

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 687

Fusion and Analytical Research of Active Scheduling Procedures

Targeting Reconfiguarable Environment

1Ashish S. Bhopale, 2Dr. Archana O. Vyas

Submitted: 25/09/2023 Revised: 18/11/2023 Accepted: 29/11/2023

Abstract: In the computing environment, multiple data packets arrive at the node for processing. Multiple tasks are engaged to handle

these data packets which accepts these data packets process them and executes further required steps. For handling the multiple data packets

simultaneously, multiple tasks are engaged which utilizes the limited resources on time sharing basis. To make the limited resources useful

and handle the multiple tasks efficiently, strong, highly active task scheduling algorithm is required. This research paper demonstrates the

multiple tasks arriving and getting executed simultaneously in addition to the routing tasks. The algorithm is described using high speed

integrated circuit hardware description language. The description is targeted to the modern concurrent programmable hardware architecture.

The hardware description is performed using the Xilinx Vivado High Level Synthesis (HLS) Tool.

Keywords: HDL, FPGA, Scheduling Algorithm, Xilinx Vivado, HLS, CPLD.

1. Introduction

The early generation processors are designed to perform

basic operations of arithmetic and logical operations. These

basic operations are then used to control different

applications. From small to medium complex applications

these processor environments perform better but with the

increase in the complexity these processor fails to perform

well. From this step modern processors are designed which

is tightly designed architecture in which different required

components like ADCs, signal conditioners, DAC and other

significant components are pre-built. Such processors are

well suitable for compact and medium to high applications

requirements. But on the other side of the coin, to the

applications where random pattern of data arrives and to be

processed and produced randomly in size and pattern, these

processor fails to perform. In such applications,

programmable architectures are performing well.

Programmable architectures are the microelectronic

components which can be reconfigured according to the need

of the applications or according to the user requirements.

Most popular programmable logic devices are the Complex

Programmable Logic Device (CPLD) and the Field

Programmable Gate Array (FPGA). These are the magical

devices with which it is possible to design highly customized

architecture and deploy them into the applications. The

advantage that we get with deployment of these devices is

that since the hardware is custom designed, it uses highly

optimized power, time, area, and speed. We demonstrate use

of this technology for the implementation of the scheduling

algorithm in which multiple tasks are operated individually

and in concurrent mode. Further, AMD-Xilinx

programmable devices are widely used in distinct

applications, we make use of the Xilinx High Level Synthesis

(Xilinx-HLS) Tool and the proposed algorithm is targeted to

the latest programmable device.

2. Previously Cited Technology

Several scheduling prototypes have been available for the

actual time communication and actual-time applications. The

most general types of scheduling prototypes contain

allocation determined, priority determined, and time

determined algorithms. In this paper, the authors [1] have

proposed a normal scheduling technique that is employed to

incorporate these prototypes in a single structure. Allocator

and correspondent are employed as scheduler elements in the

proposed technique. For every individual task, the structure

recognized four scheduling characteristics as resources,

priority, start instant and end instant. The authors show that

the proposed structure can be utilized to effectively compute

several scheduling algorithms.

1Dept. of Electronics and Telecommunication Prof. Ram Meghe Institute

of Technology and Research Badnera-Amravati, India

profashishbhopale@gmail.com
2Dept. of Electronics and Telecommuinication Engineering Raisoni

Centre for Research and Innovation G. H. Raisoni University, Amravati,

India

nyasaarchana@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 688

Fig. 1. Architecture of the scheduling algorithm

Error tolerance plays an essential role in real-time processing

unit systems, as the timing constrictions should not be

interrupted. For a real instant processor atmosphere, two

conventional queues-based scheduling algorithms as linear

time heuristics and possible shortest pathway are available.

