
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  650 

Malware Detection and Classification on Different Dataset by 

Hybridization of CNN and Machine Learning 

S. Arshad Hashmi  

 

Submitted: 25/09/2023         Revised: 15/11/2023           Accepted: 25/11/2023  

Abstract: Malware has long been employed in cyberattacks. Due to their widespread usage, malicious software developers target Android 

smartphones, which may store a lot of sensitive data. As the main mobile OS, Android has always attracted malware developers. Thus, 

several Android malware species target susceptible people everyday, making manual malware analysis unfeasible. ML and DL methods 

for malware identification and categorization might help cyber forensic investigators curb the spread of malicious software. Applying DL 

methods helps safeguard applications. Cybersecurity issues including intrusion detection, malware classification and identification, 

phishing and spam detection, and spam recognition have been addressed using DL approaches. ECNN uses the BP (Back Propagation) 

model for every layer between several intermediate layers, making it faster and more accurate than other methods. SVM Learning with 

Weighted Features and CNN with SGD optimization for static analysis of mobile apps are presented in this research. The ECNN model 

has the highest accuracy of 96.92, 96.14, and 95.8 for Android Malware Dataset-1, 2, and 3. On the three datasets, the ECNN model has 

96%, 94%, and 94% precision. Smartphone malware analysis is faster and more accurate using this method. 

Keywords: Android, Cybersecurity, Deep learning, Malware, Machine learnings Optimization, Weighted Features. 

1. Introduction 

Apache For the next innovative generation, Android OS has 

become the principal operating system to be used in mobile 

devices. Subsequently, the activities of Android malware 

also shot up [1]. The rapid growth of smart mobile devices 

and applications implied with Android OS has gained 

importance due to its feasibility. On the other side, it also 

faces more security risks. Hostile applications stealing 

customers' private information, exploiting the prerogative 

increase to control the device, forwarding text messages to 

initiate deductions, etc., significantly harm the end user's 

property. In order to identify Android malware, software 

developers and researchers propose various approaches 

based on ML techniques implied with static attributes of the 

apps, which are considered input vectors that consist of 

apparent benefits in operational efficiency, code coverage, 

and massive sample detection [2]. Malware is software 

cybercriminals create to gain unauthorized access to a 

computer or network or harm the target without their 

knowledge [3]. Multiple types of malware have witnessed a 

metamorphosis, resulting in the emergence of hybrid forms 

with similar attack capabilities. Logic explosives, for 

instance, are pre-programmed assaults that the victims 

themselves frequently trigger. In addition, deception and 

social engineering are employed to deliver malware directly 

to unsuspecting users. In addition, there is an emphasis on 

mobile malware, which targets mobile devices in particular 

[4-7].  

DL dominates the world of the internet in various computer-

related tasks. DL techniques not only allow rapid progress 

in the rivalry, but it also surpasses human performance. One 

such task is Image Classification. Disparate in conventional 

methods of ML approaches, DL classifiers are trained using 

feature learning alternatives to task-specific strategies. 

Shortly, it is stated that automatic extraction of attributes 

and classification of data into different classes [8,9]. 

1.1. Motivation And Challenges 

I. • The Android security system does not restrict the 

application’s usage of the device’s resources, including 

the RAM and the Central Processing Unit (CPU). This 

is a critical weakness that malicious programs might 

exploit. 

II. • Android’s underlying framework for security is very 

dependent on permission-based processes. When users 

begin installing an application on an Android device, 

they are informed of the permissions that the program 

needs. 

III. • Traditional anti-virus solutions cannot protect users 

against ever-increasing malware dangers since they 

depend on signature-based detection methods. Static 

analysis is a method for identifying Android malware 

that is low-cost and high-performance. Despite these 

benefits, static analysis has hurdles and limitations, such 

as dynamic code loading and obfuscation methods. 

IV. • The methodologies that were focused on static analysis 

did not conduct a comprehensive review of the native 

code. Dynamic analysis techniques have a more 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Department of Information Systems, Faculty of Computing, and 

Information Technology in Rabigh (FCITR), King Abdulaziz University, 

Jeddah, 21911, Saudi Arabia 

Email : ahsyed@kau.edu.sa 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  651 

significant processing cost and are more sensitive to risk 

variables than traditional methods. 

V. • To comprehensively investigate the application’s 

behaviors, these methodologies need to cover all 

possible execution pathways. It is possible to disregard 

some execution routes because most User Interface (UI) 

triggering mechanisms, such as Monkey Runner, 

produce random events while dealing with apps. In 

addition, there is no way to ensure this problem will 

ultimately be fixed. 

• To avoid discovery, attackers often used anti-emulation or 

analysis-aware tactics. Suppose the malicious software 

detects that it is being executed in an environment designed 

for analysis. In that case, it will disguise its malicious 

behavior and carry out harmless tasks to avoid being 

discovered. 

• Some malicious software programs attempt to conceal 

their harmful actions for a while. Most methods for 

detecting malware on Android disregard analytical evasion 

tactics such as code encryption, repackaging, native code, 

and dynamic code loading. The accuracy of detection 

algorithms based on machine learning decreases with time, 

and feature selection procedures are not robust to changes in 

the source code. 

• The currently available detection methods based on 

machine learning did not study which characteristics 

are most valuable for efficiently differentiating 

Android malware. Despite the development of a wide 

variety of ways for detecting and analyzing malware, 

the detection performance of new malware continues 

to be a significant problem. 

• The organization of this research article is as follows: 

The second section provides related work on malware 

detection and current research gaps. The methodology 

and its details are described in the section third. It 

discusses the proposed MDS methodology in detail, 

which briefly discusses the data loading process, pre-

processing details, feature selection, and CNN 

implementation details. This section also contains the 

dataset description. Section four details performance 

metrics and the results, analysis, and discussions of the 

experimental observations. Finally, the present study 

is concluded in the last section 5. 

2. Literature Review 

Recent Android malware detection attempts use innovative 

machine learning (ML) and deep learning (DL) methods. A 

few recent ML/DL studies are listed below. Finally, Table 1 

summarizes open-access research on classifying Android 

malware detection paradigms using several machine-

learning methods. 

