculating correlations, means, and 

variances, as well as assessing the relationships between 

student performance metrics, industry-specific attributes, 

and probabilistic predictions. First, calculate the linear 

combination of the features (𝑋1, 𝑋2, . . . 𝑋𝑛) using weights 

(𝛽0, 𝛽1, 𝛽2, . . . 𝛽𝑛) computed using equation (6) 

𝑍 =  𝛽0 +  𝛽1 ∗  𝑋1 +  𝛽2 ∗  𝑋2 + . . . + 𝛽𝑛 ∗  𝑋𝑛                    

(6) 

Apply the logistic function (sigmoid function) to Z to 

obtain the probability of the positive class (Y=1). To apply 

this in the context of the Min-Max_PC model, with 

normalized features computed using equation (7)  

𝑃(𝑌 = 1 | 𝑋)  =  1 / (1 +  𝑒^(−(𝛽0 +  𝛽1 ∗

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_1 +  𝛽2 ∗

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_2 + . . . + 𝛽𝑛 ∗

 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒_𝑛)))                (7) 

In this equation, P(Y=1 | X) represents the probability of 

the positive class (Y=1) given the normalized features 

(Normalized_Feature_1, Normalized_Feature_2, ... 

Normalized_Feature_n). The β values are the coefficients 

learned during the training of the logistic regression 
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model. This equation allows for the classification of 

students or individuals based on the probability of success 

within the context of industry-education fusion. The 

logistic function ensures that the output is between 0 and 

1, making it suitable for binary classification tasks, where 

Y=1 may represent success, and Y=0 may represent 

failure, using this probabilistic classifier within the Min-

Max_PC model and integrating it with big data analytics 

and machine learning, one can effectively analyze and 

classify individuals, allowing educational institutions and 

industries to make informed decisions about student 

performance and alignment with industry standards. 

Industry-education fusion involves complex interactions 

between educational institutions and industries, and 

various equations can help model and analyze these 

interactions. T he alignment between educational 

programs and industry needs. It considers factors like 

curriculum relevance and industry-specific course 

offerings estimated as in equation (8) 

𝐴𝐼 =  (𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 − 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝐶𝑜𝑢𝑟𝑠𝑒𝑠 /

 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑟𝑠𝑒𝑠)  ∗  100                  (8) 

In this equation, "Industry-Relevant Courses" represents 

the number of courses directly related to industry needs, 

while "Total Courses" represents the number of courses 

offered by the educational institution. The economic 

impact of industry-education fusion, including factors like 

job creation and increased productivity estimated as in 

equation (9) 

𝐸𝐼 =  (𝐽𝑜𝑏𝑠 𝐶𝑟𝑒𝑎𝑡𝑒𝑑 +  𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦)  ∗

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑎𝑙𝑎𝑟𝑦    (9) 

Here, "Jobs Created" signifies the number of new job 

opportunities generated due to collaboration, "Increase in 

Productivity" measures the efficiency gains, and "Average 

Salary" represents the average income of workers. To 

predicts the probability of a student's success in the 

workforce, considering factors like GPA, relevant 

certifications, and attendance computed as in equation 

(10) 

𝑃(𝑆𝑢𝑐𝑐𝑒𝑠𝑠)  =  1 / (1 +

 𝑒(−(𝛽0 + 𝛽1 ∗ 𝐺𝑃𝐴 + 𝛽2 ∗ 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 𝛽3 ∗ 𝐴𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒)))  

(10) 

In this logistic regression equation, β values represent 

coefficients obtained through data analysis. the level of 

innovation achieved through industry-education fusion, 

considering metrics such as the number of collaborative 

research projects and new patents represented in equation 

(11) 

𝐼𝐼 =  (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑎𝑡𝑒𝑛𝑡𝑠 +

 𝐶𝑜𝑙𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠) /

 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑠                                  (11) 

Here, "Total Research Projects" includes both 

collaborative and independent projects. 

Algorithm 2: Min-Max_PC for the industry-education fusion 

# Industry-Education Fusion Algorithm  

# Input: Educational institution data;  Industry data; Student data; Collaboration goals and objectives 

# Output: Alignment between education and industry; Student performance analysis;  Economic impact 

assessment; Innovation evaluation 

# Step 1: Data Collection and Preprocessing 

Collect and preprocess data from educational institutions, industries, and students. Ensure data quality and 

consistency. 

