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Abstract: Effective bug tracking and resolution are crucial for maintaining software quality and ensuring timely project delivery in the 

constantly changing field of software development.  This research paper introduces an innovative method that combines machine learning 

techniques with just-in-time (JIT) strategies to improve bug tracking and resolution processes. In the study JM1 dataset is used for software 

defect prediction. This work also introduces a comprehensive feature engineering methodology to extract relevant information from the 

dataset.  The study proposed a hybrid model that incorporate Random Forest and Support Vector Machine (SVM) classifiers, to forecast 

and rank software defects according to different bug attributes. The proposed model exhibits a remarkable accuracy of 98.79%, thereby 

demonstrating its efficacy in precisely detecting and prioritizing bugs.   The exceptional level of precision is credited to the robust feature 

engineering method, which considers complexity metrics and historical defect density. The research highlights the importance of promptly 

addressing newly reported bugs by implementing just-in-time (JIT) principles in bug tracking practices. This involves assigning and 

prioritizing bugs in real-time within the current development cycle.   The integration of JIT and machine learning optimizes the software 

development process by reducing delays, speeding up problem-solving, and improving overall efficiency. The research findings offer 

valuable insights for software development teams aiming to enhance the efficiency of their bug tracking procedures.  The combination of 

the Random Forest and SVM model, enhanced by JIT strategies, offers a highly effective framework for guaranteeing software quality and 

timely project completion in the rapidly evolving field of software development.  This research provides a current and pragmatic method 

for staying ahead of software defects, as the software industry continues to progress.  

Keywords: Bug tracking, Just in Time (JIT), Machine Learning, Software fault prediction, Software development. 

1. Introduction 

Software development is a complex and ever-changing 

process, marked by ongoing iterations, evolving 

requirements, and a persistent pursuit of excellence.   

Software development projects must utilize robust bug-

tracking methodologies to efficiently identify, manage, 

and rectify software defects. This introduction provides an 

in-depth exploration of bug tracking, encompassing its 

historical origins, current difficulties, and the inventive 

approaches that are transforming software development 

methodologies[1], [2].  

In the past, during the initial stages of software 

development, the process of tracking and identifying 

software defects was primarily done manually and 

required a significant amount of effort.   Developers 

utilized basic tools, such as spreadsheets, emails, or 

handwritten bug reports, to record and oversee software 

defects.   The conventional method had certain limitations, 

particularly in regards to clarity, communication, and 

effectiveness. The dependence on manual procedures 

frequently led to a lack of transparency, impeding timely 

problem resolution and causing significant accumulations 

of unresolved defects. Conventional bug-tracking 

methodologies were hindered by their dependence on 

human intervention, which prevented them from adapting 

to the ever-changing requirements of modern software 

development[3]–[5].  

Conventional bug-tracking methods posed numerous 

inherent difficulties. Software development teams faced 

various limitations, including delayed bug identification, 

insufficient prioritization, and challenges in tracking 

historical defect patterns.   These constraints frequently 
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led to subpar software quality, prolonged project 

schedules, and dissatisfied stakeholders.  

Software development teams adopted Just-in-Time (JIT) 

methodologies as a solution to the limitations of 

traditional bug tracking. JIT principles, such as Agile and 

Scrum, promote the use of iterative development, 

continuous integration, and adaptability. These 

methodologies aim to divide the development process into 

smaller cycles or sprints, each of which involves a 

concentrated and time-limited development effort. JIT 

methodologies prioritize adaptability and promptness, 

allowing development teams to promptly rectify defects 

as they arise. JIT defect prediction and bug tracking 

enhance these principles by seamlessly incorporating the 

process of identifying, prioritizing, and resolving defects 

into the development workflow, thereby aligning it with 

project objectives and priorities[6], [7].  

Agile development methodologies adopt a customer-

focused and cooperative approach.   Their primary focus 

is on delivering functional software in iterative cycles, and 

agile teams are highly adaptable to changing 

requirements. These iterative practices inherently result in 

the early identification and resolution of defects, as there 

is a significant emphasis on consistently maintaining 

software quality.  