Their research [10] explored an autonomous Android 

malware detection and attribution system. This system 

classifies patterns using deep learning methods. Deep 

learning has successfully identified and classified malware 

by family. From benign and malicious datasets, Suleiman et 

al. [11] collected static features including permissions, 

intents, API calls, and appearance date. To evaluate Naive 

Bayes (NB), J48, Support Vector Machine (SVM), Random 

Forest (RF), and Simple Logical classifiers. Garcia et al. 

[12] presented machine learning-based Android malware 

family detection. Classified Android API use, reflection, 

and native application binaries are used to choose system 

attributes. A hybrid analysis technique with 77 optimum 

characteristics was reported by Dhanya and Kumar [13]. 

Teubert et al. [14] suggested a machine learning-based 

application screening method including dynamic and static 

analysis. 

 

Table 1. Related Studies on Malware detection 

Tool/ Objective Methodology 

Technique Detection       

  Anal- Esti- Static Dy- Signature System 

Calls / 

Virtual Machine Deep 

  ysis mation  namic Based API Based Machine 

Emulation 

Learning 

Based 

Learning 

Based 

DexRay [15] ✓ ✓ ✓  ✓ ✓   ✓ 

Famd[16]  ✓ ✓  ✓ ✓ ✓   

Ad- Droid [17] ✓ ✓ ✓ ✓    

JOWM- Droid 

[18] 

✓ ✓  ✓ ✓ ✓ ✓ 

  

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  652 

Deep- AMD 

[19] 

✓ ✓ ✓ ✓  ✓ ✓ 

DAMBA [20] ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓  

AdMAt [2] ✓ ✓ ✓ ✓ ✓ ✓  

GDroid [21] ✓ ✓ ✓ ✓  ✓ ✓  

Kron- oDroid 

[22]  

✓ ✓ ✓  ✓ ✓ ✓   

Pro- Droid [1] ✓ ✓ ✓  ✓ ✓  

Hawk [8] ✓ ✓ ✓ ✓ ✓ ✓ ✓  

LinReg- Droid 

[7] 

 

✓ ✓ ✓ ✓ ✓ ✓ ✓ 

FAM [23] ✓ ✓ ✓ ✓  ✓ ✓ ✓ 

MDTA [9] ✓ ✓ ✓   ✓ ✓  

Droid- Fax [24] ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓  

maDroid [25] ✓ ✓ ✓  ✓ ✓ ✓    

DroidE- volver 

[26] 

✓ ✓ ✓ ✓ ✓ ✓ ✓    

Androct[27] ✓ ✓ ✓ ✓ ✓ ✓ ✓    

2.1. GAP ANALYSIS 

• Restricted complexity in terms of the design of the 

features, the classification algorithm, and the cost of training 

the extraction of one-of-a-kind structural features, which are 

more computationally efficient than content-based features, 

and the extraction of behavioral dynamic characteristics 

permits the classification of obfuscated, metamorphic, and 

packed malware without the need for any deobfuscation or 

unpacking of the malware [16]. 

• Static and dynamic code analysis, in which several 

different machine learning methods or PHMM are utilized 

to investigate the combined static and dynamic aspects of an 

application in real-time [17,23] 

• Its adaptability for industrial applications, which is 

particularly important given the need to strike a balance 

between complexity and performance [24,25]  

• Determining important common traits shared by malware 

samples belonging to a certain class to categorize different 

kinds of malware [28].  

• The implementation of more localized feature extraction 

methods that consider the fundamental segments, in 

addition to one-of-a-kind image-based characteristics, such 

as the regional and geographical distribution of texture 

patterns of malware binaries, resolving data inconsistencies 

using strategies that are sensitive to costs [29]. 

3. Methodology  

Using an Enhanced Convolutional Neural Network (CNN) 

and Support Vector Machine (SVM) approach to train our 

model, this paper describes an improved and effective 

method for malware detection. Figure 1 depicts the 

framework for the proposed model, while Figure 2 depicts 

the proposed Convolutional Neural Network (CNN) 

architecture. A systematic approach is required to 

effectively train the malware dataset and then apply it to our 

classification problem. Figure 3 depicts the comprehensive 

workflow in its entirety. This study classifies an Android 

malware dataset utilizing an improved convolutional neural 

network with SGP optimization techniques in the pooling 

layer and hyperparameter tuning. Moreover, we have 

incorporated Weighted Features to improve Support Vector 

Machine Learning (ESVM). Further, elucidation on the 

topic as mentioned earlier will be provided in the subsequent 

section. 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  653 

 

Fig 1. Proposed framework for Android Malware Detection 

 

Fig 2. Proposed CNN Architecture 

 

 

Fig 3. Work Flow for Android Malware Detection 

Android-powered smartphones are very popular because of 

their excellent performance and open-source nature. Despite 

this, malware is more likely to be created on the Android 

platform because of how familiar it is. Traditional signature-

based methods for detecting malicious software cannot 

recognize unfamiliar apps. Many security-focused settings 

have found DL techniques to be useful for securing apps. In 

the realm of cybersecurity, DL techniques have been used 

to pressing problems including intrusion detection, malware 

categorization, spam detection, and phishing identification. 

The suggested framework is briefly outlined in the next 

section. 

A. Data Loading 

When we talk about "loading data," we're referring to the 

process of sifting through a database and applying a 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  654 

loading strategy. Data is often sent to the target 

application in a format that differs from the original 

source. The ETL process consists of three distinct 

phases: data retrieval, transformation, and loading into 

an output container. One or more inputs may be used to 

generate results at several destinations. In all, three 

datasets from the public domain were utilized to conduct 

this research. Information on the dataset itself may be 

found in subsections 3.3, 4.3, and 4.4. 

B. Pre-processing 

Raw data is transformed into a form that can be read and 

analyzed by computers and ML in the data pre-processing 

stage, which also includes data mining and analysis 

operations. Before being fed to the model for training, the 

datasets utilized in this work underwent a number of pre-

processing steps, including imputing missing values, outlier 

treatment, feature scaling, and feature modification. 

C. Feature selection method  

Android malware detection analysis can be divided into two 

primary categories: static and dynamic analysis [30]. The 

static analysis process involves analyzing the source code 

and associated program resources without executing the 

program [31]. The dynamic analysis method is utilized to 

observe and analyze the functioning characteristics of an 

Android application. Dynamic analysis provides several 

advantages that cannot be attained through static analysis. 

