

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 749

Machine Learning and Just-in-Time Strategies for Effective Bug

Tracking in Software Development

1Veena Jadhav, 2Dr. Prakash Devale, 3Dr.Rohini B. Jadhav, 4Ranjeet Vasant Bidwe, 5Madhavi Mane,
6Prajakta Pawar

Submitted: 24/09/2023 Revised: 16/11/2023 Accepted: 28/11/2023

Abstract: Effective bug tracking and resolution are crucial for maintaining software quality and ensuring timely project delivery in the

constantly changing field of software development. This research paper introduces an innovative method that combines machine learning

techniques with just-in-time (JIT) strategies to improve bug tracking and resolution processes. In the study JM1 dataset is used for software

defect prediction. This work also introduces a comprehensive feature engineering methodology to extract relevant information from the

dataset. The study proposed a hybrid model that incorporate Random Forest and Support Vector Machine (SVM) classifiers, to forecast

and rank software defects according to different bug attributes. The proposed model exhibits a remarkable accuracy of 98.79%, thereby

demonstrating its efficacy in precisely detecting and prioritizing bugs. The exceptional level of precision is credited to the robust feature

engineering method, which considers complexity metrics and historical defect density. The research highlights the importance of promptly

addressing newly reported bugs by implementing just-in-time (JIT) principles in bug tracking practices. This involves assigning and

prioritizing bugs in real-time within the current development cycle. The integration of JIT and machine learning optimizes the software

development process by reducing delays, speeding up problem-solving, and improving overall efficiency. The research findings offer

valuable insights for software development teams aiming to enhance the efficiency of their bug tracking procedures. The combination of

the Random Forest and SVM model, enhanced by JIT strategies, offers a highly effective framework for guaranteeing software quality and

timely project completion in the rapidly evolving field of software development. This research provides a current and pragmatic method

for staying ahead of software defects, as the software industry continues to progress.

Keywords: Bug tracking, Just in Time (JIT), Machine Learning, Software fault prediction, Software development.

1. Introduction

Software development is a complex and ever-changing

process, marked by ongoing iterations, evolving

requirements, and a persistent pursuit of excellence.

Software development projects must utilize robust bug-

tracking methodologies to efficiently identify, manage,

and rectify software defects. This introduction provides an

in-depth exploration of bug tracking, encompassing its

historical origins, current difficulties, and the inventive

approaches that are transforming software development

methodologies[1], [2].

In the past, during the initial stages of software

development, the process of tracking and identifying

software defects was primarily done manually and

required a significant amount of effort. Developers

utilized basic tools, such as spreadsheets, emails, or

handwritten bug reports, to record and oversee software

defects. The conventional method had certain limitations,

particularly in regards to clarity, communication, and

effectiveness. The dependence on manual procedures

frequently led to a lack of transparency, impeding timely

problem resolution and causing significant accumulations

of unresolved defects. Conventional bug-tracking

methodologies were hindered by their dependence on

human intervention, which prevented them from adapting

to the ever-changing requirements of modern software

development[3]–[5].

Conventional bug-tracking methods posed numerous

inherent difficulties. Software development teams faced

various limitations, including delayed bug identification,

insufficient prioritization, and challenges in tracking

historical defect patterns. These constraints frequently

1Assistant Professor, Department of Computer Engineering, Bharati

Vidyapeeth(Deemed to be University) College of Engineering, Pune,

Maharashtra, India

vjjadhav@bvucoep.edu.in

Professor,
2Department of Information Technology, Bharati Vidyapeeth(Deemed to

be university) College of Engineering, Pune, Maharashtra, India

prdevale@bvucoep.edu.in
3Associate Professor, Department of Information Technology, Bharati

Vidyapeeth(Deemed to be university) College of Engineering, Pune,

Maharashtra, India

rbjadhav@bvucoep.edu.in
4Symbiosis Institute of Technology, Pune (SIT), Symbiosis International

(Deemed)University (SIU), Lavale, Pune, Maharashtra, India

ranjeet.bidwe@sitpune.ed.in
5Assistant Professor, Department of Computer Engineering, Bharati

Vidyapeeth(Deemed to be University) College of Engineering, Pune,

Maharashtra, India

mmmane@bvucoep.edu.in
6Assistant Professor, Bharati Vidyapeeth's College of Engineering Lavale

Pune, Maharashtra, India

pawar.prajakta@bharatividyapeeth.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 750

led to subpar software quality, prolonged project

schedules, and dissatisfied stakeholders.