Scrum, a widely used Agile methodology, mandates 

frequent sprint cycles, with each one resulting in a 

potentially deliverable product increment.  Scrum 

incorporates bug tracking by assigning distinct roles and 

conducting specific ceremonies to handle the 

identification, ranking, and resolution of defects.   This 

strategic approach guarantees that defects are not 

overlooked but are dealt with as an essential component 

of the development process.  

The concept of JIT defect prediction expands upon JIT 

principles by actively predicting and preventing defects in 

advance. It accomplishes this by detecting possible 

problems at an early stage in the development process 

using historical data and predictive analytics. Through 

comprehending historical defect patterns, development 

teams can proactively implement measures to mitigate 

defects prior to them reaching a critical state[8]. JIT bug 

tracking applies the principles of JIT defect prediction. It 

guarantees that recently reported defects are promptly 

evaluated and allocated within the ongoing development 

phase. The approach reduces the occurrence of 

development obstacles, expedites the resolution of 

problems, and simplifies the software development 

process.  

The domain of machine learning has introduced a 

revolutionary period in the process of bug tracking.   

Machine learning methods provide data-based insights, 

predictive abilities, and automated procedures that have 

greatly enhanced the bug-tracking process in software 

development. Machine learning has been applied to 

various aspects of bug tracking[9]. These encompass bug 

prediction, issue classification, automatic assignment, and 

the estimation of defect resolution durations.   Machine 

learning models enhance the accuracy and efficiency of 

bug-tracking processes by utilizing pertinent features 

derived from bug reports, historical data, and code 

complexity metrics[10].  

Many researchers proposed machine learning models and 

algorithms to forecast, categorize, and rank bugs. These 

models utilize sophisticated feature engineering 

techniques to extract significant information from the 

data. They employ machine learning algorithms to make 

precise predictions and enhance the bug resolution 

process.  The abundance of available research has resulted 

in the creation of models that are becoming more 

proficient at detecting and ranking software defects.  

The JM1 dataset plays a crucial role in advancing research 

on software defect prediction. This dataset is well-known 

in the field of software defect prediction and provides a 

comprehensive and valuable source of information for 

evaluating and verifying machine learning models.   The 

collection consists of a wide range of software metrics and 

characteristics associated with bugs. This allows 

researchers to investigate the impact of feature 

engineering and modeling techniques on the accuracy of 

bug tracking.  

Feature engineering plays a crucial role in improving the 

predictive abilities of machine learning models.   The 

process entails extracting, transforming, and selecting 

features from the dataset to enhance the model's capacity 

to detect and prioritize software defects. Feature 

engineering involves the development of complexity 

metrics, historical defect density, and other domain-

specific attributes, which help in accurately predicting 

bugs.  

This study presents a novel hybrid model that combines 

the advantages of Random Forest and Support Vector 

Machine (SVM) classifiers.   The hybrid model combines 

the ensemble learning capabilities of Random Forest with 

the nonlinear classification abilities of SVM. The purpose 

of this amalgamation is to provide highly precise bug 

predictions.  The initial findings indicate a remarkable 

accuracy rate of 98.79%, highlighting the model's 

capacity to offer accurate bug predictions.  

The incorporation of JIT strategies into bug tracking is 

crucial for this research.   This involves promptly 

evaluating and assigning newly reported bugs in real-time, 

within the constraints of the ongoing development cycle. 

By employing a strategic real-time approach, the 
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occurrence of development bottlenecks is reduced, the 

resolution of issues is expedited, and the overall software 

development process becomes more efficient.  

The research presented in this paper is characterized by its 

multifaceted nature.  The main goals of this are two-fold.   

The primary objective is to investigate the utilization of 

machine learning models in bug tracking, specifically 

emphasizing the hybrid Random Forest + SVM model.   

Furthermore, it aims to assess the influence of JIT 

strategies on the tracking and resolution of bugs in the 

software development process.   The research objectives 

focus on acquiring a more profound comprehension of the 

complex interaction among machine learning, JIT 

principles, and conventional bug-tracking methodologies.  

This study has important implications for software 

development teams and researchers who are aiming to 

improve their bug-tracking and resolution processes.   