First, dynamic analysis can detect malicious activity that 

static analysis methods cannot. In addition, it is equipped to 

manage malicious code that employs obfuscation 

technology effectively. Moreover, dynamic analysis can 

evaluate an application's efficacy even when critical 

components, such as a signature, are absent. However, the 

process of analysis and detection in this context requires a 

significant allocation of resources because it is more time-

consuming than static processes. Utilizing dynamic analysis 

offers the advantage of an extensive feature selection space 

and various input classifiers. The third category of Android 

malware detection is hybrid analysis. Hybrid analysis 

combines static and dynamic data to distinguish between 

benign and malevolent programs [32] 

D. Construction of Feature Sets and method selection.  

 Feature selection aims to reduce the number of 

classification characteristics while maintaining 

classification accuracy [33]. After contemplating those as 

mentioned above dynamic and static analyses, I have 

decided to classify software using static analysis. In addition 

to its simplicity, the static analysis method has a low risk of 

harming mobile devices, which is one of its advantages [34]. 

The filter method of feature selection is a straightforward 

and computationally efficient technique, so it was chosen as 

the algorithm for feature selection in this study. The filter 

approach employed the Information Gain metric for 

attribute evaluation. This process evaluates the worth of a 

characteristic by assessing the amount of information gained 

concerning the class.  This is given in the equation below;  

VI.  

          Info Gain (Class, Attribute) = K(Class) − K (Class | 

Attribute) -------------------------(1) 

           where K is the information entropy. 

E. Convolutional Neural Networks: The foundation of 

a convolutional neural network, also known as a 

CNN, is comprised of two layers: the feature 

mapping layer and the feature extraction layer. The 

task of the feature extraction layer is to establish 

connections between the input of each neuron and the 

limited receptive field that it has. Each network layer 

that is used for computation in the feature mapping 

layer is composed of a plane that contains a variety 

of attribute graphs. In the model that has been 

suggested, the nonlinear activation function known 

as Relu has been included into the feature mapping 

framework. After the images have been downsized, 

they are each entered into the lightweight CNN 

model that was advised based on the data.This simple 

model consists of just six layers in total: three 

convolutional layers, followed by three max-pooling 

layers, then two fully-connected layers, and finally a 

SoftMax output layer that is made up of C classes in 

their entirety. Convolutional layers increase in depth 

from 16 to 32 to 64 filters, with the filters of each 

layer measuring three by three and having a stride of 

one. Following each layer of convolution comes a 

max-pooling layer, which has a filter size of 22 

dimensions and a stride value of 2. After the 

convolutional layers come the three Fully Connected 

(FC) layers, and each FC layer has 512 neural 

connections to the layers below it. In the final FC 

layer, which utilizes SoftMax activation, the C 

neurons represent the complete number of malware 

classes that are included in the training datasets. 

Figure 1 depicts the overall architecture of the 

lightweight CNN-based MDS system that is being 

proposed. Convolutional neural networks, often 

known as CNNs, typically include a pooling layer in 

addition to their multiple convolution layers. In order 

to make advantage of the qualities included in the 

input datasets, the convolution layer implements a 

nonlinear operation by dynamically adjusting the 

size of the window used by the convolution filtering 

system. The following transformation of the input I 

is accomplished by performing a discrete 

convolution with the K filter, as shown in the 

following formula (2) 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  655 

 

F.  

(𝐼𝑋𝑋)𝑟,𝑠 = ∑ ∑ 𝐾𝑢,𝑣𝐼𝑟+𝑢,𝑠+𝑣………………………………(2)

ℎ1

𝑢=−ℎ2

ℎ1

𝑢=−ℎ1

 

VII. Here the K filter is 

written as 

VIII.  

𝐾 = (

𝐾−ℎ1,ℎ2 ⋯ 𝐾−ℎ1,ℎ2

⋮ 𝐾0.0 ⋮
𝐾ℎ1,−ℎ2 ⋯ 𝐾ℎ1,−ℎ2

) 

    𝑌𝑖  is calculated as follows. 

    𝑌𝑖 =     𝐵𝑖 ∑ 𝑘𝑖,𝑗 × 𝑋𝑗 

IX.  

G. Enhanced CNN Pseudo Code 

Step 1: Start 

Step 2: Introduce an initial n-dimensional dataset 

Step 3: Establish Pre-processing that pulls out the null and   

duplicate values 

Step 4: Determine Feature Selection 

Step 5: Initialize CNN 

Step 6: Now introduce training data into the input layer 

Step 7: Initialize the SGD generalization process in the 

pooling layer   

Step 8: Configure the Learning Rate at 0.01 

Step 9: Now verify the overfitting data and perform Error 

loss 

Step 10: When the Error loss is maximum, adjust the 

Learning  Rate and Redo Step 7 

Step 11: If Error loss is minimum, continue with the 

classification 

Step 12: Now categorize the n dataset using RF, XGB, 

CNN, and ECNN 

Step 13: Now forecast Precision, Accuracy and Recall 

Step 14: Stop 

3.1. Enhancing SVM Learning with Weighted Features 

In Android Malware-related datasets, several features have 

been observed to be redundant or of diminished significance 

[35]. It is recommended to incorporate feature weights into 

the SVM training procedure. The benefits of rough set 

theory have been demonstrated in feature analysis and 

feature selection [36,37]. This study presents a novel 

method for enhancing the Support Vector Machine (SVM) 

algorithm. Our proposed method incorporates 

dimensionality reduction techniques based on Rough set 

theory and considers the varying levels of importance of 

different variables. Algorithm 1 uses rough set theory to 

rank features and determine their weights. Following the 

procedure for ranking features with a weight of 0 are 

deemed insignificant and are therefore eliminated. 

Experiments are conducted using three Android Malware 

datasets as part of the investigation. 

