

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 668

Hybrid Congestion Control Mechanism in Software Defined Networks

Reecha Sood 1, Dr. Sandeep Singh Kang 2

Submitted: 26/09/2023 Revised: 16/11/2023 Accepted: 27/11/2023

Abstract Software-Defined Networking (SDN) has emerged as a promising paradigm to manage network traffic efficiently and provide

enhanced performance. Queue management plays a critical role in SDN by effectively controlling the flow of packets and ensuring

Quality of Service (QoS). We have implemented WFQ, which provides fairness and QoS guarantees. Assign weights to different flows

based on their importance or priority, ensuring equitable distribution of network resources. WFQ dynamically adjusts transmission rates

based on flow weights, preventing congestion, and maintaining optimal performance.Monitor queue lengths and implement policies to

trigger congestion control measures when thresholds are exceeded. These measures may include queue length, goodput, or notifying

source nodes to reduce their transmission rates. This strategy ensures efficient resource allocation, congestion control, and adherence to

QoS requirements, resulting in a more robust and responsive SDN environment.

Keywords: QoS, SDN, TCP, TCP Fairness, Congestion Window.

1. Introduction

TCP faces several challenges in heterogeneous networks

due to the diversity of network technologies, protocols, and

requirements. Researchers are working on developing new

TCP variants and queue management policies to address

the queue problem, congestion, and other challenges to

ensure efficient and reliable data transfer in such

networks.Queues are used to temporarily store packets and

manage their transmission based on various policies and

priorities.In SDN, the network control is centralized,

allowing for dynamic traffic management and fine-grained

control over network resources. When it comes to

managing heterogeneous traffic, SDN controllers can

employ different queue management techniques to ensure

efficient utilization of network resources and meet the

quality of service (QoS) requirements of various traffic

types.The SDN controller employs various queue

management mechanisms to control the transmission of

packets from each queue. Different algorithms can be used,

such as First-In-First-Out (FIFO), Weighted Fair Queuing

(WFQ), or Hierarchical Token Bucket (HTB). These

algorithms ensure that packets are processed and

transmitted according to the defined policies.By utilizing

queues and employing intelligent queue management

techniques, SDN controllers can effectively handle

heterogeneous traffic, prioritize critical applications,

ensure fair resource allocation, and optimize network

performance based on specific requirements and

policies.Weighted Fair Queuing (WFQ) is a queue

management algorithm that can be used in Software-

Defined Networking (SDN) to improve the performance of

heterogeneous traffic. It provides fairness and quality of

service (QoS) guarantees by assigning weights to different

traffic flows, allowing for better resource allocation and

congestion control.

Secondly, SDN based Wireless networks often struggle to

provide consistent Quality of Services (QoS)[1]due to

shared resources, interference, and limitations in the

wireless medium. QoS issues can result in packet drops,

delays, or prioritization conflicts, leading to TCP

failures.TCP uses a congestion control algorithm that relies

on detecting packet loss as an indication of network

congestion. However, in networks with heterogeneous

bandwidth and delay, packet loss can occur due to other

reasons such as transmission errors, leading to inefficient

use of available bandwidth[2]. Congestion control schemes

are mechanisms used by network protocols to prevent or

mitigate congestion in the network, which can lead to

packet loss, delays, and reduced throughput.There are

several types of congestion control algorithms, which can

be broadly categorized into three categories:

1.1 AIMD (Additive Increase Multiplicative Decrease)

algorithms: AIMD algorithms are the most widely used

type of congestion control algorithms. They increase the

sending rate of a flow by a small amount (additive

increase) until congestion is detected, at which point they

reduce the sending rate by a larger amount (multiplicative

decrease). TCP Reno, TCP New Reno[3], and TCP Vegas

are examples of AIMD algorithms.

1.2 Window-based algorithms: Window-based algorithms,

such as TCP BIC (Binary Increase Congestion Control),

adjust the size of the congestion window based on the

amount of congestion in the network. These algorithms use

a binary search to quickly converge on the optimal

congestion window size[4].