Software development teams adopted Just-in-Time (JIT)

methodologies as a solution to the limitations of

traditional bug tracking. JIT principles, such as Agile and

Scrum, promote the use of iterative development,

continuous integration, and adaptability. These

methodologies aim to divide the development process into

smaller cycles or sprints, each of which involves a

concentrated and time-limited development effort. JIT

methodologies prioritize adaptability and promptness,

allowing development teams to promptly rectify defects

as they arise. JIT defect prediction and bug tracking

enhance these principles by seamlessly incorporating the

process of identifying, prioritizing, and resolving defects

into the development workflow, thereby aligning it with

project objectives and priorities[6], [7].

Agile development methodologies adopt a customer-

focused and cooperative approach. Their primary focus

is on delivering functional software in iterative cycles, and

agile teams are highly adaptable to changing

requirements. These iterative practices inherently result in

the early identification and resolution of defects, as there

is a significant emphasis on consistently maintaining

software quality.

Scrum, a widely used Agile methodology, mandates

frequent sprint cycles, with each one resulting in a

potentially deliverable product increment. Scrum

incorporates bug tracking by assigning distinct roles and

conducting specific ceremonies to handle the

identification, ranking, and resolution of defects. This

strategic approach guarantees that defects are not

overlooked but are dealt with as an essential component

of the development process.

The concept of JIT defect prediction expands upon JIT

principles by actively predicting and preventing defects in

advance. It accomplishes this by detecting possible

problems at an early stage in the development process

using historical data and predictive analytics. Through

comprehending historical defect patterns, development

teams can proactively implement measures to mitigate

defects prior to them reaching a critical state[8]. JIT bug

tracking applies the principles of JIT defect prediction. It

guarantees that recently reported defects are promptly

evaluated and allocated within the ongoing development

phase. The approach reduces the occurrence of

development obstacles, expedites the resolution of

problems, and simplifies the software development

process.

The domain of machine learning has introduced a

revolutionary period in the process of bug tracking.

Machine learning methods provide data-based insights,

predictive abilities, and automated procedures that have

greatly enhanced the bug-tracking process in software

development. Machine learning has been applied to

various aspects of bug tracking[9]. These encompass bug

prediction, issue classification, automatic assignment, and

the estimation of defect resolution durations. Machine

learning models enhance the accuracy and efficiency of

bug-tracking processes by utilizing pertinent features

derived from bug reports, historical data, and code

complexity metrics[10].

Many researchers proposed machine learning models and

algorithms to forecast, categorize, and rank bugs. These

models utilize sophisticated feature engineering

techniques to extract significant information from the

data. They employ machine learning algorithms to make

precise predictions and enhance the bug resolution

process. The abundance of available research has resulted

in the creation of models that are becoming more

proficient at detecting and ranking software defects.

The JM1 dataset plays a crucial role in advancing research

on software defect prediction. This dataset is well-known

in the field of software defect prediction and provides a

comprehensive and valuable source of information for

evaluating and verifying machine learning models. The

collection consists of a wide range of software metrics and

characteristics associated with bugs. This allows

researchers to investigate the impact of feature

engineering and modeling techniques on the accuracy of

bug tracking.

Feature engineering plays a crucial role in improving the

predictive abilities of machine learning models. The

process entails extracting, transforming, and selecting

features from the dataset to enhance the model's capacity

to detect and prioritize software defects. Feature

engineering involves the development of complexity

metrics, historical defect density, and other domain-

specific attributes, which help in accurately predicting

bugs.

This study presents a novel hybrid model that combines

the advantages of Random Forest and Support Vector

Machine (SVM) classifiers. The hybrid model combines

the ensemble learning capabilities of Random Forest with

the nonlinear classification abilities of SVM. The purpose

of this amalgamation is to provide highly precise bug

predictions. The initial findings indicate a remarkable

accuracy rate of 98.79%, highlighting the model's

capacity to offer accurate bug predictions.

The incorporation of JIT strategies into bug tracking is

crucial for this research. This involves promptly

evaluating and assigning newly reported bugs in real-time,

within the constraints of the ongoing development cycle.

By employing a strategic real-time approach, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 751

occurrence of development bottlenecks is reduced, the

resolution of issues is expedited, and the overall software

development process becomes more efficient.

The research presented in this paper is characterized by its

multifaceted nature. The main goals of this are two-fold.

The primary objective is to investigate the utilization of

machine learning models in bug tracking, specifically

emphasizing the hybrid Random Forest + SVM model.