 

Algorithm 1: Feature Weights Calculation 

Input: Android Malware Dataset (D) with features (F)  

Output: Efficient Weight Vector (WV) 

Determine all of the D’s reducts through the use of rough sets;  

NF ← The quantity of features in dataset D;  

ND ← Represents number of reducts available in dataset D; 

Step 1. Initialize the weights of each feature    

for (i ← 0 to ND) do  

        (WV)i ← 0;  

end 

Step 2. Initialize the weight of each feature    

        for (i ← 0 to ND) do  

              for (k ← 0 to NF) do 

                  if (feature i in the kth reduct Rk ) then 

                        n ← number of features in Rk ; 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  656 

                        (WV)i     ← (WV)i    +     1/n; 

                     end 

               end 

       end  

Scale the values of feature weights into the interval [0, 100] 

3.2. Experimental Setup 

Experiments were conducted in a Jupiter notebook using the 

programming language Python to train the Android 

Malware dataset. In addition, WEKA Software is utilized 

for data preprocessing and implementing ML components. 

The system is a Lenovo Core i7 CPU running Windows 10 

with 32 GB RAM and 1 TB of storage space. 

3.3. Dataset   Details  

Android Malware Data set-1: This dataset was generated 

with users’ behaviors during malware threats. It 

comprehends all parameters that a user will hold in his 

device. The feature information and the dataset description 

are illustrated in the following Table 2 and Table 3. 

 

Table -2: ANDROID MALWARE DATASET ATTRIBUTES INFORMATION 

TCP_Packets Ist_Port_TCP External_IPS 

Volume_Bytes Udp_Packets Tcp_urg_packet 

Source_App_Packets Remote_App_Packets Remote_App_Bytes 

Duration_Dns_Query_Times Avg_Local_Pkt_Rate Source_App_Packets 

Table-3: ANDROID MALWARE DATASET DESCRIPTION 

Dataset 

Characteristics: 

Multivariate Number of Rows: 7846 Area: Security 

Attribute 

Characteristics: 

Categorical, Integer, Real Number of 

Columns: 

30 Date Donated 2019- 01-01 

Associated Tasks: Classification Missing Values? Yes Number of 

Attributes: 

30 

4. Results and Discussion  

4.1. Performance Metrics  

The efficacy of our approaches was tested using 10-fold 

cross-validation. We evaluated algorithms using accuracy, 

precision, recall, and F-measure. These measures are widely 

used in machine-learning classification [38]. Items might be 

true positive, false positive, false negative, or true negative. 

Recall is determined from true positives and false negatives. 

Recall(Rec) = T P/ (T P + F N) 

Recall characterizes the proportion of predicted true 

outcomes among actual true outcomes. 

Given the number of items classified as true positives and 

false positives, precision is calculated as: 

Precision(Prc) = (T P + F P)/(T P). 

Precision defines how much of the predicted true is actually 

true.  

F-measure is the measurement that integrates precision and 

recall. F = 2 (Recall Precision) / (Precision + Recall). 

Accuracy defines the overall precision of a prediction. 

Accuracy(Acc)= (T P + T N) / Total Samples. 

4.2. Enhanced SVM Results 

The following Table 4 represents the Accuracy value of 

XGBoost, RF, SVM and ESVM on Android Malware 

Dataset -1. 

Table-4 Accuracy comparison on  ANDROID 

MALWARE DATASET -1 

Algorithms Accuracy % 

XG-Boost 84.8 

RF 91 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  657 

SVM 92.1 

ESVM 94 

 

Table 4 presents the accuracy results of XG-Boost, RF, 

SVM, and ESVM algorithms on the Android Malware 

Dataset-1. Notably, the enhanced version of SVM exhibits 

the highest accuracy among all the other methods. 

The following Fig. 4 shows the graphical format of the 

accuracy value comparison of XGBoost, RF, SVM, and 

ESVM on the Android Malware Dataset-1.  

 

 

Fig. 4. Accuracy value of XGBoost, RF, SVM and ESVM on Android Malware Dataset-1 

The Enhanced SVM (94%) has the highest level of 

accuracy, followed by the SVM (92.2%), the RF (91%), and 

the XGB (84.8%). Table 4 presents the accuracy results of 

XGBoost, RF, SVM, and ESVM algorithms on the Android 

Malware Dataset-1. Notably, the enhanced version of SVM 

exhibits the highest accuracy among all the other methods. 

The following Fig.5 shows the graphical format of the 

precision and recall value comparison of XGBoost, RF, 

SVM, and ESVM on Android Malware Dataset-1. The 

graph clearly shows that ESVM has the best precision and 

recall, followed by SVM, RF, and XGB. Both the SVM and 

the ESVM have high precision values relative to their recall. 

However, the precision values perform better than the recall 

values in RF and XGB.  

 

Fig. 5. Precision and Recall value Comparisons of XGBoost, RF, SVM and ESVM on Android Malware Dataset -1 

 

Table 5 displays the precision and recall values of XGBoost, 

RF, SVM, and ESVM on the first Android Malware Dataset. 

SVM (92%, 91%) and ESVM (93%, 92%) demonstrate high 

precision and recall. 

 

 

Table 5: Comparison of performance metrics Prec. and 

Rec. on  ANDROID MALWARE DATASET-1 

Algorithms Precision % Recall% 

XG-Boost 84 82 

RF 90 90 

SVM 92 91 

ESVM 93 92 

Fig.5 displays the precision and recall values of XGBoost, 

RF, SVM, and ESVM on the first Android Malware 

Dataset-1. Both the SVM and the ESVM have high 

precision values relative to their recall. However, the 

84.8

91
92.1

94

80

82

84

86

88

90

92

94

96

98

XG-BOOST RF SVM ESVM

Accuracy %

84

90
92 93

82

90 91 92

80
82
84
86
88
90
92
94
96
98

XG-BOOST RF SVM ESVM

Comparison of Prec and Recall on Dataset-1

Precision % Recall %



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  658 

precision values perform better than the recall values in RF 

and XGB. 

Table 6: Accuracy comparison on ANDROID 

MALWARE DATASET-1 

Algorithms Accuracy % 

XG-Boost 84.8 

RF 91 

CNN 92.6 

ECNN 95.8 

 

Table 6 presents the accuracy results of XGBoost, RF, 

CNN, and ECNN algorithms on the Android Malware 

Dataset-1. Notably, the enhanced version of ECNN exhibits 

the highest accuracy among all the other methods.  

The following Fig. 6 shows the graphical format of the 

accuracy value comparison of XGBoost, RF, CNN, and 

ECNN on Android Malware Dataset-1. 