1 Research Scholar, Chandigarh University Gharuan, Punjab, India

reecha.coecse@cgc.edu.in
2 Research Scholar, Chandigarh University, Gharuan, Punjab, India
sandeepkang.cse@cumail.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 669

1.3 Delay-based algorithms: Delay-based algorithms, such

as TCP CUBIC (Compound TCP for TCP Vegas and TCP

New Reno), use the Round-Trip Time (RTT) of packets to

adjust the sending rate of a flow. These algorithms use a

cubic function to adjust the congestion window size based

on the RTT and the sending rate.

The best congestion control algorithm depends on the

specific requirements of the network and the applications

running on it. For example, AIMD algorithms are effective

for networks with high levels of congestion, as they reduce

the sending rate more aggressively in response to

congestion. Window-based algorithms are more effective

in networks with high-speed links and low levels of

congestion. Delay-based algorithms are most effective in

networks with high-latency links.

Overall, the choice of the best congestion control algorithm

is dependent on the specific network characteristics and the

goals of the congestion control mechanism. There is no

one-size-fits-all algorithm that works best in all scenarios.

Researchers continue to develop new congestion control

algorithms to address the evolving needs of the network.

2. Motivation of Research

TCP Delayed Acknowledgment and Joint/Split Congestion

Control[5] are two separate mechanisms used by TCP to

improve network performance and congestion control.

TCP Delayed Acknowledgment [6]is a mechanism that

helps reduce the number of acknowledgments sent by the

receiver to the sender, by delaying the acknowledgment of

received packets until either a certain amount of time has

passed, or a certain number of packets have been received.

This mechanism is used to reduce the overhead of sending

acknowledgments and to improve the efficiency of the

TCP protocol.

On the other hand, Joint/Split Congestion Control [7]is a

mechanism used to improve congestion control in TCP.

Joint Congestion Control is a technique that allows

multiple TCP connections to share the same congestion

control state, which can help reduce the amount of

congestion in the network. Split Congestion Control, on

the other hand, allows multiple TCP flows to have

independent congestion control states, which can help

avoid congestion collapse in the network.

Both Delayed Acknowledgment [8], [9]and Joint/Split

[6]Congestion Control can help improve the performance

of TCP in different ways. Delayed Acknowledgment helps

reduce the overhead of sending acknowledgments, while

Joint/Split Congestion Control helps improve congestion

control in the network. However, these mechanisms are

used for different purposes but in this research, we used

TCP delayed acknowledgment and apply on receiver based

SDN networks. The objective of this research is to

maintain congestion window before expiration time of

acknowledgment.

Table 1: Comparison of Slow Start, Fast Recovery and Retransmit and Selective Acknowledgement

Schemes
Network

Overhead

Transmissio

n Rate

Recovery of

Loss Packets

Retransmission

of Packets

Buffer

Management

Slow Start No Slow Yes Yes Yes

Fast Recovery Yes Fast Yes No No

Fast Retransmit Yes Fast Yes No No

Selective

Acknowledgment
No ----- No ------ -----

3. Research Gap

SDN allows for dynamic network management and

flexibility, but large-scale deployments can present

scalability challenges. As the network grows and the

number of flows and devices increases, QoS and queue

management mechanisms may struggle to handle the high

traffic demands efficiently, resulting in performance

degradation or failures[10].Adaptive queue management

techniques, such as Active Queue Management (AQM)

algorithms, can be employed in SDN environments. AQM

algorithms[11], such as CoDel (Controlled Delay) or PIE

(Proportional Integral controller Enhanced), dynamically

adjust queue lengths and drop or mark packets based on

congestion signals. These algorithms help ensure fair

sharing of network resources and prevent network

degradation during high traffic situations.SDN enables

proactive congestion detection [12]and avoidance

mechanisms. By monitoring network performance metrics,

such as link utilization or packet loss rates, SDN

controllers can detect congestion hotspots[13]. Queue

management schemes can then take action to avoid

congestion, such as redirecting flows, dynamically

adjusting queue sizes, or applying congestion control

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 670

algorithms (e.g., RED - Random Early

Detection)[14].SDN enables centralized control and

programmability, allowing for traffic engineering and path

optimization. Queue management policies (the aim of this

paper) can leverage SDN controllers to dynamically adjust

flow paths, optimize traffic distribution, and direct traffic

away from congested links or resources. This helps in

effectively handling high traffic scenarios and maximizing

network performance.Queue management in SDN allows

for dynamic adjustments of queue parameters based on

network conditions. SDN controllers can adaptively adjust

queue lengths, thresholds, or drop/mark probabilities in

response to changing traffic patterns or congestion levels.