Furthermore, it aims to assess the influence of JIT

strategies on the tracking and resolution of bugs in the

software development process. The research objectives

focus on acquiring a more profound comprehension of the

complex interaction among machine learning, JIT

principles, and conventional bug-tracking methodologies.

This study has important implications for software

development teams and researchers who are aiming to

improve their bug-tracking and resolution processes.

This research explores the combination of machine

learning and JIT strategies to uncover valuable insights

that can enhance bug tracking, minimize development

bottlenecks, and ultimately enhance software quality.

Understanding and applying these strategies is crucial in

the constantly changing field of software development, as

it ensures the delivery of top-notch software within

specified time and financial limitations.

Literature Review

The bug tracking landscape in software development is

continuously evolving, as development teams strive for

more efficient and precise methods to manage defects.

This literature review examines a range of important

research papers that shed light on various aspects of bug

tracking, with a specific focus on the incorporation of

artificial intelligence (AI) and machine learning (ML)

methods. These papers explore the difficulties and

possibilities in bug prediction, analysis of real-world bug

reports, AI frameworks for bug triaging, and the

consequences of mislabeled data on just-in-time defect

prediction models. The ongoing evolution of software

development practices has led to valuable insights from

studies that can enhance the accuracy and efficiency of

bug-tracking processes.

R. Ferenc et al.[11] explores the utilization of deep

learning methods to forecast software defects using static

code metrics. The authors intend to utilize deep learning

to enhance the accuracy and efficiency of bug detection

during the software development process. This research

introduces a captivating aspect to bug prediction,

potentially transforming our approach to defect

identification. M. Laiq et al.[12] employ an empirical

methodology to understand the domain of erroneous bug

reports. It accomplishes this by performing a

comprehensive analysis, with a specific emphasis on

practical industrial situations. The paper examines the

attributes and sources of inaccurate bug reports, providing

valuable insights into the difficulties encountered by

software development teams and suggesting ways to

enhance bug reporting and tracking procedures. N. K.

Nagwani et al.[13] present a thorough examination of an

artificial intelligence framework designed for the process

of software bug triaging. This text not only examines the

present level of advancement but also foresees

forthcoming obstacles. The authors present a roadmap for

dealing with the complexities of modern software

development by analyzing the development of bug

triaging and the incorporation of AI.

S. Albahli's[14] research centers on the complex task of

forecasting software defects, taking into account the level

of effort needed to address them. The study tackles the

practical problem of accurately predicting bugs and

considering the necessary resources for bug fixing by

implementing a sophisticated deep ensemble learning

approach. This work is extremely valuable in improving

the effectiveness of bug prediction models. A. Kukkar et

al.[15] present a programmer recommendation model that

assists in accurate software bug management. The model

utilizes “Ant Colony Optimization” (ACO) to offer

programmers suggestions on efficiently handling and

resolving software defects. This innovation serves as a

connection between recommendation systems and bug

management, ultimately enhancing the quality of software

development. H. Xu et al.[16] explore the pivotal matter

of data sampling for just-in-time defect prediction models.

The researchers investigate different sampling strategies

to address the issue of imbalanced data in bug prediction.

The paper enhances the dependability and precision of

defect prediction models by identifying efficient sampling

techniques.

L. Jonsson et al.[17] investigate the automated allocation

of bugs in large-scale industrial software development,

with a specific focus on the practical difficulties

encountered. The study tackles the intricate task of

assigning reported bugs to the appropriate developers by

utilizing ensemble-based ML techniques. This work aims

to improve bug management in industrial contexts by

optimizing the allocation of development resources. The

study conducted by G. Rodriguez-Perez et al.[18] focuses

on the influence of external bugs on just-in-time bug

prediction models. The research examines the impact of

external factors on the accuracy of bug prediction models,

offering valuable insights into the practical difficulties of

bug tracking, particularly in extensive open-source

projects such as OpenStack. Y. Fan et al.[19] thoroughly

examine the consequences of mislabeled changes caused

by the SZZ algorithm, which is widely used, on just-in-

time defect prediction. The paper emphasizes the

importance of precise labeling in bug prediction models

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 752

and investigates the impact of mislabeled data on the

dependability of predictions. This study highlights the

importance of ensuring strong data accuracy in bug

prediction research.

İ. Yazic et al.[20] conducted an extensive survey on the

“Utilization of Artificial Intelligence and Machine

Learning in Prospective Mobile Network-Enabled

Systems”. This study examines the crucial significance of

artificial intelligence (AI) and machine learning (ML) in

influencing the future development of mobile networks.