 

Fig. 6. Accuracy value Comparisons of XGBoost, RF, CNN and ECNN on Android Malware Dataset -1 

The Following Table 7 shows the Precision(Prc.) and 

Recall(Rec.) value of XGBoost, RF, CNN, and ECNN on 

Android Malware Dataset-1 and its graphical presentation is 

depicted in Fig-7. Both the ECNN and the CNN have high 

precision values relative to their recall. However, the 

precision values perform better than the recall values in 

CNN and ECNN. 

Table 7: Performance metrics comparison  on  ANDROID 

MALWARE  DATASET -1 

Algorithms Precision% Recall% 

XG-Boost 84 82 

RF 90 90 

CNN 94 91 

ECNN 96 92 

 

 

Fig. 7. Prec. and Rec. comparison of XGB, RF, CNN and ECNN on Android Malware Dataset -1 

4.3. Dataset:  Android Malware Dataset -2 

Data Set Information: This dataset has been taken from a 

private bank. The Android Malware Dataset -2 is a cyber 

hacking dataset. This database contains 23 attributes with 

4425 rows and 23 columns.. It consists of all details of 

customers who have been affected by cyber hacking 

84.8

91
92.6

95.8

80
82
84
86
88
90
92
94
96
98

XG-BOOST RF CNN ECNN

Accuracy %

84

90

94
96

82

90
91

92

80
82
84
86
88
90
92
94
96
98

XG-BOOST RF CNN ECNN

Comparison of Prec and Rec on Dataset-1

Precision % Recall %



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  659 

breaches in a particular year. The following Tables 8 and 9 describe the attributes information and dataset information. 

 

Table 8: ATTRIBUTES INFORMATION OF KAGGLE ANDROID MALWARE DATASET -2 

Serial Number 1 to 4425 Customer ID 1 to  5425 

Business 

Associate 

Type of  Business Individuals Affected No of  Individuals 

Type of Breach Hacking/ Theft Breach Location Location 

Summary Year Affected/ Others Year of breach Breach Start Starting Time 

Table 9: DATASET INFORMATION OF ANDROID MALWARE DATASET-2 

Data Set 

Characteristics 

Multivariate Number 

of Rows: 

4425 Area: Finance 

Attribute 

Characteristics: 

Categorical, 

Integer, 

Real 

Number  of 

Columns: 

23 Date 

Donated 

2019-01-01 

Associated 

Tasks: 

Classification Missing 

Values? 

Yes Number 

of Attributes: 

23 

4.3.1. Result Analysis on Android Malware Dataset-2 

The following section has the analysis of the obtained 

results on Android Malware Dataset-2. 

 Table 10 shows the accuracy comparison of XGB, RF, 

SVM, and ESVM, while Table 11 presents the comparison 

of precision and recall value of XGB, RF, SVM, and ESVM 

on Android Malware Dataset-2. Fig. 8 is used to represent 

the graphical format of accuracy comparison of XGB, RF, 

SVM, and ESVM on Android Malware Kaggle Dataset-2. 

The following Fig. 9 shows the graphical format of the 

precision and recall value comparison of XG Boost, RF, 

SVM, and ESVM on Android Malware Dataset-2. The 

precision values in each algorithm perform better than the 

recall values. ESVM provides the best result, followed by 

SVM, RF, and XGB. Each method performs better when 

precision settings are used than recall values. The best 

approach is offered by ESVM, followed by SVM, RF, and 

XGB. 

 

Table 10:Accuracy on ANDROID MALWARE DATASET-2 

Algorithms Accuracy% 

XG- Boost 87.41 

RFt 91.75 

SVM 92.91 

ESVM 93.97 

Table 11:Performance metrics on ANDROID MALWARE  DATASET-2 

Algorithms Precision % Recall % 

XG-Boost 87 82 

RF 90 87 

SVM 91 88 

ESVM 93 91 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  660 

 

 

Fig. 8. Accuracy value Comparisons of XGBoost, RF, SVM and ESVM on Android Malware Dataset-2 

 

Fig.9. Prec. and Rec. value comparisons of XG-Boost, RF, SVM and ESVM on Android Malware Dataset -2

Table 12 compares the experimentally determined accuracy 

of XGB, RF, CNN, and ECNN. Table 13 contrasts this by 

showing how XGB, RF, CNN, and ECNN do on Android 

Malware Dataset-2 in terms of accuracy and recall. The 

accuracy comparison of XGB, RF, CNN, and ECNN is 

shown graphically in Fig. 10. The comparison of XG Boost, 

RF, CNN, and ECNN on Android Malware Dataset-2 in 

terms of accuracy and recall values is shown graphically in 

Fig. 11. When compared to other CNNs, the ECNN 

performed the best. In all algorithms, the recall values are 

lower than the precision values. When comparing accuracy, 

ECNN comes out on top, followed by CNN, RF, and XGB. 

Table 12:ACCURACY VALUE on  ANDROID MALWARE  DATASET -2 

Algorithms Accuracy % 

XG-Boost 87.41 

RF 91.75 

CNN 95.5 

ECNN 96.14 

Table 13: Performance metrics on ANDROID MALWARE  DATASET-2 

Algorithms Precision % Recall % 

XG-Boost 87 82 

RF 90 87 

CNN 94 92 

ECNN 94 92 

87.41

91.75
92.91

93.97

80

85

90

95

XG- Boost RF SVM ESVM

Accuracy  %

87
90 91

93

82

87 88
91

80
82
84
86
88
90
92
94
96
98

XG-Boost RF SVM ESVM

Comparison of Prec and Rec on  Dataset-2

Precision % Recall %.



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  661 

 

Fig. 10. Accuracy on Android Malware Dataset-2 

 

Fig. 11. Performance on Android Malware Dataset -2 

4.4. Dataset:  Android Malware Dataset -3 

Data Set Information:  The dataset contains the details of 

Android malware attack which is been happened over an 

android network. This database contains 20 features with 

5850 instances. Following Table 14 and 15 describes the 

attributes information and dataset information. 