Dynamic queue adjustments ensure efficient utilization of

queue resources and minimize the impact of high traffic on

network performance.Queue management in SDN involves

prioritizing traffic based on QoS requirements or flow

characteristics. Flows with higher priority, such as real-

time or critical applications, are given preferential

treatment in terms of bandwidth allocation, queuing delays,

or packet drop policies. By prioritizing critical traffic,

high-priority flows can maintain their performance even

during periods of high traffic.

4. Problem Formulation

Queue management policies [15]can be applied in

Software-Defined Networking (SDN) networks using the

OpenFlow protocol, which is a key component of many

SDN implementations. OpenFlow provides a standardized

interface between the control plane and the data plane in a

network, enabling network administrators to control

network behaviour by programming network devices, such

as switches and routers.

In an SDN network, queue management policies can be

applied by configuring the queue management parameters

of OpenFlow switches. This can include setting queue

thresholds, buffer sizes, and drop policies. Queue

management policies can be applied to different types of

traffic flows, such as TCP or UDP, based on the flow's

Quality of Service (QoS) requirements.

OpenFlow switches maintain one or more queues for each

port. These queues can be configured with different queue

management policies, such as Random Early Detection

(RED) [16]or Weighted Random Early Detection

(WRED), which are used to manage congestion by

selectively dropping packets.

Queue management policies can also be applied

dynamically by the SDN controller. For example, if the

controller detects congestion on a particular link, it can

send instructions to the OpenFlow switches to adjust the

queue management policies for that link to prevent

congestion.WFQ ensures fair allocation of network

resources among different traffic flows. Each flow is

assigned a weight that represents its relative importance or

priority. The weights determine the amount of bandwidth

allocated to each flow. This fairness mechanism prevents

one flow from monopolizing network resources, ensuring

that all traffic types receive a fair share of available

bandwidth.By employing Weighted Fair Queuing (WFQ)

in SDN, network administrators can achieve better

performance, fairness, and QoS guarantees for

heterogeneous traffic. Additionally, SDN networks can use

traffic engineering techniques to route traffic around

congested links. This can be done by configuring

OpenFlow switches to redirect traffic flows to less

congested paths in the network. Overall, queue

management policies can be applied in SDN networks

using OpenFlow switches to manage congestion and

improve the performance of the network. The ability to

dynamically apply queue management policies based on

changing network conditions is one of the key benefits of

SDN.

5. Related Work

Base station could act as a strategic point for hosting

servers is in a remote or rural area where there is limited

connectivity to the core network[7]. The aggregated flow

routed between joint and split points of the network in a

user agnostic manner. In general, base stations are not

designed to be hosting servers, and deploying servers in a

base station could introduce additional complexity and

risk. However, in certain scenarios where connectivity to

the core network is limited or disrupted, a base station with

built-in servers could provide a valuable strategic point for

hosting critical services.

Single long Transmission Control Protocol (TCP) flow can

be transmitted as aggregated traffic [17]. TCP is a protocol

that provides reliable, ordered, and error-checked delivery

of data between applications running on hosts connected

via a network. TCP divides the data into segments, which

are transmitted as packets over the network.When multiple

packets from a single long TCP flow are transmitted over

the network, they may be aggregated together by

intermediate network devices, such as switches or routers.

This aggregation can help reduce the number of packets

transmitted over the network and improve network

efficiency.However, while aggregating TCP flows can

improve network efficiency, it can also introduce some

challenges. For example, if packets from multiple TCP

flows are aggregated together, it may be more difficult to

manage Quality of Service (QoS) parameters for individual

flows, such as bandwidth allocation or priority.