The linear time heuristics algorithm thoroughly

approximates the best possible algorithm. The possible

shortest pathway algorithm can give the best possible error

tolerant schedules, but it is not practically applicable due to

its time complication. The possible shortest pathway

algorithms work on the assumption that there is at least a

single error present within the instant interval of ’t’. The

authors [2] proposed an enhanced shortest possible pathway

algorithm on the supposition that there will be no further

error through the lowest inter-error instant 't' following a

single fault occurs. The proposed technique enhanced system

presentation by employing additional main jobs in an error

tolerant program and decreases the time complication in

backup programs.

The central processing unit has been extensively employed

for handling actual time procedures like manufacturing

processing control systems. The utilization of central

processing units for controlling actual instant instructions has

speedily developed. The wide utilization of central

processing systems to handle time complex instructions that

have strict deadlines necessitates the utilization of simple and

effective scheduling algorithms. In this paper, the authors [3]

have taken into consideration the difficulty of periodic job

scheduling in an actual instant atmosphere. The authors

presented a preventative and non-preventative scheduling

algorithm. A preventative scheduling algorithm is employed

to evade needless preemption.

Nowadays, Parallel genetic algorithms are employed more

than traditional genetic algorithms as they provide a faster

solution to a wide range of problems. In the actual scenario,

the hardware structure of the parallel genetic algorithm can

deal with such actual instant problems. An appropriate

structure for image processing parallel genetic algorithm was

developed based on the traditional crossover method.

Numerous problems are more matched to combinational

handlers such as organize based crossover. In this paper, the

authors [4] have proposed a novel hardware structure based

parallel genetic algorithm employing organized based

crossover which can minimize an innovative group of actual

time combinational difficulties. The disk scheduling

technique has been recognized as a general actual instant

minimization problem to determine the advantages of the

proposed hardware structure.

(a)

(b)

Fig. 2. Grid (a) and hypercube (b) topology

In real-time systems, a preprocessing period branch and

bound implicit inventory algorithm endeavors to locate a

possible allocation for a set of hard actual instant procedures.

Procedures are supposed to be passively allocated to

multiprocessors on a multimedia node. When it is contrasted

with the handcrafted allocating techniques, the submission of

this preprocessing scheduling algorithm to hard actual instant

systems must decrease the resources needed for the

processing period scheduling and context switching. The

minimization standard is to optimize procedure tardiness

defined as the dissimilarity between the procedure

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 689

completion period and deadline. In this paper, the authors [5]

show that the algorithm always doesn't be successful in

obtaining the best possible output.

In modern disseminated actual instant applications require

vibrant ad adaptable scheduling algorithms to give enduring

assurance to application things. In this paper, the authors

have proposed a novel scheduling algorithm that makes the

use of task negligence and the things important to take

efficient scheduling judgments. The proposed scheduling

algorithm utilizes actual instances and resources to identify

the practicability of the jobs and to allocate the things to the

microprocessors. Jobs instances characteristic and tolerance

assessment report is taken from processor to processor;

acquiescent a system extensive scheduling approach that

necessitates restricted calculations. The main objective of the

proposed algorithm is to guarantee that a low-priority task

doesn't interrupt the implementation of a high-priority task.

[6]

Fig. 3. The scheduling algorithm

Several times complicated applications need

conventional functions, and the jobs of these applications

must have to meet their deadlines. A deadline failure to

attend can be disastrous for jobs with strict deadlines. For

quality of service degradable or soft actual time jobs,

instantly estimated outputs of degraded quality and

intermittent deadlines are adequate. The authors proposed a

new dynamic scheduling algorithm for incorporated

scheduling for actual instant jobs in multiprocessor systems.