Table 14:  ATTRIBUTES INFORMATION OF  ANDROID MALWARE DATASET-3 

Source Port  Source IP Destination Port  Destination IP NAT Source 

Port 

Source IP 

NAT Destination 

Port  

Destination IP Action  Allow / 

Don’t Allow 

Bytes 50 to 50000 

Byte Sent  50 to 50000 Bytes Received  50 to 50000 Packets  50 to 500 

Elapsed Time  2 to 1500 Packet Sent  50 to 5000 Packet 

Received  

50 to 5000 

Table 15:   DATASET INFORMATION OF  ANDROID MALWARE DATASET-3 

Data Set 

Characteristics 

Multivariate Number 

of Rows: 

5850 Area: Computer  

Attribute 

Characteristics: 

Categorical, 

Integer, 

Real 

Number 

of 

Columns: 

20 Date 

Donated 

2020-05-07 

Associated 

Tasks: 

Classification Missing 

Values? 

Yes Number 

of Attributes: 

20 

87.41

91.75

95.5 96.14

80

82

84

86

88

90

92

94

96

98

XG-Boost RF CNN ECNN

Accuracy %

87

90

94 94

82

87

92 92

80
82
84
86
88
90
92
94
96
98

XG-Boost RF CNN ECNN

Comparison of Prec and Rec on  Dataset-2

Precision % Recall %



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  662 

Table 16: Accuracy on   ANDROID MALWARE 

DATASET -3 

Algorithms Accuracy % 

XG-Boost 89.19 

RF 92.68 

SVM 93.11 

ESVM 95.46 

 

The Table 16 represents Accuracy value of XGBoost, RF, 

SVM and ESVM on Android Malware Dataset-3. It is 

evident from the table ESVM obtained comparatively better 

result among others. 

 

Table 17: Performance metrics on  ANDROID 

MALWARE DATASET -3 

Algorithms Precision % Recall % 

XG-Boost 89 83 

RF 90 89 

SVM 93 92 

ESVM 95 93 

 

Table 17 represents the Precision and Recall comparison 

obtained in the experiment by XG-Boost, RF, SVM, and 

ESVM on  Android Malware Dataset-3. It is evident from 

the table that ESVM received the best result among others 

in terms of Precision and Recall. 

 

Fig. 12. Accuracy on Android Malware Dataset-3 

Fig. 12 shows the graphical format of accuracy comparison 

of XGBoost, RF, SVM, and ESVM on Android Malware 

Dataset-3. Fig. 13 represents the Precision and Recall value 

comparisons of XG-Boost, RF, SVM and ESVM on 

Android Malware Dataset-3. 

 

Fig. 13. Performance metrics on Android Malware Dataset-3 

 

 

 

 

 

 

 

 

89.19

92.68 93.11

95.46

80

82

84

86

88

90

92

94

96

98

XG-Boost RF SVM ESVM

Accuracy %

89
90

93
95

83

89

92
93

80
82
84
86
88
90
92
94
96
98

XG-Boost RF SVM ESVM

Comparison of Prec and Rec on  Dataset-3

Precision % Recall %



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  663 

4.4.1. Enhanced CNN Results: 

Table 18: ACCURACY on  ANDROID MALWARE 

DATASET -3 

Algorithms Accuracy  % 

XG-Boost 89.19 

RF 92.68 

CNN 96.88 

ECNN 96.92 

  

Table 19: Performance metrics on  ANDROID 

MALWARE DATASET -3 

Algorithms Precision % Recall % 

XG-Boost 89 83 

RF 90 89 

CNN 96 94 

ECNN 96 94 

 

Table 18 represents the Accuracy value of XGBoost, RF, 

CNN, and ECNN on Android Malware Dataset-3. ECNN 

achieved the best result, 92.3%, in comparison to others, 

while XGB showed the lowest accuracy value at 82%. Table 

19 shows the precision and recall value of XGBoost, RF, 

CNN, and ECNN on Android Malware Dataset-3. In terms 

of both the precision and recall value, ECNN showed the 

best performance among others. 

 

 

Fig. 14. Accuracy on Android Malware Dataset-3 

Fig. 14 shows the graphical format of accuracy comparison 

of XGBoost, RF, CNN and ECNN on Android Malware 

Dataset-3. Fig. 15 represents the Precision and Recall value 

comparisons of XG-Boost, RF, CNN and ECNN on 

Android Malware Dataset-3. 

 

 

Fig. 15. Performance metrics on Android Malware Dataset-3 

 

89.19

92.68

96.88 96.92

80

82

84

86

88

90

92

94

96

98

XG-Boost RF CNN ECNN

Accuracy %

89
90

96 96

83

89

94 94

80
82
84
86
88
90
92
94
96
98

XG-Boost RF CNN ECNN

Comparison of Prec and Rec on  Dataset-3

Precision % Recall  %



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  664 

Table 20  Performance Metrics on  ANDROID MALWARE  DATASET -1, ANDROID MALWARE  DATASET -2 AND  

ANDROID MALWARE DATASET -3 

Dataset 

Name 

Parameters X Gradient 

Boost 

Random 

Forest 

Support 

Vector 

Machine 

Enhanced 

SVM 

Convolution 

Neural Network 

Enhanced 

Convolution 

Neural 

Network 

  (XG-Boost) (RF) (SVM) (ESVM) (CNN) (ECNN) 

Android Malware  

Dataset-1 

Accuracy % 84.8 91 92.1 94 92.6 95.8    

Precision % 0.84 90      92 93 94 96     

Recall% 0.82 90 91 92 91 92 

        

Android Malware  

Dataset-2 

Accuracy % 87.41 91.75 92.91 93.97 95.05 96.14 

Precision % 87 90 91 93 94 94 

Recall % 82 87 88 91 82 92 

        

Android Malware 

Dataset-3 

 

Accuracy % 89.19 92.68 93.11 95.46 96.88 96.92 

Precision % 89 90 93 95 96 96 

Recall % 83 89 92 93 94 94 

Table 20 displays the accuracy, precision, and recall value 

of various machine learning models, namely XGBoost, RF, 

CNN, ECNN, SVM, and ESVM, on three distinct datasets, 

namely Android Malware  Dataset-1, Android Malware  

Dataset-2, and  Android Malware Dataset-3.  

This table shows the summarized results of the proposed 

CNN-based Ensemble approach with the different datasets. 

In an Android Malware Dataset-1, the ECNN (95.8%) 

accuracy outperforms all the other methods. Whereas 

ESVM (94 %) performs the second best, followed by 

CNN(92.6%), SVM (92.1%), RF (91%), and XGB (84.8%).  