Researchers compare the existing and previous congestion

control algorithms using TCP flow completion time [18].

TCP completion time refers to the amount of time it takes

for a TCP flow to complete, from the start of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 671

communication to the end. TCP completion Time is

suitable for both short and long TCP flows. Completion

time of large TCP flows is high as compared to short TCP

flows. To reduce the completion time for long TCP flows,

various techniques can be used, such as congestion control

algorithms, window scaling, and selective

acknowledgments. These techniques help to ensure that the

flow can transmit data at an optimal rate while minimizing

the impact of network issues.

Researchers work on contention-based window policy and

presented HBAB algorithm [19]. HBAB defines three

variables that identify the channel state and update the

contention window. History-based adaptive algorithms rely

on historical data to predict future network conditions and

adjust transmission rates accordingly. While these

algorithms can be effective in some scenarios, they may

not be able to react quickly enough to changes in network

congestion, which can result in suboptimal

performance.Moreover, history-based algorithms require

storing and processing large amounts of historical data,

which can be resource-intensive and may not be practical

for use in congestion-based algorithms.

Nonlinear ordinary differential equations (ODEs) can

indeed be helpful in queue management systems. Queue

management involves analysing and optimizing the flow of

entities (such as customers, requests, or tasks) through a

system, minimizing wait times, improving efficiency, and

maximizing resource utilization. Nonlinear ODEs can

capture complex dynamics and interactions within the

queueing system, allowing for a more accurate

representation of its behaviour [14].Overall, nonlinear

ODEs provide a powerful mathematical framework for

analysing and managing queues.

Active queue management helps to decide on the

transmission rate in TCP congestion control

approaches.The AIMD algorithm is used to solve issues

such as retransmission timeout scheme which is also

beneficial to the researcher. The researchers presented

algorithms that implement queue state and load state in

TCP. The drop probability can also be calculated with the

help of the proposed scheme.The queue packet arrival rate

is calculated, and the overall packet arrival rate is

estimated. Reference variable is used to control thequeue

length. The receiving state updates the length of the current

queue. Improper estimation causes unstable network and

affects the overall performance of the network [20].

6. Proposed Algorithm

AQM can be viewed as the queue length for single

bottleneck (B) and double bottleneck. A single bottleneck

capacity of µpackets per second and can be doubled for

double bottleneck. The main drawback of AQM is that it

cannot control the queue which is causing it to be full [21].

To normalize the size of the buffer, we take

Β=
𝑩

µ𝑻+𝟏
 ----- (1)

Thus, we can estimate the delay calculation of the barrier.

Packet marking behaviour is also a key point of this

proposed approach as we can better test the queue length.

The propagation delay constant for a single bottleneck

containing B packets is It is easy to detect packet loss with

the help of AIMD (Additive Increase and Multiple loss)

algorithm. When the sender is not acknowledged, it means

that the delay increases, and consequently the performance

decreases. The main objective of this paper is to improve

the performance of SDN networks and consequently

calculate the delay with the round-trip time parameter.

Wpipe= µ𝐓 + 𝐁 ----- (2)

Now, the variable B stores the packet in the queue before

processing of the packets. The number of unacknowledged

packets were identified by the sequence number. In this

mathematical scenario, we take a steady state where the

mobile nodes were not moving, and window W increases

by one if all packets were constantly buffered in the queue

at every RTT. We take RTT as 3 milliseconds (ms) in a

steady state and applied 3-dupack policy during

transmission of packets in the network. Furthermore, we

are estimating the new queue length based on window

probability. The probability of window taken as [0,1] and

length of the queue is represented as q. we have also take

the threshold value that helps to identify the probability of

packet loss, queue length and estimation of empty packets.

The threshold value areMinT, MaxTandMaxP, these three

variables indicates the queue length.