The most important goal of the proposed algorithm is to

enhance the arrangement of jobs by making the utilization of

the characteristics of these models in quality-of-service

degradation. The proposed algorithm shows how it can be

accepted incorporated scheduling for multiprocessor systems

and strict actual instant jobs and performance of their

efficiency in service of quality degradation. [7]

Fig. 4. The scheduling model

The authors [8] presented an incorporated structure for

the identification of non-predictable workloads, triggered by

the identification of faults in an actual instant system. The

structure is specifically constructed for the execution of

predetermined priority preventative systems. A detailed

investigation for recuperation workloads is done by

constructing a standard for receptiveness of error

recuperation executions. This encourages the authors to

validate the timing exactness of actual time workloads under

momentary recuperation workloads and give elegant

deprivation to the actual time workload at the time of

recuperation. By provisionally removing the low priority

jobs, the receptive algorithm constructed by the authors is

predictable to service the jobs with the highest priorities

without damaging low priority jobs.

An efficient time redundancy technique for

accomplishing error forbearance in actual time system when

gap redundancy can't be employed for mass restraints. In this

paper, the authors [9] have proposed an error-tolerant

scheduling algorithm for actual instant systems consisting of

strict and rigid periodic jobs. According to the priority, rigid

jobs can be normally missed out on only one occasion

according to a predefined quality of service characteristic.

While strict jobs have the highest priority. The proposed

algorithm guarantees that every job occurrence is fulfilled

within its instant restraints by the priority task. The algorithm

increases the utilization of processor inactive time by

executing the highest priority tasks and mechanically

retrieves the auxiliary time conserved by de-allocating

support tasks.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 690

Fig. 5. Error tolerant algorithm

Enhance processing units are more proficient to evaluate

parallel applications, several applications might be organized

by some parallel jobs. Several applications might need timing

restraints to make use of the preferred presentation. These

restraints are available in control systems as hard tasks and

multiprocessing systems as soft tasks. In this paper, the

authors analyzed the trouble of giving separation and actual

instant computation in preparation of multi-string

applications on a particular processor. The proposed

algorithm can be employed in a wide range of applications

such as in a network association, wherever dissimilar streams

of messages might need a convinced stage of function, or in

multiprocessing actual instant systems, in which applications

might need an assurance of the quality of service. The

proposed scheduling algorithm is especially appropriate for

soft actual instant and multiprocessing atmospheres as it

doesn't need the accurate information of the tasks times and

inter appearance times. [10]

Fig. 6. Bandwidth sharing server

3. Proposed Scheduling Algorithm

Effectiveness of the proposed technique is demonstrated by

assuming the traffic light signal. In this case, traffic may

arrive from four possible directions like East, West, North

and South. Apart from having the routine traffic, there is

possibility of traffic arriving for the last journey, traffic

arriving with the VIP person and possibility of the sudden

ambulance appearance. Considering this assumption, highest

priority must be given to the ambulance, the second priority

must be given to the last journey and third priority must be

given to the VIP vehicle and when no other priority vehicles

or traffic is appearing, in that case, routine traffic must be

handled. Since the module is generic in nature open loop

nature of the module is discussed by assuming that the

routine traffic needs 5 clock cycles for handling, that means

to handle the routine task we need 5 clock cycles. The time

required to handle the priority task that is the ambulance is 5

clock cycles that means, module takes 5 clock cycles to

complete the first priority task. The second priority task that

is the time required to clear the traffic arising from the last

journey is 10 clock cycles. That means to execute the second

priority task module takes 10 clock cycles duration. On the

other hand, to handle the traffic arising through the VIP

vehicles takes 15 clock cycles of time. That means to execute

the third priority task module takes 15 clock cycles of time.

In these assumptions, the routine task of the module is

indicated as the “rt”, the first priority task is indicated as the

“fpt”, the second priority task is indicated as the “spt”, and

the third priority task is indicated as the “tpt”. The

subsequent figure Fig.7 depicts the systematic flow of the

proposed procedure.