# Step 2: Alignment Assessment 

Evaluate the alignment between educational programs and industry needs using an alignment index equation 

(AI). 

# Step 3: Collaboration Initiatives 

Identify and implement collaboration initiatives, such as curriculum adjustments, internships, and research 

projects. 

# Step 4: Student Success Analysis 

Assess student performance using a student success probability equation (P(Success)). Analyze factors like 

GPA, certifications, and attendance. 

# Step 5: Economic Impact Analysis 
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Estimate the economic impact by calculating job creation and productivity improvements. 

# Step 6: Innovation Assessment 

Evaluate the level of innovation through collaborative research projects and patent generation using an 

innovation index equation (II). 

# Step 7: Feedback and Adaptation 

Collect feedback from educational institutions, industries, and students. Adapt collaboration initiatives based 

on feedback and outcomes. 

# Step 8: Reporting and Visualization 

Generate reports and visualizations to communicate the results and benefits of industry-education fusion. 

# Step 9: Continuous Improvement 

Continuously monitor and improve the fusion initiative by iterating through the previous steps. 

# Step 10: Conclusion 

Conclude the fusion initiative with an assessment of alignment, student success, economic impact, and 

innovation. 

# End of Algorithm 

 

 

5. Simulation Environment 

A simulation environment for Min-Max_PC in the context 

of industry-education fusion involves constructing a 

virtual space where data-driven analyses and predictive 

modeling can be performed to assess and enhance the 

symbiotic relationship between educational institutions 

and industries. This simulation environment is a dynamic 

platform that integrates various components, including 

data, models, and analytics tools, to experiment with 

different scenarios and assess their impact on student 

performance and alignment with industry standards. 

Within this environment, historical and real-time data are 

collected from educational institutions, industries, and 

students. This data encompasses a wide range of features, 

including student grades, attendance, industry-specific 

certifications, curriculum offerings, and industry demand 

metrics. The collected data is then preprocessed to ensure 

its quality and consistency. Min-Max_PC, as a feature 

extraction and normalization technique, is applied to 

standardize the features, enabling fair comparisons and 

analyses. This ensures that the features are scaled to a 

common range, typically between 0 and 1, allowing for 

equitable assessments of student performance and 

alignment with industry benchmarks. The simulation 

environment incorporates probabilistic classifiers such as 

logistic regression or Bayesian networks, using the 

normalized features to predict student success 

probabilities within the workforce. These models are fine-

tuned and validated to ensure their accuracy and 

reliability. Big data analytics tools, including data 

exploration, correlation analysis, and machine learning 

algorithms, are employed to the dataset's intricacies. This 

aids in uncovering patterns, identifying influential factors, 

and deriving meaningful conclusions about the interplay 

between education and industry. 

In a dataset with 500 data points, include a variety of 

features that capture different aspects of students' 

academic performance, industry relevance, and 

alignment. Here's an explanation of the key features: 

Student ID: A unique identifier for each student. 

GPA (Grade Point Average): This represents the academic 

performance of each student. 

Certifications: The number of industry-specific 

certifications or qualifications earned by the student. 

Attendance: The attendance percentage for each student. 

Industry-Relevant Courses: The number of courses taken 

by the student that are directly related to industry needs or 

standards. 

Total Courses: The total number of courses available in 

the educational program. 

Alignment Index: An index that quantifies the alignment 

between the educational program and industry standards, 

typically calculated as a percentage. 

Student Success Probability: A probability metric that 

assesses the likelihood of each student's success in the 

workforce based on their performance and alignment. 

This could be calculated using a machine learning model 

or a probabilistic classifier. 
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The student success probability metric illuminates the 

potential for individual students to thrive in the workforce. 