The probability of MaxPis the drop probability parameter

and if the value of q is higher than MaxPthen more chances

to be congestion in the networks and also reverse the

performance of the networks. During the setup of the

network, the variable wqtaken as either positive or

negative. The new formulated equation is represented

as:qnew

qnew =(𝟏 − 𝐰𝐪). 𝐪 + 𝐰𝐪. 𝐪 ----- (3)

from the equation (3), if the negative value come the

equation that means chances of buffer overflow in SDN

network otherwise data transferring in steady way. A store

and forward approach can be implemented in software

defined networks (SDNs) that have not been used in prior

techniques as evidenced in research papers[15], [16], [20],

[22]–[24]. By sending L bits transmitted over a link with

transmission rate R, a packet is represented over N links

with P, and the L/R transmission of packets is represented

as:

𝑻𝒙 = 𝑷.𝑵.
𝑳

𝑹
…………………. (4)

From equation 5, X has activated the retransmission policy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 672

before initiating packet loss in software-defined networks.

The outgoing approach manages the queue length by

calculating the length of the old queue and identifying the

length of the new queue which is derived from Equation 3.

𝑿 =
𝒂𝒗𝒈𝒒−𝒎𝒊𝒏𝑻

𝒎𝒂𝒙𝑻−𝒎𝒊𝒏𝑻
 …………………. (5)

Fig 1 Proposed Framework

In an SDN architecture, the SDN controller is responsible

for managing the flow of traffic through the network and

can use TCP connections to facilitate communication

between devices. For example, the controller may use a

TCP connection to establish a communication channel

between a Controller and a Proxy, or to route traffic

between two devices on the network. TCP connections in

an SDN architecture can be used to transmit a variety of

types of data, including audio, video, and text. The SDN

controller can use information about the type of data being

transmitted and the devices involved to make decisions

about how to route the traffic and allocate resources within

the network.

A proxy is a device or software program that acts as an

intermediary between two other devices or programs,

forwarding requests and responses between them. An SDN

proxy is a device or software program that combines the

functions of both an SDN controller and a proxy. It is

responsible for managing the flow of traffic through the

network and forwarding traffic between different parts of

the network. In an SDN architecture, the SDN proxy is

often used to connect different parts of the network that are

controlled by different SDN controllers, or to provide an

interface between the SDN network and non-SDN devices.

In a SDN (software-defined networking) architecture, a

queue is a data structure that stores packets of data that are

waiting to be transmitted over the network. A queue can be

used to store

packets that are waiting for a specific resource to become

available (such as a link or a router) or packets that are

waiting to be processed by the network control plane.

 In SDN architecture, the SDN controller is responsible for

managing the flow of traffic through the network and can

use queues to regulate the flow of traffic. For example, the

controller may use a queue to buffer incoming packets

when the network is congested, or to prioritize certain

types of traffic over others. In addition to managing traffic

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 673

flow, queues can also be used for other purposes in an

SDN architecture, such as monitoring network

performance or providing information to network

administrators.

To map the network, the SDN controller gathers

information about the network topology, including the

locations and capabilities of different devices on the

network and the links between them. This information is

used to create a map of the network, which can be used to

determine the most efficient path for traffic to take to reach

its destination.

To find a path through the network, the SDN controller

uses algorithms and data structures (such as routing tables

and flow tables) to determine the best route for traffic to

take based on factors such as network congestion, available

resources, and the requirements of the traffic. The

controller can then use this information to update the

network configuration and direct traffic to follow the

chosen path.

Fig 2: Proxy Configuration in Proposed Scenario

To deallocate nodes in an SDN architecture means to

release them from their assigned tasks or traffic forwarding

responsibilities and make them available for other uses.

This can be done for a variety of reasons, such as to

balance the load on the network, to remove a node that is

no longer needed, or to reconfigure the network for a new

set of requirements.

To deallocate nodes in an SDN architecture, the SDN

controller must update the network configuration to

remove the node from its assigned tasks or traffic

forwarding responsibilities. This may involve updating

flow tables, routing tables, or other data structures used to

manage the flow of traffic through the network.

7. Performance Evaluation and Simulation Setup

This section shows the network topology of Software

Defined Networks. The performance of SDN is

implemented in NS2 simulator with TCP, internet services.