As indicated, the power on reset condition indicates the

default situation of the procedure in which the procedure is

set to operate. This has been indicated through the figure

Fig.8. The 1000ns to 1100 ns simulation period indicates the

power on reset condition in the fig.8. Initially the routine task

“rt” is operated in which the routine traffic at the traffic

signal is routed efficiently. At the same moment, the priority

traffic is also checked concurrently. If no priority traffic is

detected, then the routine traffic is set to operate with 5 clock

cycles of time in each place. This condition is depicted

through the figure Fig.9. After deactivating the power on

reset conditions. At 1100 ns, first the higher priority traffic

signals are identified at 1200ns. Since no higher priority

traffic interrupts are identified, the routine task is activated at

1300 ns. The routine task continues to operate in repeated

mode and at the same moment also check the generation of

higher priority interrupt signals.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 691

Fig. 7. Systematic Flow Chart

Fig. 8. Power On Reset Condition

As soon as the higher priority traffic is identified, the

routine traffic moment that is routine task is suspended and

the procedure is switched to operate the respective higher

priority traffic that means the higher priority task. This

moment is indicated through the figure Fig.9 below.

Fig. 9. Execution of Routine Traffic Task and Higher

Priority Traffic Insertions

As shown in the figure above, since no higher priority task

has been detected till the moment 1200ns, routine task is

deployed for execution from 1300ns. At 1800ns of

simulation period the first phase of the routine task is

completed and since no higher priority task is active, the

second phase of the routine task is initiated. While the second

phase of the routine task is under process from 1800ns, the

first priority task is inserted at 2000 ns of simulation period

and accordingly, the routine task is suspended at 2100 ns and

first priority task is serviced from 2200 ns of simulation

period. Once the first priority task completes at 3200 ns of

simulation period, the routine task which was suspended due

to insertion of the first priority task “fpt”, is reinitiated. This

is depicted through the following figure Fig. 10.

Fig. 10. Completion of First Priority Task and Re-

Initiation of Suspended Task

Accordingly, the second priority or third priority tasks are

operated by suspending the routine task and after completion

of the same again the routine task is initiated. If multiple

priority tasks are activated at the same moment, then on

priority first priority task is executed then second priority

task is initiated and after completion of the second priority

task, third priority task is initiated and finally after

completion of all higher priority tasks, routine task is

reinserted for execution.

While performing the synthesis process, the proposed

architecture of the scheduling procedure is targeted to the

virtex-7 series field programmable gate array device. The

Virtex-7 series xc7v585tffg1157-1 device is specifically

targeted. While performing the schematic RTL analysis

using the Xilinx Vivado HLS tool following RTL schematics

are recorded.

Fig. 11. RTL Schematic View (a)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 692

Fig. 12. RTL Schematic View (b)

Fig. 13. RTL Schematic View (c)

Fig. 14. RTL Schematic View (d)

The hardware description language was initially designed for

hardware architecture simulations, but later it is also used for

synthesis purpose. Synthesis means hardware description

using the software coding. Since the HDL was initially

designed for simulation purposes only, all of the statements

that means sentences are not synthesizable. Which means

they don’t have direct hardware meaning. RTL schematic

view confirms the perfect hardware conversion of the HDL

constructs.

Finally, the synthesis process is carried out, in which the

implementation of the proposed architecture into the targeted

FPGA device is carried out in three steps of Place, Map and

Route. In these three steps, the software to hardware

converted components are virtually placed on the device with

different possibilities to meet the highest possible level of

optimizations. Once the higher level of optimization is found

then the hardware components are mapped and

interconnected together which is also called as routing. Upon

final implementation of the design, different parameters like

power utilization, area utilization in terms of hardware

complexity, time utilization which indicates minimum and

maximum path delays and speed of operations are recorded.

These parameters are disclosed through the subsequent table.

Table 1: Statistical Analysis of Synthesis Outcomes

Sr.

No.

Device Parameter Units

1.