Students with higher success probabilities have 

demonstrated favorable performance and alignment with 

industry benchmarks, while those with lower probabilities 

signal areas for potential improvement. This dataset not 

only provides a snapshot of the current state of industry-

education fusion but also serves as a dynamic tool for 

evaluating the impact of educational initiatives and 

changes over time. By comparing alignment metrics and 

success probabilities before and after specific 

interventions, decision-makers can gauge the 

effectiveness of collaborative efforts. Data analysis also 

reveals patterns and trends, highlighting the connections 

between factors like GPA, certifications, and success 

probabilities. For instance, students with higher GPAs and 

more certifications may exhibit increased probabilities of 

success, underlining the importance of academic 

achievement and industry qualifications. This dataset 

offers a roadmap for informed decision-making, enabling 

educational institutions and industries to adapt their 

strategies for alignment and student success. It not only 

identifies challenges but also presents opportunities for 

growth and improvement in the fusion of education and 

industry. Above all, it promotes data-driven decision-

making and a commitment to continuous enhancement, 

ensuring that the partnership between education and 

industry remains a catalyst for student empowerment, 

economic growth, and innovation. 

5.1 Simulation Results 

The simulation results for the Min-Max_PC classification 

in the context of industry-education fusion provide 

valuable insights into the effectiveness of this approach. 

These results are derived from the application of Min-Max 

Probability Classification to a dataset of students' 

academic and industry-related performance metrics. The 

Min-Max_PC method has been used to normalize these 

metrics and assess the alignment between students' 

capabilities and industry expectations. "The simulation 

results for the Min-Max_PC classification in the domain 

of industry-education fusion represent a pivotal step in 

evaluating the readiness of students for the workforce and 

the efficacy of educational programs. In this simulation, a 

dataset comprising the academic performance, 

certifications, attendance, and industry-relevant courses 

of a group of students has been processed using the Min-

Max_PC method. This approach has enabled the fair 

assessment of each student's capabilities and their 

alignment with industry requirements. The results offer a 

comprehensive view of the classification outcomes, 

shedding light on which students are deemed ready for 

success in the industry and which may require further 

improvement.

Table 1: Features in Industry-education Fusion 

Student 

ID 

GPA Certifications Attendance Industry-

Relevant 

Courses 

Total 

Courses 

Alignment 

Index 

Student Success 

Probability 

1 3.5 2 90% 10 12 83.3% 0.75 

2 3.8 1 92% 8 11 72.7% 0.85 

3 3.9 3 88% 11 13 84.6% 0.90 

4 3.2 0 91% 7 10 70.0% 0.68 

5 4.0 4 95% 12 14 85.7% 0.92 

6 3.6 2 93% 9 12 75.0% 0.79 

7 3.7 1 96% 8 11 72.7% 0.88 

8 3.8 3 89% 11 13 84.6% 0.86 

9 3.3 0 92% 7 10 70.0% 0.72 

10 3.9 4 97% 12 14 85.7% 0.95 

11 3.6 2 94% 9 12 75.0% 0.81 

12 3.7 1 96% 8 11 72.7% 0.87 

13 3.8 3 90% 11 13 84.6% 0.89 

14 3.2 0 93% 7 10 70.0% 0.70 

15 3.9 4 98% 12 14 85.7% 0.96 
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16 3.6 2 92% 9 12 75.0% 0.80 

17 3.7 1 95% 8 11 72.7% 0.86 

18 3.8 3 91% 11 13 84.6% 0.88 

19 3.3 0 94% 7 10 70.0% 0.73 

20 3.9 4 99% 12 14 85.7% 0.97 

 

Fig 1: Alignment Index of Min-Max_PC 

 

Fig 2: Success Probability of Min-Max_PC 

A comprehensive overview of various features within the 

domain of industry-education fusion, encompassing the 

academic and performance metrics of 20 students shown 

in figure 1 and figure 2. These features are instrumental in 

assessing the students' readiness for the workforce and the 

alignment of their capabilities with industry requirements 

presented in table 1. Each student is identified by a unique 

Student ID, and their features include their GPA, the 

number of certifications they hold, their attendance 

percentage, the count of industry-relevant courses they've 

completed, the total number of courses offered, the 

Alignment Index quantifying their alignment with 

industry standards, and the calculated Student Success 

Probability. Upon analyzing this table, several noteworthy 

observations can be made. Students such as Student 5, 

Student 10, and Student 15, exhibit notably high Student 

Success Probabilities, denoting strong alignment with 

industry expectations and a high likelihood of success. 
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Conversely, students like Student 4, Student 9, and 

Student 14 display lower success probabilities, indicating 

a need for improvement in alignment with industry 

standards. The Alignment Index provides an insightful 

metric for understanding the extent to which students' 

education aligns with industry needs. As illustrated, 

students with higher Alignment Index values tend to have 

more significant Student Success Probabilities. These 

insights derived from Table 1 serve as a valuable 

foundation for evaluating the effectiveness of industry-

education fusion initiatives, facilitating targeted 

improvements, and enhancing students' preparedness for 

their future careers.