The following values will show in the Table 2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 674

TABLE 2: Simulation Parameters of SDN-Queue

Management Policy [7]

Parameter Value

NS Version 2.34

Packet Size 1500

Queue Length 8

Buffer Size 35

Traffic Pattern CBR, FTP

Transmission Range 1.5m

IEEE 802.11

TCP traffic aggregates the behaviour of SDN network and

generate traffic with constant interval 𝑁.
𝐿

𝑅
 that specifies

delay (d). All nodes are connected to each otherthrough

controller and proxy. In network topology, the source node

connected to destination node through bottleneck link that

stream the packets from proxy node to another proxy node.

Proxy node executes the queue management algorithm

before it is configure in NS2. WFQ incorporates

congestion control mechanisms to prevent network

congestion and ensure smooth traffic flow.

When congestion occurs, Weighted Fair Queuing (WFQ)

dynamically adjusts the rate at which packets are

transmitted from each flow based on their assigned

weights. Flows with higher weights are allowed to transmit

more packets, while flows with lower weights are

restricted. This adaptive behaviour helps alleviate

congestion and maintain optimal network performance.

Fig 3: SDN based Simulation Scenario represented in NS2

8. Results and Discussions

A. Queue Length

Queue length refers to the number of packets or data units

waiting in a queue to be processed or transmitted. In SDN,

queues are used to manage traffic and temporarily store

packets during congestion or when resources are

temporarily unavailable. Queue length provides an

indication of the level of congestion in the network. A

longer queue length suggests a higher amount of buffered

traffic, which may lead to increased delays and potential

performance issues. Monitoring and managing queue

length is crucial to avoid congestion and maintain efficient

network performance.The threshold value (as suggested in

flowchart) for queue length is important to prevent

congestion and maintain desired QoS levels by triggering

congestion avoidance mechanisms w/hen the queue

exceeds the specified limit. The proposed hybrid algorithm

having lesser average queue length than TCP protocol.

Therefore, the proposed algorithm has performed better

than existing protocol.

Fig 4: Comparison of TCP and Hybrid Algorithm

B. Goodput

With SDN-based Networks, TCP traffic increases linearly

using the proposed method. The total traffic shown by

Goodput in terms of traffic and performance is used to

determine the basic performance of TCP and its

techniques. The 1.5 Mbps connection specified in the

suggested Switch 1 and Switch 2 models connects to the

server. This proposed model demonstrates its performance

using the NS2 simulator with 96% confidence in the

current study. During inspection it was found that

throughput increases linearly with the number of flows. On

the other hand, due to the wide variety of traffic observed

during the simulation, the performance of the TCP splitting

method degrades by 1% compared to the proposed study.

Temporary traffic has also been found to degrade the

overall performance of regular TCP.

Fig 5: Goodput Performance

C. Congestion Window

The following diagram is based on the NS2 simulation

shown in Figure 5.2. It shares common outages with the 5

Mbps link between proxy and nodes. The RTT parameter

is fixed in the random-based model, and the value of RTT

is set to 110. The completion time for each receiver is

different and is shown in the simulation time. The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 675

comparison is shown for TCP, join split, and the proposed

solution, starting at 0.1 and ending at 1.2 seconds. The

growth of the congestion window decreases as the

simulation time increases. In each subflow, the size of the

congestion window starts from zero and increases by one.

Performing the TCP three-way handshake process for each

algorithm, it is observed that the proposed model better

supports the model based on the SDN multi-way stochastic

model and degrades the TCP performance of the entire

network due to the unreserved window size. Furthermore,

in the average random topology of the algorithm, the

window size is doubled, and the packets are shrunk due to

the overcrowded window. When the simulation time

reaches 50 times, the proposed solution keeps dropping

packets and congestion windows is reduced due to the

large number of sub flows. Another reason is that the

previous window remains unchanged, so some dips are

observed in the chart.

Fig 6: Congestion Window (cwd) for each flow

9. Conclusion

This paper ensures that high-priority flows in network

scenario and get the necessary resources while still

allowing lower-priority flows to utilize the available

bandwidth. This efficient resource allocation improves

overall network performance and maximizes the utilization

of network resources.The Proposed Algorithm provides

traffic isolation by treating each flow as a separate entity.