ECNN and CNN (96%, 94%) performed fine in precision-

based values among all other methods. However, the EVSM 

(93%) achievement approaches the ECNN and CNN. The 

least precision value is for XGB (84%). The highest recall 

values are for ECNN and ESVM (92%), and the lowest is 

for XGB (82%). 

The ECNN (96.14%) accuracy beats all other approaches in 

an Android Malware Dataset-2. The CNN (95.05%) comes 

in second, followed by the ESVM (93.97%), SVM 

(92.91%), RF (91.75%), and XGB (87.41%). Regarding 

precision, both ECNN and CNN (94%) performed well 

compared to all other values. However, the EVSM (93%) 

approaches the ECNN and CNN and is followed by the 

SVM (91%), RF (90%), and XBG (87%).   The recall values 

for ECNN and CNN were the same, 92%, followed by 

ESVM (91%), SVM (88%), RF (87%), and XGB (82%). 

The ECNN (96.92%) accuracy exceeds all other approaches 

in an Android Malware Dataset-3. CNN (96.88%) comes in 

second, followed by ESVM (95.46%), SVM (93.11%), RF 

(92.68%), and XGB (89.19%). ECNN and CNN (96%) 

performed well in precision-based values compared to all 

other values. The EVSM (95%), on the other hand, performs 

very close to the ECNN and CNN, followed by the SVM 

(93%), RF (90%), and XBG (89%).   The recall values for 

ECNN and CNN were the same, 94%, followed by ESVM 

(93%), SVM (92%), RF (89%), and XGB (83%). 

5. Conclusion 

According to Omar[39], traditional AI approaches, 

specifically ML algorithms, are no longer effective in 

identifying all complex variant-type malware. DL approach, 

which is fairly different from ML concepts, can be a 

promising explanation for the difficulty of identifying all 

malware variants. The experimental results obtained during 

the implementation of Android malware analysis with static 

analysis technique prove that the permission-related 

algorithm works effectively in DL and ML methods. 

Though the accuracy of the above-discussed techniques is 

very close to each other, few differences exist in the running 

time required by the algorithms. The observed result 

demonstrates that the ECNN method works with the BP 

(Back Propagation) model for every layer between multiple 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  665 

intermediate layers, rendering a much faster and higher rate 

of accuracy when compared to other algorithms. 

Additionally, ML algorithms were classified by employing 

80% training and 20% test data, as shown in Fig.16, in the 

same way as ECNN. Hence, the quantity of data utilized in 

the study is excessive, and the dataset contains only two 

aims, including benign and malicious, where it is noted that 

the accuracy rate attained is 96%. 

 

 

Fig. 16. Plot showing training and validation accuracy and loss for Lightweight CNN- based MDS with the three dataset. 

References 

[1] S. K. Sasidharan and C. Thomas, “Prodroid-an an 

droid malware detection framework based on profile 

hid- den markov model,” Pervasive and Mobile 

Computing, vol. 72, pp. 101 336–101 336, 2021. 

[2] L. N. Vu and S. Jung, “Admat: A cnn-on-matrix 

approach to android malware detection and 

classification,” IEEE Access, vol. 9, pp. 39–680, 2021. 

[3] Thakkar, A.; Lohiya, R. A Review on Machine 

Learning and Deep Learning Perspectives of IDS for 

IoT: Recent Updates, Security Issues, and Challenges; 

Springer: Dordrecht, The Netherlands, 2021; Volume 

28, pp. 3211–3243. [CrossRef]    10.1007/s11831-020-

09496-0 

[4] Gowdhaman, V.; Dhanapal, R. An intrusion detection 

system for wireless sensor networks using deep neural 

network. Soft Comput. 2021, 26, 13059–13067. 

10.1007/s00500-021-06473-y 

[5] Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A 

review of android malware detection approaches based 

on machine learning. IEEE Access 2020, 8, 124579–

124607. 10.1109/ACCESS.2020.3006143 

[6] Bovenzi, G.; Persico, V.; Pescapé, A.; Piscitelli, A.; 

Spadari, V. Hierarchical Classification of Android 

Malware Traffic. In Proceedings of the 2022 IEEE 

International Conference on Trust, Security and 

Privacy in Computing and Communications 

(TrustCom), Wuhan, China, 9–11 December 2022; pp. 

1354–1359.  10.1109/TrustCom56396.2022.00191 

[7] D. O. S¸ahın, S. Akleylek, and E. Kili¸c, “Linregdroid: 

Detection of android malware us- ing multiple linear 

re- gression models-based classifiers,” IEEE Access, 

vol. 10, pp. 14–246, 2022. 

[8] Y. Hei, R. Yang, H. Peng, L. Wang, X. Xu, J. Liu, H. 

Liu, J. Xu, and L. Sun, “Hawk: Rapid android malware 

detection through heterogeneous graph attention 

networks,” IEEE Transactions on Neural Networks 

and Learning Systems, 2021. 

[9] S. S. Vanjire and M. Lakshmi, “Mdta: A new approach 

of supervised machine learning for android malware 

detection and threat attribution using behavioral 

reports,” Mobile Computing and Sustainable 

Informatics, pp. 147– 159, 2022. 

[10]  Karbab, E.M.B.; Debbabi, M.; Derhab, A.; Mouheb, 

D. MalDozer: Automatic framework for android 

malware detection using deep learning. Digit. Investig. 

2018, 24, S48–S59. 10.1016/j.diin.2018.01.007 

[11]  S.Y. Yerima, S. Khan, Longitudinal performance 

analysis of machine learning based Android malware 

detectors, in: 2019 International Conference on Cyber 

Security and Protection of Digital Services (Cyber 

Security), IEEE, 2019, pp. 1–8. 

[12]  J. Garcia, M. Hammad, S. Malek, Lightweight, 

obfuscation-resilient detection and family 

identification of android malware, ACM Trans. 

Software Eng. Methodol. 26 (3) (2018) 1–29 

[13]   K.G. Kumar, Efficient android malware scanner 

using hybrid analysis, Int. J. Recent Technol. Eng. 7 

(2019) 76–80 

[14]  D. Teubert, J. Krude, S. Schueppen, U. Meyer, Hugin: 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  666 

a scalable hybrid android malware detection system, 

in: SECURWARE 2017: the Eleventh International 

Conference on Emerging Security Information, 

Systems and Technologies, 2017, pp. 168–176. 