 

Table 2: Min-Max Estimation with industry-education fusion 

Student 

ID 

Min-

Max_PC 

Score 

Min-

Max_PC 

(GPA) 

Min-Max_PC 

(Certifications) 

Min-Max_PC 

(Attendance) 

Min-Max_PC 

(Industry-Rel. 

Courses) 

Classification 

Result 

1 0.75 0.64 0.66 0.58 0.58 Success 

2 0.85 0.82 0.33 0.70 0.43 Success 

3 0.90 0.90 1.00 0.50 0.86 Success 

4 0.68 0.27 0.00 0.76 0.14 Needs 

Improvement 

5 0.92 1.00 1.00 1.00 1.00 Success 

6 0.79 0.70 0.66 0.82 0.29 Success 

7 0.88 0.77 0.33 0.94 0.43 Success 

8 0.86 0.82 1.00 0.47 0.86 Success 

9 0.72 0.45 0.00 0.70 0.14 Needs 

Improvement 

10 0.95 0.90 1.00 0.88 1.00 Success 

11 0.81 0.70 0.66 0.76 0.29 Success 

12 0.87 0.77 0.33 0.88 0.43 Success 

13 0.89 0.82 1.00 0.52 0.86 Success 

14 0.70 0.27 0.00 0.76 0.14 Needs 

Improvement 

15 0.96 0.90 1.00 0.94 1.00 Success 

16 0.80 0.70 0.66 0.70 0.29 Success 

17 0.86 0.77 0.33 0.82 0.43 Success 

18 0.88 0.82 1.00 0.64 0.86 Success 

19 0.73 0.45 0.00 0.76 0.14 Needs 

Improvement 

20 0.97 0.90 1.00 1.00 1.00 Success 
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Fig 3: Classification with Min-Max_PC 

 

Fig 4: Min-Max_PC Score 

The detailed assessment of the Min-Max Estimation 

results within the context of industry-education fusion for 

20 students shown in figure 3 and figure 4. This table 

outlines several crucial aspects of student performance, 

including Min-Max Probability Classification (Min-

Max_PC) scores for the alignment, as well as individual 

scores for specific features such as GPA, certifications, 

attendance, and industry-relevant courses is presented in 

table 2. Additionally, the table features the Classification 

Result, indicating whether each student is classified as 

"Success" or "Needs Improvement." Upon analyzing the 

data in Table 2, it becomes evident that Min-Max_PC 

scores vary from student to student. For instance, students 

with scores close to or equal to 1.00 in their Min-Max_PC, 

such as Student 3, Student 5, and Student 10, are classified 

as "Success." These high scores suggest a strong 

alignment with industry standards and a high probability 

of success in the workforce. Conversely, students with 

lower Min-Max_PC scores, such as Student 4, Student 9, 

and Student 14, are categorized as "Needs Improvement." 

Their scores indicate that there is a misalignment between 

their educational achievements and industry expectations, 

emphasizing the need for further enhancement. The 

individual Min-Max_PC scores for GPA, certifications, 

attendance, and industry-relevant courses offer valuable 

insights into the specific areas where students may need 

improvement. For instance, a student with a low Min-

Max_PC for certifications might benefit from pursuing 

additional certifications to align better with industry 

needs. 
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Table 3: Classification with Min-Max_PC 

Metric Value 

Accuracy 0.950 

Precision 0.960 

Recall 0.952 

F1-Score 0.956 

AUC 0.978 

 

The classification performance metrics achieved through 

the Min-Max_PC approach in the context of industry-

education fusion. These metrics provide a comprehensive 

evaluation of the effectiveness of the model in assessing 

student readiness for the workforce and alignment with 

industry expectations given in table 3. The accuracy, 

precision, recall, F1-Score, and AUC (Area Under the 

Curve) are indicative of the model's ability to make 

accurate classifications. An accuracy score of 0.950 

suggests that the model correctly classified students 95% 

of the time, underlining its reliability. The precision score 

of 0.960 indicates the model's proficiency in identifying 

students who truly exhibit alignment with industry 

standards. This high precision implies that when the 

model predicts a student as a "Success," it is likely to be 

correct 96% of the time. The recall score, at 0.952, reflects 

the model's capability to capture a high proportion of 

students who genuinely align with industry expectations. 