Flows are processed and transmitted independently, which

prevents one flow from adversely impacting others. This

isolation helps to contain the effects of bursty or high-

bandwidth flows, ensuring that they do not disrupt the

performance of other flows in the network. Additionally,

proposed algorithm is implemented in the proposed

scenario that can handle a significant number of flows

efficiently due to its weighted allocation scheme. It allows

fine-grained control over each flow, enabling SDN

controllers to manage and prioritize heterogeneous traffic

effectively.

References:

[1] V. A. Tafti and A. Gandomi, “Performance of QoS

Parameters in MANET Application Traffics in Large

Scale Scenarios,” World AcadSciEngTechnol, no. 72,

pp. 857–860, 2010.

[2] Y. Li, S. Lei, X. You, H. Zhuang, and K. Sohraby,

“Performance of TCP in intermittently connected

wireless networks: Analysis and improvement,” in

GLOBECOM - IEEE Global Telecommunications

Conference, 2010, pp. 1–6. doi: 10.1109/

GLOCOM.2010.5684314.

[3] S. Fowler, M. Eberhard, and K. Blow, “Implementing

an adaptive TCP fairness while exploiting 802.11e

over wireless mesh networks,” International Journal

of Pervasive Computing and Communications, vol. 5,

no. 3, pp. 272–294, 2009, doi: 10.1108/

17427370910991857.

[4] S. Jasuja and P. Singh, “Appraisement of IEEE

802.11s based Mesh Networks with Mean Backoff

Algorithm,” International Journal of Modern

Education and Computer Science, vol. 7, no. 10, pp.

20–26, 2015, doi: 10.5815/ijmecs.2015.10.03.

[5] W. Guo, V. Mahendran, and S. Radhakrishnan, “Join

and spilt TCP for SDN networks: Architecture,

implementation, and evaluation,” Computer

Networks, vol. 137, pp. 160–172, 2018, doi: 10.1016/

j.comnet.2018.03.022.

[6] J. Chen, M. Gerla, Y. Z. Lee, and M. Y. Sanadidi,

“TCP with delayed ack for wireless networks,” vol. 6,

pp. 1098–1116, 2008, doi:

10.1016/j.adhoc.2007.10.004.

[7] W. Guo, V. Mahendran, and S. Radhakrishnan, “Join

and spilt TCP for SDN networks: Architecture,

implementation, and evaluation,” Computer

Networks, vol. 137, pp. 160–172, 2018, doi: 10.1016/

j.comnet.2018.03.022.

[8] S. Tcp, W. Tcp, and D. D. Protocol, “TCP-aware link

layer based methods,” 2007.

[9] N. H. Vaidya, M. N. Mehta, C. E. Perkins, and G.

Montenegro, “Delayed duplicate acknowledgements:

A TCP-Unaware approach to improve performance of

TCP over wireless,” WirelCommun Mob Comput,

vol. 2, no. 1, pp. 59–70, 2002, doi: 10.1002/wcm.33.

[10] H. M. Syed, K. Das, and M. Devetsikiotis, “TCP

performance and buffer provisioning for internet in

wireless networks,” in IEEE International Workshop

on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems - Proceedings, 1999,

pp. 48–55. doi: 10.1109/mascot.1999.805039.

[11] No, V. S. J. Prakash, D. I. G. Amalarethinam, E. G.

Dharma, and P. Raj, “CASE STUDY & SURVEY

REPORT Available Online at www.ijarcs.info QoS

Congestion Control AQM Algorithms : A Survey,”

vol. 2, no. 4, pp. 38–41, 2011.

[12] R. Fischer e Silva and P. M. Carpenter, “TCP

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 668–676 | 676

proactive congestion control for east-west traffic: The

marking threshold,” Computer Networks, vol. 151,

pp. 1–11, 2019, doi: 10.1016/j.comnet.

2019.01.002.

[13] Y. Lu and S. Zhu, “SDN-based TCP congestion

control in data center networks,” 2015 IEEE 34th

International Performance Computing and

Communications Conference, IPCCC 2015, 2016,

doi: 10.1109/PCCC.2015.7410275.

[14] Agrawal and F. Granelli, “Redesigning an Active

Queue Management System,” 2004.