Xilinx Virtex

– 7

Estimated

Frequency

305.997552

MHz

2. Estimated Period 3.268 ns

3. Total

Complexity

169

4. Power 0.002 W

4. Conclusion

Scheduling procedure for active task using the reconfigurable

environment is proposed through the paper. In this

assumptions, three priority tasks along with the routine task

is considered for implementation. For effective description of

the model, traffic light signals and other different conditions

are assumed. Routine task is the default task which

reconfigurable device is executing and at the same moment,

the higher priority tasks are also checked for their activeness.

If multiple priority tasks are engaged then routine task is

suspended immediately and first priority task will be

executed then after completion of the first priority task,

second priority task will be executed and after completion of

the second priority task third priority task will be executed.

Once all the priority tasks are completed, then routine task

execution is engaged. The described architecture is first time

simulated then elaborated to confirm the hardware

conversion and finally, the description is synthesized. The

outcomes are indicated through the table 1. As indicated,

estimated frequency of 305.997552 MHz is recorded which

assures 3.268 ns of maximum delay at the cost of 0.002W of

energy consumption.

References

[1] Y. -. Wang and K. -. Lin, "Implementing a general real-

time scheduling framework in the RED-Linux real-time

kernel," Proceedings 20th IEEE Real-Time Systems

Symposium (Cat. No.99CB37054), 1999, pp. 246-255,

doi: 10.1109/REAL.1999.818850.

[2] Hyungil Kim, Sungyoug Lee and Byeong-Soo Jeong,

"An improved feasible shortest path real-time fault-

tolerant scheduling algorithm," Proceedings Seventh

International Conference on Real-Time Computing

Systems and Applications, 2000, pp. 363-367, doi:

10.1109/RTCSA.2000.896412.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 687–693 | 693

[3] H. Singh, "Scheduling techniques for real-time

applications consisting of periodic task sets,"

Proceedings of 2nd IEEE Workshop on Real-Time

Applications, 1994, pp. 12-15, doi:

10.1109/RTA.1994.316133.

[4] B. C. H. Turton and T. Arslan, "A parallel genetic VLSI

architecture for combinatorial real-time applications-

disc scheduling," First International Conference on

Genetic Algorithms in Engineering Systems:

Innovations and Applications, 1995, pp. 493-498, doi:

10.1049/cp:19951097.

[5] T. F. Abdelzaher and K. G. Shin, "Comment on "A pre-

run-time scheduling algorithm for hard real-time

systems"," in IEEE Transactions on Software

Engineering, vol. 23, no. 9, pp. 599-600, Sept. 1997,

doi: 10.1109/32.629495.

[6] V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser,

"Dynamic scheduling for soft real-time distributed

object systems," Proceedings Third IEEE International

Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC 2000) (Cat. No. PR00607), 2000,

pp. 114-121, doi: 10.1109/ISORC.2000.839518.

[7] A. Mittal, G. Manimaran and C. S. R. Murthy,

"Integrated dynamic scheduling of hard and QoS

degradable real-time tasks in multiprocessor systems,"

Proceedings Fifth International Conference on Real-

Time Computing Systems and Applications (Cat.

No.98EX236), 1998, pp. 127-136, doi:

10.1109/RTCSA.1998.726408.

[8] P. Mejia-Alvarez and D. Mosse, "A responsiveness

approach for scheduling fault recovery in real-time

systems," Proceedings of the Fifth IEEE Real-Time

Technology and Applications Symposium, 1999, pp. 4-

13, doi: 10.1109/RTTAS.1999.777656.

[9] M. Caccamo and G. Buttazzo, "Optimal scheduling for

fault-tolerant and firm real-time systems," Proceedings

Fifth International Conference on Real-Time

Computing Systems and Applications (Cat.

No.98EX236), 1998, pp. 223-231, doi:

10.1109/RTCSA.1998.726422.

[10] G. Lipari and G. Buttazzo, "Scheduling real-time multi-

task applications in an open system," Proceedings of

11th Euromicro Conference on Real-Time Systems.

Euromicro RTS'99, 1999, pp. 234-241, doi:

10.1109/EMRTS.1999.777470.