This research explores the combination of machine 

learning and JIT strategies to uncover valuable insights 

that can enhance bug tracking, minimize development 

bottlenecks, and ultimately enhance software quality. 

Understanding and applying these strategies is crucial in 

the constantly changing field of software development, as 

it ensures the delivery of top-notch software within 

specified time and financial limitations.  

Literature Review 

The bug tracking landscape in software development is 

continuously evolving, as development teams strive for 

more efficient and precise methods to manage defects. 

This literature review examines a range of important 

research papers that shed light on various aspects of bug 

tracking, with a specific focus on the incorporation of 

artificial intelligence (AI) and machine learning (ML) 

methods.   These papers explore the difficulties and 

possibilities in bug prediction, analysis of real-world bug 

reports, AI frameworks for bug triaging, and the 

consequences of mislabeled data on just-in-time defect 

prediction models.   The ongoing evolution of software 

development practices has led to valuable insights from 

studies that can enhance the accuracy and efficiency of 

bug-tracking processes. 

R. Ferenc et al.[11] explores the utilization of deep 

learning methods to forecast software defects using static 

code metrics. The authors intend to utilize deep learning 

to enhance the accuracy and efficiency of bug detection 

during the software development process. This research 

introduces a captivating aspect to bug prediction, 

potentially transforming our approach to defect 

identification. M. Laiq et al.[12] employ an empirical 

methodology to understand the domain of erroneous bug 

reports.   It accomplishes this by performing a 

comprehensive analysis, with a specific emphasis on 

practical industrial situations.   The paper examines the 

attributes and sources of inaccurate bug reports, providing 

valuable insights into the difficulties encountered by 

software development teams and suggesting ways to 

enhance bug reporting and tracking procedures. N. K. 

Nagwani et al.[13] present a thorough examination of an 

artificial intelligence framework designed for the process 

of software bug triaging.   This text not only examines the 

present level of advancement but also foresees 

forthcoming obstacles. The authors present a roadmap for 

dealing with the complexities of modern software 

development by analyzing the development of bug 

triaging and the incorporation of AI.  

S. Albahli's[14] research centers on the complex task of 

forecasting software defects, taking into account the level 

of effort needed to address them. The study tackles the 

practical problem of accurately predicting bugs and 

considering the necessary resources for bug fixing by 

implementing a sophisticated deep ensemble learning 

approach.   This work is extremely valuable in improving 

the effectiveness of bug prediction models. A. Kukkar et 

al.[15] present a programmer recommendation model that 

assists in accurate software bug management. The model 

utilizes “Ant Colony Optimization” (ACO) to offer 

programmers suggestions on efficiently handling and 

resolving software defects. This innovation serves as a 

connection between recommendation systems and bug 

management, ultimately enhancing the quality of software 

development. H. Xu et al.[16] explore the pivotal matter 

of data sampling for just-in-time defect prediction models.   

The researchers investigate different sampling strategies 

to address the issue of imbalanced data in bug prediction. 

The paper enhances the dependability and precision of 

defect prediction models by identifying efficient sampling 

techniques.  

L. Jonsson et al.[17] investigate the automated allocation 

of bugs in large-scale industrial software development, 

with a specific focus on the practical difficulties 

encountered. The study tackles the intricate task of 

assigning reported bugs to the appropriate developers by 

utilizing ensemble-based ML techniques. This work aims 

to improve bug management in industrial contexts by 

optimizing the allocation of development resources. The 

study conducted by G. Rodriguez-Perez et al.[18] focuses 

on the influence of external bugs on just-in-time bug 

prediction models.   The research examines the impact of 

external factors on the accuracy of bug prediction models, 

offering valuable insights into the practical difficulties of 

bug tracking, particularly in extensive open-source 

projects such as OpenStack. Y. Fan et al.[19] thoroughly 

examine the consequences of mislabeled changes caused 

by the SZZ algorithm, which is widely used, on just-in-

time defect prediction.   The paper emphasizes the 

importance of precise labeling in bug prediction models 
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and investigates the impact of mislabeled data on the 

dependability of predictions.   This study highlights the 

importance of ensuring strong data accuracy in bug 

prediction research.  