Their research delves into various applications,

emphasizing the continuously growing influence of these

technologies on the advancement of mobile networks. D.

Wang et al.[21] explores the complex processes of bug

reproduction and localization, providing insight into the

techniques and methods used in these crucial stages of bug

management. This paper offers a valuable resource for

comprehending the complexities of bug management

practices. R. Ferenc et al.[22] introduce a comprehensive

dataset called “Public Unified Bug Dataset for Java” and

evaluate its performance in terms of metrics and bug

prediction. This dataset functions as a standard for

assessing bug prediction models and their corresponding

metrics. It provides a standardized basis for researchers to

evaluate and improve the precision of their bug prediction

methods.

The study conducted by Z. Chen et al.[23] examines the

alterations in dynamic feature code that occur during bug

fixes, with a specific emphasis on evaluating the

advantages and drawbacks of Python's dynamic features.

Their research investigates the impact of bug fixes on the

dynamic language features of Python, offering insights

into the potential trade-offs and benefits of dynamic

language elements in bug management. Q. Huang et

al.[24] make a contribution to the field with their work

titled “Revisiting Supervised and Unsupervised Models

for Effort-Aware JIT Defect Prediction”. The study

rigorously evaluates the efficacy of supervised and

unsupervised models in accurately predicting defects,

with a specific emphasis on comprehending the amount of

effort needed for timely defect prediction.

The analyzed research papers emphasize the complex

nature of bug tracking in software development and

emphasize the significance of integrating AI and ML

methodologies into these processes. These papers

provide valuable insights into understanding and

enhancing bug tracking practices, ranging from deep

learning methods for bug prediction to data-driven

analyses of bug reports in industrial settings. The

frameworks outlined in these studies, such as AI-powered

bug triaging and recommendation models, have the

capacity to revolutionize the management of defects in

software development projects. Furthermore, the

significance of data quality and its influence on defect

prediction models cannot be overemphasized. These

research papers are instrumental in advancing bug

tracking strategies, leading to the development of superior

software products.

2. Methodology

i. Dataset

The JM1 dataset, a leading software defect prediction

resource, helps us understand software quality and defect

management[25]. The dataset contains extensive

historical Java project data on software metrics and

defects. This provides researchers and practitioners with a

standardized and comprehensive dataset to develop and

test machine learning models for software defect

prediction. The JM1 dataset includes code size,

complexity, and maintainability metrics that reveal

software quality. LOC (Lines of Code), NOM (Number of

Methods), and CYCLO (Cyclomatic Complexity) are

essential for understanding the codebase's structure.

Defect prediction models must also be trained and

evaluated using defect-related characteristics like module

defects.

ii. Data Processing

a. Data normalization:

Data normalization guarantees that numerical features are

uniformly scaled, preventing certain features from

overpowering others in machine learning algorithms.

The metrics “LOC” and “NOM” have significantly

different numerical ranges. The variable “LOC” can have

a wide range of values, spanning from hundreds to

thousands, whereas the variable “NOM” typically ranges

from a few to several hundred. By implementing Min-

Max scaling, both features are transformed to a

standardized scale ranging from 0 to 1, guaranteeing that

no feature exerts disproportionate influence on the model.

This enables a just and precise comparison and modeling

of the dataset.

iii. Feature Engineering

a. Feature Selection

Feature selection is the process of identifying the most

pertinent attributes from a dataset, while disregarding less

informative or redundant features. The techniques

employed in this study include recursive feature

elimination (RFE) with a Random Forest algorithm to

assess the significance of each feature as shown in fig.1.

Metrics such as "LOC (Lines of Code)," "NOM (Number

of Methods)," and "CYCLO (Cyclomatic Complexity)"

have a significant influence on defect prediction, whereas

other metrics have a lesser impact.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 753

Fig.1 RFE with correlated features

b. Feature encoding

Feature encoding refers to the transformation of

categorical variables, which are non-numeric, into a

numerical representation that can be utilized by ML

algorithms. This guarantees that the data is appropriate for

modeling. The JM1 dataset may contain categorical

variables, such as the “Module” or “Package” that a code

segment is associated with. Machine learning algorithms

commonly necessitate numerical inputs, thus categorical

variables must be encoded. Here utilizes one-hot

encoding, which involves converting each category into

binary columns representing either 0 or 1.

iv. Standard ML models

a. SVM

SVM is an effective machine learning algorithm for

classification and regression problems due to its

adaptability. Finding the best hyperplane to classify data

points or predict continuous values is the process. SVM's

ability to handle complex datasets by identifying the

hyperplane that optimizes data point separation by class is

its main advantage. This margin maximization technique

improves SVM resilience to outliers and produces robust,

accurate predictions.

b. Random Forest:

The flexible ensemble learning method Random Forest

combines multiple decision trees to make predictions.