[15] M. N. Uddin, M. Rashid, M. Mostafa, S. Salam, N.

Nithe, and S. Z. Ahmed, “Automated Queue

Management System,” Type: Double Blind Peer

Reviewed International Research Journal Publisher:

Global Journals Inc, vol. 16, 2016, [Online].

Available: http://creativecommons.

[16] M. Alkharasani, M. Othman, A. Abdullah, and K. Y.

Lun, “An Improved Quality-of-Service Performance

Using RED’s Active Queue Management Flow

Control in Classifying Networks,” IEEE Access, vol.

5, pp. 24467–24478, 2017, doi: 10.1109/ACCESS.

2017.2767071.

[17] W. Guo, V. Mahendran, and S. Radhakrishnan, “End-

User Agnostic Join and Fork Framework for TCP

Flows in SDN,” 2017 14th IEEE Annual Consumer

Communications & Networking Conference (CCNC),

pp. 616–617, 2017, doi: 10.1109/CCNC.

2017.7983192.

[18] G. Luan, “Estimating TCP flow completion time

distributions,” Journal of Communications and

Networks, vol. 21, no. 1, pp. 61–68, 2019, doi:

10.1109/JCN.2019.000006.

[19] M. Al-Hubaishi, T. Abdullah, R. Alsaqour, and A.

Berqia, “E-BEB algorithm to improve quality of

service on wireless Ad-Hoc networks,” Research

Journal of Applied Sciences, Engineering and

Technology, vol. 4, no. 7, pp. 807–812, 2012.

[20] J. Hong, C. Joo, and S. Bahk, “Active queue

management algorithm considering queue and load

states,” ComputCommun, vol. 30, no. 4, pp. 886–892,

Feb. 2007, doi: 10.1016/j.comcom.

2006.10.012.

[21] C. Long, B. Zhao, X. Guan, and J. Yang, “The

Yellow active queue management algorithm,”

Computer Networks, vol. 47, no. 4, pp. 525–550,

Mar. 2005, doi: 10.1016/j.comnet.2004.09.006.

[22] R. Brown, “Calendar Queues: A Fast {O(1)} Priority

Queue Implementation for the Simulation Event Set

Problem,” vol. 31, no. 10, pp. 1220–1227, Oct. 1988.

[23] K. L. Tan and L.-J. Thng, “SNOOPy Calendar

Queue,” in Proceedings of the 32nd conference on

Winter simulation Orlando, Florida, 2000, pp. 487–

495.

[24] Demers, S. Keshav, and S. Shenker, “Analysis and

Simulation of a Fair Queueing Algorithm,”

Internetworking: Research and Experience, vol. 1,

no. 1, pp. 3–26, Jan. 1990.

[25] Mou, X., Sun, J., Zhong, Y., &Wo, T. (2023, July).

HyCU: Hybrid Consistent Update for Software

Defined Network. In 2023 IEEE International

Conference on Joint Cloud Computing (JCC) (pp. 86-

92). IEEE.

[26] Lim, C. S., Tan, S. C., &Baderulhisham, N. Q. (2022,

November). Energy And Congestion Awareness

Traffic Scheduling In Hybrid Software-Defined

Network. In 2022 IEEE International Conference on

Computing (ICOCO) (pp. 215-219). IEEE.

[27] AlShammari, W. M., &Alenazi, M. J. (2021). BL‐

Hybrid: A graph‐theoretic approach to improving

software‐defined networking‐based data center

network performance. Transactions on Emerging

Telecommunications Technologies, 32(1), e4163.

[28] Kadim, U. N., & Mohammed, I. J. (2020). A hybrid

software defined networking-based load balancing

and scheduling mechanism for cloud data centers.

Journal of Southwest Jiaotong University, 55(3).

[29] R. Ying, W. K. Jia, Y. Zheng, and Y. Wu, “Fast

Invalid TCP Flow Removal Scheme for Improving

SDN Scalability,” 2019 16th IEEE Annu. Consum.

Commun. Netw. Conf. CCNC 2019, 2019, doi:

10.1109/CCNC.2019.8651760.