İ. Yazic et al.[20] conducted an extensive survey on the 

“Utilization of Artificial Intelligence and Machine 

Learning in Prospective Mobile Network-Enabled 

Systems”. This study examines the crucial significance of 

artificial intelligence (AI) and machine learning (ML) in 

influencing the future development of mobile networks. 

Their research delves into various applications, 

emphasizing the continuously growing influence of these 

technologies on the advancement of mobile networks.  D. 

Wang et al.[21] explores the complex processes of bug 

reproduction and localization, providing insight into the 

techniques and methods used in these crucial stages of bug 

management. This paper offers a valuable resource for 

comprehending the complexities of bug management 

practices.  R. Ferenc et al.[22] introduce a comprehensive 

dataset called “Public Unified Bug Dataset for Java” and 

evaluate its performance in terms of metrics and bug 

prediction. This dataset functions as a standard for 

assessing bug prediction models and their corresponding 

metrics. It provides a standardized basis for researchers to 

evaluate and improve the precision of their bug prediction 

methods.  

The study conducted by Z. Chen et al.[23] examines the 

alterations in dynamic feature code that occur during bug 

fixes, with a specific emphasis on evaluating the 

advantages and drawbacks of Python's dynamic features. 

Their research investigates the impact of bug fixes on the 

dynamic language features of Python, offering insights 

into the potential trade-offs and benefits of dynamic 

language elements in bug management. Q. Huang et 

al.[24] make a contribution to the field with their work 

titled “Revisiting Supervised and Unsupervised Models 

for Effort-Aware JIT Defect Prediction”. The study 

rigorously evaluates the efficacy of supervised and 

unsupervised models in accurately predicting defects, 

with a specific emphasis on comprehending the amount of 

effort needed for timely defect prediction.   

The analyzed research papers emphasize the complex 

nature of bug tracking in software development and 

emphasize the significance of integrating AI and ML 

methodologies into these processes.   These papers 

provide valuable insights into understanding and 

enhancing bug tracking practices, ranging from deep 

learning methods for bug prediction to data-driven 

analyses of bug reports in industrial settings.   The 

frameworks outlined in these studies, such as AI-powered 

bug triaging and recommendation models, have the 

capacity to revolutionize the management of defects in 

software development projects.   Furthermore, the 

significance of data quality and its influence on defect 

prediction models cannot be overemphasized.   These 

research papers are instrumental in advancing bug 

tracking strategies, leading to the development of superior 

software products. 

2. Methodology 

i. Dataset 

The JM1 dataset, a leading software defect prediction 

resource, helps us understand software quality and defect 

management[25]. The dataset contains extensive 

historical Java project data on software metrics and 

defects. This provides researchers and practitioners with a 

standardized and comprehensive dataset to develop and 

test machine learning models for software defect 

prediction.  The JM1 dataset includes code size, 

complexity, and maintainability metrics that reveal 

software quality. LOC (Lines of Code), NOM (Number of 

Methods), and CYCLO (Cyclomatic Complexity) are 

essential for understanding the codebase's structure.   

Defect prediction models must also be trained and 

evaluated using defect-related characteristics like module 

defects.  

ii. Data Processing 

a. Data normalization: 

Data normalization guarantees that numerical features are 

uniformly scaled, preventing certain features from 

overpowering others in machine learning algorithms.    

The metrics “LOC” and “NOM” have significantly 

different numerical ranges.   The variable “LOC” can have 

a wide range of values, spanning from hundreds to 

thousands, whereas the variable “NOM” typically ranges 

from a few to several hundred. By implementing Min-

Max scaling, both features are transformed to a 

standardized scale ranging from 0 to 1, guaranteeing that 

no feature exerts disproportionate influence on the model.   

This enables a just and precise comparison and modeling 

of the dataset.  

iii. Feature Engineering 

a. Feature Selection 

Feature selection is the process of identifying the most 

pertinent attributes from a dataset, while disregarding less 

informative or redundant features. The techniques 

employed in this study include recursive feature 

elimination (RFE) with a Random Forest algorithm to 

assess the significance of each feature as shown in fig.1. 