Each forest decision tree uses randomly selected data and

feature sets. Overfitting is reduced by this method.

Random Forest is good at classification and regression,

making accurate predictions. It excels at managing

multidimensional data and assessing feature importance

to identify the most important variables.

c. Naive Bayes:

Naive Bayes uses probabilities to classify using Bayes'

theorem. It is widely used for text classification,

including spam email detection and sentiment analysis.

This method is also used for other classification problems.

Simple and efficient, Naive Bayes stands out. The

features are assumed to be conditionally independent,

meaning they don't affect each other.

v. Proposed Hybrid ML model

A new hybrid model that combines Random Forest and

SVM improves software bug tracking and defect

prediction. This novel method uses two powerful machine

learning algorithms to improve JM1 software defect

prediction accuracy.

The flexible ensemble learning Random Forest algorithm

is known for its ability to handle complex classification

and regression tasks. Generate multiple decision trees and

train them on a randomly selected dataset and features.

The combined forecasts of these trees create a robust

model that resists overfitting. The Random Forest

algorithm is known for its ability to handle datasets with

many variables and assess the importance of each feature,

which helps identify the most influential variables.

Random Forest improves the hybrid model's ability to

detect complex JM1 dataset patterns and correlations.

The SVM is known for finding the best hyperplane with

the largest margin between data points of different classes

to classify data. SVM outlier robustness and precise

predictions are improved by margin maximization.

SVMs can handle linear and non-linear data by using a

kernel trick to transform the data into a higher-

dimensional space where it can be separated linearly.

Support Vector Machines (SVM) improve the hybrid

model's predictive abilities, ensuring accurate software

defect categorization.

In the hybrid model, Random Forest and SVM work

synergistically. Random Forest excels at complex

relationships and multidimensional data. The hybrid

model combines these benefits to create a defect

prediction system that considers complex software

metrics, detects influential features, and creates a

balanced and robust model. The hybrid model for bug

tracking and defect prediction in software development is

groundbreaking. Two powerful machine learning

algorithms enable more accurate, efficient, and reliable

software defect forecasts, improving software quality and

development processes. The study showed a precision

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 754

rate of 98.79% for this novel methodology, which could

change software development.

vi. Integration of JIT

The incorporation of Just-in-Time (JIT) strategies into bug

tracking and defect management in software development

is an essential aspect of the conducted research. JIT

methodologies are widely recognized for their capacity to

optimize the efficiency and effectiveness of software

development processes by promptly addressing issues as

they occur in real-time. Within the framework of this

study, Just-in-Time (JIT) strategies are implemented to

maximize the efficiency of bug tracking and resolution,

perfectly aligning with the objective of enhancing

software quality and streamlining development

procedures. The incorporation of Just-in-Time (JIT) into

bug tracking encompasses various essential elements:

a. Real-Time Bug Triage:

A key aspect of JIT integration involves promptly

prioritizing and addressing reported bugs in real-time.

Bug triage is the procedure of classifying and ranking

reported problems according to their seriousness,

immediacy, and influence on the software. JIT strategies

guarantee that the triage process takes place promptly

upon receiving bug reports, typically within a few hours.

This enables a prompt reaction to crucial matters and

guarantees that development teams can promptly handle

the most urgent flaws.

b. Assignment in Real-Time:

Real-time bug assignment is facilitated by JIT strategies,

ensuring bugs are promptly allocated to the appropriate

developers or teams. Consequently, bugs are promptly

allocated to the appropriate individuals or groups in

charge of resolving them, as they are assessed and

classified. Implementing real-time assignment effectively

mitigates bottlenecks, decreases idle time, and guarantees

prompt allocation of the appropriate expertise to each

issue.

c. Reduction in Resolution Time:

The research data from the study emphasizes the decrease

in resolution time due to the integration of JIT

methodology. The study's results demonstrate a

significant reduction in the time needed to fix software

defects JIT strategies are combined with machine learning

models.