[15]  N. Daoudi, J. Samhi, A. K. Kabore, K. Allix, T.  F.  B.   

e, and J. Klein, “Dexray: A simple, yet effective deep 

learning approach to android malware detection based 

on image representation of bytecode,” International 

Work- shop on Deployable Machine Learning 

[16]  H.Bai, N. Xie, X. Di, and Q. Ye, “Famd: A fast mul- 

tifeature android malware detection framework, design 

and implementation,” IEEE Access, vol. 8, pp. 194–

729, 2020 

[17]  A. Mehtab, W. B. Shahid, T. Yaqoob, M. F. Amjad, 

H. Abbas, H. Afzal, and M. N. Saqib, “Addroid: rule-  

based machine learning framework for android 

malware analysis,” Mobile Networks and 

Applications, vol. 25, no. 1, pp. 180–192, 2020. 

[18]  L. Cai, Y. Li, Z. Xiong, and Jowmdroid, “Android 

mal- ware detection based on feature weighting with 

joint op- timization of weight-mapping and classifier 

parameters,” Computers & Security, vol. 100, pp. 102 

086–102 086, 2021. 

[19] S. I. Imtiaz, S. U. Rehman, A. R. Javed, Z. Jalil, X. 

Liu, and W. S. Alnumay, “Deepamd: Detection and 

identi- fication of android malware using high-

efficient deep artificial neural network,” Future 

Generation computer systems, vol. 115, pp. 844–856, 

2021. 

[20] W. Zhang, H. Wang, H. He, and P. Liu, “Damba: 

detect- ing android malware by orgb analysis,” IEEE 

Transac- tions on Reliability, vol. 69, no. 1, pp. 55–69, 

2020. 

[21] H. Gao, S. Cheng, and W. Zhang, “Gdroid: Android 

malware detection and classification with graph 

convo- lutional network,” Computers & Security, vol. 

106, pp. 102 264–102 264, 2021. 

[22] A. Guerra-Manzanares, H. Bahsi, and S. N. omm, 

“Kron-odroid Time-based hybrid- featured dataset for 

effective android malware detection and 

characterization,” Com- puters & Security, vol. 110, 

pp. 102 399–102 399, 2021. 

[23] Y. Ban, S. Lee, D. Song, H. Cho, and J. H. Yi, “Fam: 

Featuring android malware for deep learning-based fa- 

milial analysis,” IEEE Access, vol. 10, pp. 20–28, 

2022. 

[24] H. Cai and B. G. Ryder, “Droidfax: A toolkit for 

system- atic characterization of android applications,” 

2017 IEEE International Conference on Software 

Maintenance and Evo- lution (ICSME), pp. 643–647, 

2017. 

[25] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. 

Cristo- faro, G. Ross, G. Stringh-Ini, and . . 

Mamadroid, 2016. 

[26] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droide- 

volver: Self-evolving android mal- ware detection sys- 

tem,” 2019 IEEE European Symposium on Security 

and Privacy (EuroS&P), pp. 47–62, 2019. 

[27] W. Li, X. Fu, and H. Cai, “Androct: Ten years of app 

call traces in android,” 2021 IEEE/ACM 18th 

International Conference on Mining Software 

Repositories (MSR), pp. 570–574, 2021. 

[28] N. R. Surendran, T. Thomas, and S. Emmanuel, 

“Gsdroid: Graph signal based compact feature 

representation for android malware detection,” Expert 

Systems with Appli- cations, vol. 159, pp. 113 581–

113 581,2020. 

[29] E. B. Karbab and M. Debbabi, “Petadroid: Adaptive 

android malware detection using deep learning,” In- 

ternational Conference on Detection of Intrusions and 

Malware, and Vulnerability Assessment, pp. 319–340, 

2021. 

[30] Zhao, X.; Fang, J.; Wang, X. Android malware 

detection based on permissions. In Proceedings of the 

ICICT 2014, Nanjing, China, 2 October 2014.    

10.1049/cp.2014.0605 

[31] Emanuelsson, P.; Nilsson, U. A comparative study of 

industrial static analysis tools. Electron. Notes Theor. 

Comput. Sci. 2008, 217, 5–21.  

10.1016/j.entcs.2008.06.039 

[32] 15. Wang, W.; Zhao, M.; Wang, J. Effective android 

malware detection with a hybrid model based on deep 

autoencoder and convolutional neural network. J. 

Ambient. Intell. Humaniz. Comput. 2019, 10, 3035–

3043.   10.1007/s12652-018-0803-6 

[33] Raymer, M.L.; Punch, W.F.; Goodman, E.D.; Kuhn 

Leslie, A.; Jain, A.K. Dimensionality reduction using 

genetic algorithms. IEEE Trans. Evol. Comput. 2000, 

4, 164–171. 10.1109/4235.850656 

[34] Bhattacharya, A.; Goswami, R.T.; Mukherjee, K. A 

feature selection technique based on rough set and 

improvised PSO algorithm (PSORS-FS) for 

permission based detection of Android malwares. Int. 

J. Mach. Learn. Cybern. 2018, 10, 1893–1907. 

10.1007/s13042-018-0838-1 

[35] Han, J.C., Sanchez, R., Hu, X.H.,: Feature Selection 

Based on Relative Attribute Dependency: An 

Experimental Study. RSFDGrC’05, I, LNAI. 3641 

(2005) 214-223. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 650–667  |  667 

[36] Hu, K., Lu, Y., Shi, C.: Feature Ranking in Rough Sets. 

AI Communications. 16 (2003) 41-50 

[37] Yao, J.T., Zhang, M.: Feature Selection with 

Adjustable Criteria. RSFDGrC’05, I, LNAI. 3641 

(2005) 204–213. 

[38] Boiy, M.-F. Moens, A machine learning approach to 

sentiment analysis in multilingual web texts. 

Information retrieval 12(5), 526–558 (2009) 

[39] Ö. Aslan and A. A. Yilmaz, "A New Malware 

Classification Framework Based on Deep Learning 

Algorithms," in IEEE Access, vol. 9, pp. 87936-87951, 

2021, doi: 10.1109/ACCESS.2021.3089586   