In other words, it identifies 95.2% of students who truly 

deserve the "Success" classification. The F1-Score, at 

0.956, represents a balanced measure that combines 

precision and recall. This score suggests that the model 

provides a harmonious trade-off between identifying truly 

successful students and minimizing the misclassification 

of students who need improvement. Lastly, the AUC value 

of 0.978 is associated with the Receiver Operating 

Characteristic (ROC) curve, indicating the model's ability 

to distinguish between successful and students needing 

improvement. 

The study regarding the Min-Max Probability 

Classification (Min-Max_PC) in the context of industry-

education fusion are crucial in providing insights into the 

preparedness of students for the workforce and the 

alignment of their skills with industry expectations. The 

Min-Max_PC method has been instrumental in assessing 

the alignment of students' academic achievements and 

industry-relevant skills. The alignment index, a 

fundamental component of this approach, provides a 

quantitative measure of the extent to which students' 

capabilities match industry standards. The high success 

probabilities for several students (e.g., Student 5, Student 

10, and Student 15) indicate strong alignment, signifying 

that these students are well-prepared for success in their 

future careers. Conversely, students with lower Min-

Max_PC scores are categorized as needing improvement. 

These scores pinpoint specific areas where students may 

need to enhance their skills to better align with industry 

expectations. For example, students like Student 4, 

Student 9, and Student 14 have lower Min-Max_PC 

scores, suggesting that their academic achievements may 

require further development to match industry standards.  

 The classification metrics (accuracy, precision, 

recall, F1-Score, and AUC) demonstrate the robustness of 

the Min-Max_PC classification model. High accuracy, 

precision, and recall values highlight the model's capacity 

to accurately classify students into the "Success" or 

"Needs Improvement" categories. The high F1-Score 

reflects the balanced trade-off between correctly 

identifying successful students and minimizing 

misclassifications. The AUC value reinforces the model's 

ability to effectively distinguish between these categories. 

The Min-Max_PC approach has significant implications 

for industry-education fusion. It aids educational 

institutions and industries in identifying students who are 

well-prepared for the workforce, enabling targeted 

collaboration and internships for these students. 

Simultaneously, students identified as needing 

improvement can benefit from tailored educational 

interventions to bridge the gap between their skills and 

industry expectations. The findings underscore the 

importance of ongoing collaboration between educational 

institutions and industries to enhance the alignment of 

educational programs with real-world needs. By 

consistently applying the Min-Max_PC method, 

institutions can adapt and optimize their curricula, 

ensuring that students remain well-prepared for evolving 

industry demands. the Min-Max_PC approach in the 

context of industry-education fusion offers a systematic 

and data-driven means to evaluate student readiness for 

the workforce. The alignment index, success probabilities, 

and classification metrics provide actionable insights that 

can inform collaboration between educational institutions 
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and industries to optimize students' preparation for their 

future careers, ultimately contributing to economic growth 

and innovation. 

6. Conclusion 

This paper has explored the critical intersection of 

industry-education fusion, big data analytics, and the Min-

Max Probability Classification (Min-Max_PC) method to 

assess students' readiness for the workforce. The Min-

Max_PC method has proven effective in quantitatively 

evaluating the alignment of students' skills and academic 

achievements with industry expectations. The Alignment 

Index and Student Success Probabilities provide a 

nuanced understanding of individual students' 

preparedness for success in their careers. This approach 

not only identifies students who are well-prepared for the 

workforce but also pinpoints areas where others may need 

to improve their skills. The classification metrics, 

including accuracy, precision, recall, F1-Score, and AUC, 

demonstrate the model's strong performance in 

categorizing students as "Success" or "Needs 

Improvement." This model can help educators and 

industries make informed decisions about internships, 

tailored educational interventions, and collaboration 

opportunities. the Min-Max_PC approach offers a 

valuable tool for industry-education fusion, enhancing the 

collaboration between these two sectors and ultimately 

contributing to a workforce that is better prepared, more 

aligned with industry standards, and poised for success in 

the modern job market. This research highlights the 

importance of data-driven methods in shaping the future 

of education and industry collaboration. 
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