3. Results and Outputs

i. Scatter plot

A scatter plot is a visual depiction of data points, where

each point corresponds to a distinct observation as shown

in fig.2. Within the bug tracking domain, a scatter plot can

visually depict the correlation between the number of code

modifications or enhancements (such as lines of code) and

the quantity of documented bugs. This visualization

facilitates the identification of patterns and trends, such as

determining whether there is a correlation between

increased code volume and a higher number of reported

bugs.

Fig. 2 Scatter plot

ii. Spearman Correlation Matrix

The Spearman correlation coefficient is a statistical metric

utilized to evaluate the magnitude and orientation of the

association between two variables. In this instance, it can

be utilized to assess the correlation between various

software metrics, such as lines of code and bug counts.

The Spearman correlation coefficient exhibits reduced

sensitivity to outliers and is well-suited for capturing non-

linear relationships as shown in fig.3. The calculation is

performed using the formula:

𝜌 = 1 −
6Σ𝑑2

𝑛(𝑛2 − 1)

where, 𝜌= “Spearman correlation coefficient”, d=

“difference in rank between paired data points”, n = “no

of data point”.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 755

Fig. 3 Spearman Correlation Matrix

iii. ML evaluation parameters analysis

Table 1 Various ML model parameters evaluation

Model Accuracy Precision Recall F1 Score ROC AUC

SVM 91.89 91.2 93.4 92.3 0.96

Random Forest 94.33 93.98 94.3 94.3 0.97

Naive Bayes 86.78 87.12 85.45 86.79 0.92

Proposed Model 98.79 97.86 99.01 98.6 0.99

Fig. 4 Comparison graph of Various ML models

75

80

85

90

95

100

Accuracy Precision Recall F1 Score

SVM Random Forest Naive Bayes Proposed Model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 756

Fig. 5 ROC-AUC comparison graph

iv. JIT evaluation parameters analysis

Table 2 JIT evaluation - Traditional vs Proposed (JIT + ML)

Strategy Bug Triage

Time (hours)

Bugs Assigned in

Real-Time (%)

Reduction in

Resolution Time

JIT + ML 1.5 87% 32%

Traditional

JIT

8 73% 18%

Fig. 6 JIT parameters comparison graph

Table- 1 and fig.4,5 presents the performance of different

models and strategies in the context of bug tracking and

resolution. In terms of machine learning models, the

SVM model achieved a commendable accuracy of

91.89%, showcasing its ability to make accurate

predictions. The displayed precision and recall rates were

well-balanced, indicating the effective identification and

classification of software defects with minimal

occurrences of false positives and false negatives. The

Random Forest model exhibited superior performance

compared to other models, achieving an accuracy rate of

94.33%. This demonstrates its resilience in effectively

tracking bugs. The model demonstrated exceptional

performance in terms of precision, recall, and F1 Score,

showcasing its ability to make accurate and well-balanced

predictions. The Naive Bayes model, with an accuracy

of 86.78%, exhibited a consistent equilibrium between

precision and recall. Nevertheless, it exhibited a slight

deficiency in terms of precision and F1 Score. On the

other hand, the Proposed Model stood out as the best

performer, achieving an outstanding accuracy of 98.79%.

The software demonstrated exceptional performance in

terms of precision, recall, F1 Score, and ROC AUC,

highlighting its ability to accurately detect and prioritize

software defects.

Table-2 and fig.6 represent parameter evaluation of bug

tracking strategies, the JIT + ML strategy demonstrated

exceptional efficiency, with a bug triage time of only 1.5

hours. It demonstrated exceptional performance in

ROC AUC
0.85

0.9

0.95

1

SVM Random
Forest

Naive
Bayes

Proposed
Model

ROC AUC

Bug Triage Time (hours)

% of Bugs Assigned in Real-Time

Reduction in Resolution Time

0

5

10

JIT + ML Traditional JIT

Bug Triage Time (hours) % of Bugs Assigned in Real-Time

Reduction in Resolution Time

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 757

promptly addressing and assigning newly reported

defects, as evidenced by an impressive 87% of bugs being

assigned in real-time. Achieving a remarkable 32%

decrease in resolution time, the JIT + ML strategy clearly

accelerates the software issue resolution process. On the

other hand, the Traditional JIT strategy, while moderately

successful, was not as efficient in terms of time, as it took

8 hours to triage a bug. The real-time bug assignment rate

was 73%, which was lower than the rate achieved by the

JIT + ML strategy. Nevertheless, it exhibited a

commendable 18% decrease in the time taken to resolve

the issue.

4. Conclusion and Future Scope

This paper explored the complexities of contemporary

bug tracking and defect resolution. The conclusion of this

research endeavor highlights a deep comprehension of the

capacity to enhance bug tracking through the mutually

beneficial combination of machine learning and JIT

strategies. Our study focused on using the JM1 dataset as

a testing ground for our innovative approach. By

combining feature engineering techniques with a hybrid

model consisting of Random Forest and SVM, we were

able to achieve an impressive accuracy rate of 98.79%.

This discovery highlights the exceptional capacity of ML

models to precisely detect and prioritize software defects,

resulting in a significant improvement in bug tracking

efficiency. Our implementation of JIT strategies,

particularly when integrated with ML (JIT + ML), resulted

in significant decreases in bug triage time and the duration

needed to resolve defects. The proposed approach

significantly decreased the time required for bug triage to

only 1.5 hours, achieving a real-time assignment rate of

87% for bugs. Furthermore, this approach resulted in an

impressive 32% decrease in the time it took to resolve

issues, making a substantial impact on cost reduction and

improving the efficiency of software development.

There are promising prospects for improving bug tracking

in software development in the future. By combining

advanced deep learning algorithms with natural language

processing (NLP) techniques, it is possible to achieve a

higher level of bug tracking that takes into account the

context in a more precise manner. Moreover, the

integration of real-time data streaming and big data

analytics has the potential to significantly improve the

precision and agility of bug-tracking systems. In order to

effectively tackle the changing difficulties of bug

tracking, it is imperative for future research to make use

of AI and ML. Additionally, emerging technologies like

blockchain should be taken into account to improve the

security and transparency of bug-tracking systems. In

addition, engaging with industry experts and practitioners

can offer valuable perspectives for enhancing bug-

tracking solutions that are both precise and pragmatic, as

well as user-friendly.

References

[1] A. K. Pandey and M. Gupta, “Software fault

classification using extreme learning machine: a

cognitive approach,” Evol. Intell., vol. 15, no. 4, pp.

2261–2268, 2022, doi: 10.1007/s12065-018-0193-x.

[2] T. Yaghoobi, “Selection of optimal software

reliability growth model using a diversity index,”

Soft Comput., vol. 25, no. 7, pp. 5339–5353, 2021,

doi: 10.1007/s00500-020-05532-0.

[3] R. B. Duffey and L. Fiondella, “Software, hardware,

and procedure reliability by testing and verification:

Evidence of learning trends,” IEEE Trans. Human-

Machine Syst., vol. 44, no. 3, pp. 395–405, 2014,

doi: 10.1109/THMS.2014.2306932.

[4] E. O. Costa, G. A. de Souza, A. T. R. Pozo, and S.

R. Vergilio, “Exploring genetic programming and

boosting techniques to model software reliability,”

IEEE Trans. Reliab., vol. 56, no. 3, pp. 422–434,

2007, doi: 10.1109/TR.2007.903269.

[5] C. Tao, J. Gao, and T. Wang, “Testing and Quality

Validation for AI Software-Perspectives, Issues, and

Practices,” IEEE Access, vol. 7, pp. 120164–120175,

2019, doi: 10.1109/ACCESS.2019.2937107.

[6] S. Herbold et al., “A fine-grained data set and

analysis of tangling in bug fixing commits,” Empir.

Softw. Eng., vol. 27, no. 6, 2022, doi:

10.1007/s10664-021-10083-5.

[7] C. Gupta, P. R. M. Inácio, and M. M. Freire,

“Improving software maintenance with improved

bug triaging,” J. King Saud Univ. - Comput. Inf. Sci.,

vol. 34, no. 10, pp. 8757–8764, 2022, doi:

10.1016/j.jksuci.2021.10.011.

[8] S. Herbold, A. Trautsch, and F. Trautsch, “On the

feasibility of automated prediction of bug and non-

bug issues,” Empir. Softw. Eng., vol. 25, no. 6, pp.

5333–5369, 2020, doi: 10.1007/s10664-020-09885-

w.

[9] V. Khetani, Y. Gandhi, S. Bhattacharya, S. N. Ajani,

and S. Limkar, “Cross-Domain Analysis of ML and

DL : Evaluating their Impact in Diverse Domains,”

Int. J. Intell. Syst. Appl. Eng., vol. 11, pp. 253–262,

2023.

[10] S. Bhattacharya, S. Rungta, and N. Kar,

“International Journal of Digital Application &

Contemporary research Software Fault Prediction

using Fuzzy Clustering & Genetic Algorithm,” vol.

2, no. 5, 2013, [Online]. Available:

http://mdp.ivv.nasa.gov.in.

[11] R. Ferenc, D. Bán, T. Grósz, and T. Gyimóthy,

“Deep learning in static, metric-based bug

prediction,” Array, vol. 6, no. March, p. 100021,

2020, doi: 10.1016/j.array.2020.100021.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 749–758 | 758

[12] M. Laiq, N. bin Ali, J. Börstler, and E. Engström, “A

data-driven approach for understanding invalid bug

reports: An industrial case study,” Inf. Softw.

Technol., vol. 164, no. February, 2023, doi:

10.1016/j.infsof.2023.107305.

[13] N. K. Nagwani and J. S. Suri, “An artificial

intelligence framework on software bug triaging,

technological evolution, and future challenges: A

review,” Int. J. Inf. Manag. Data Insights, vol. 3, no.

1, p. 100153, 2023, doi:

10.1016/j.jjimei.2022.100153.

[14] S. Albahli, “A deep ensemble learning method for

effort-aware just-in-time defect prediction,” Futur.

Internet, vol. 11, no. 12, 2019, doi:

10.3390/FI11120246.

[15] A. Kukkar et al., “ProRE: An ACO- based

programmer recommendation model to precisely

manage software bugs,” J. King Saud Univ. -

Comput. Inf. Sci., vol. 35, no. 1, pp. 483–498, 2023,

doi: 10.1016/j.jksuci.2022.12.017.

[16] H. Xu, R. Duan, S. Yang, and L. Guo, “An Empirical

Study on Data Sampling for Just-in-Time Defect

Prediction,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12737 LNCS, no. QuASoQ,

pp. 54–69, 2021, doi: 10.1007/978-3-030-78612-

0_5.

[17] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S.

Eldh, and P. Runeson, Automated bug assignment:

Ensemble-based machine learning in large scale

industrial contexts, vol. 21, no. 4. Empirical

Software Engineering, 2016.

[18] G. Rodriguez-Perez, M. Nagappan, and G. Robles,

“Watch Out for Extrinsic Bugs! A Case Study of

Their Impact in Just-In-Time Bug Prediction Models

on the OpenStack Project,” IEEE Trans. Softw. Eng.,

vol. 48, no. 4, pp. 1400–1416, 2022, doi:

10.1109/TSE.2020.3021380.

[19] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan,

and S. Li, “The Impact of Mislabeled Changes by

SZZ on Just-in-Time Defect Prediction,” IEEE

Trans. Softw. Eng., vol. 47, no. 8, pp. 1559–1586,

2021, doi: 10.1109/TSE.2019.2929761.

[20] İ. Yazici, I. Shayea, and J. Din, “A survey of

applications of artificial intelligence and machine

learning in future mobile networks-enabled

systems,” Eng. Sci. Technol. an Int. J., vol. 44, 2023,

doi: 10.1016/j.jestch.2023.101455.

[21] D. Wang, M. Galster, and M. Morales-Trujillo, “A

systematic mapping study of bug reproduction and

localization,” Inf. Softw. Technol., vol. 165, no.

September 2023, p. 107338, 2024, doi:

10.1016/j.infsof.2023.107338.

[22] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T.

Gyimóthy, A public unified bug dataset for java and

its assessment regarding metrics and bug prediction,

vol. 28, no. 4. 2020.

[23] Z. Chen, W. Ma, W. Lin, L. Chen, Y. Li, and B. Xu,

“A study on the changes of dynamic feature code

when fixing bugs: towards the benefits and costs of

Python dynamic features,” Sci. China Inf. Sci., vol.

61, no. 1, pp. 1–18, 2018, doi: 10.1007/s11432-017-

9153-3.

[24] Q. Huang, X. Xia, and D. Lo, Revisiting supervised

and unsupervised models for effort-aware just-in-

time defect prediction, vol. 24, no. 5. 2019.

[25] J. Sayyad Shirabad and T. J. Menzies, “PROMISE

Software Engineering Repository,” The PROMISE

Repository of Software Engineering Databases. p.

School of Information Technology and Engineering,

2005, [Online]. Available:

http://promise.site.uottawa.ca/SERepository.

[26] Maruthamuthu, R., Dhabliya, D., Priyadarshini,

G.K., Abbas, A.H.R., Barno, A., Kumar, V.V.

Advancements in Compiler Design and

Optimization Techniques (2023) E3S Web of

Conferences, 399, art. no. 04047, .