Metrics such as "LOC (Lines of Code)," "NOM (Number 

of Methods)," and "CYCLO (Cyclomatic Complexity)" 

have a significant influence on defect prediction, whereas 

other metrics have a lesser impact.   
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Fig.1 RFE with correlated features 

b. Feature encoding 

Feature encoding refers to the transformation of 

categorical variables, which are non-numeric, into a 

numerical representation that can be utilized by ML 

algorithms. This guarantees that the data is appropriate for 

modeling.   The JM1 dataset may contain categorical 

variables, such as the “Module” or “Package” that a code 

segment is associated with.   Machine learning algorithms 

commonly necessitate numerical inputs, thus categorical 

variables must be encoded. Here utilizes one-hot 

encoding, which involves converting each category into 

binary columns representing either 0 or 1.  

 

iv. Standard ML models 

a. SVM 

SVM is an effective machine learning algorithm for 

classification and regression problems due to its 

adaptability.   Finding the best hyperplane to classify data 

points or predict continuous values is the process.   SVM's 

ability to handle complex datasets by identifying the 

hyperplane that optimizes data point separation by class is 

its main advantage.   This margin maximization technique 

improves SVM resilience to outliers and produces robust, 

accurate predictions.    

b. Random Forest:  

The flexible ensemble learning method Random Forest 

combines multiple decision trees to make predictions.   

Each forest decision tree uses randomly selected data and 

feature sets. Overfitting is reduced by this method.   

Random Forest is good at classification and regression, 

making accurate predictions.   It excels at managing 

multidimensional data and assessing feature importance 

to identify the most important variables.    

c. Naive Bayes:  

Naive Bayes uses probabilities to classify using Bayes' 

theorem.   It is widely used for text classification, 

including spam email detection and sentiment analysis. 

This method is also used for other classification problems.   

Simple and efficient, Naive Bayes stands out.   The 

features are assumed to be conditionally independent, 

meaning they don't affect each other.  

v. Proposed Hybrid ML model 

A new hybrid model that combines Random Forest and 

SVM improves software bug tracking and defect 

prediction. This novel method uses two powerful machine 

learning algorithms to improve JM1 software defect 

prediction accuracy.  

The flexible ensemble learning Random Forest algorithm 

is known for its ability to handle complex classification 

and regression tasks. Generate multiple decision trees and 

train them on a randomly selected dataset and features.   

The combined forecasts of these trees create a robust 

model that resists overfitting.   The Random Forest 

algorithm is known for its ability to handle datasets with 

many variables and assess the importance of each feature, 

which helps identify the most influential variables.   

Random Forest improves the hybrid model's ability to 

detect complex JM1 dataset patterns and correlations.  

The SVM is known for finding the best hyperplane with 

the largest margin between data points of different classes 

to classify data.   SVM outlier robustness and precise 

predictions are improved by margin maximization.   

SVMs can handle linear and non-linear data by using a 

kernel trick to transform the data into a higher-

dimensional space where it can be separated linearly.   

Support Vector Machines (SVM) improve the hybrid 

model's predictive abilities, ensuring accurate software 

defect categorization.  

In the hybrid model, Random Forest and SVM work 

synergistically.   Random Forest excels at complex 

relationships and multidimensional data.  The hybrid 

model combines these benefits to create a defect 

prediction system that considers complex software 

metrics, detects influential features, and creates a 

balanced and robust model. The hybrid model for bug 

tracking and defect prediction in software development is 

groundbreaking.   Two powerful machine learning 

algorithms enable more accurate, efficient, and reliable 

software defect forecasts, improving software quality and 

development processes.   The study showed a precision 
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rate of 98.79% for this novel methodology, which could 

change software development.  

vi. Integration of JIT 

The incorporation of Just-in-Time (JIT) strategies into bug 

tracking and defect management in software development 

is an essential aspect of the conducted research.   JIT 

methodologies are widely recognized for their capacity to 

optimize the efficiency and effectiveness of software 

development processes by promptly addressing issues as 

they occur in real-time.   Within the framework of this 

study, Just-in-Time (JIT) strategies are implemented to 

maximize the efficiency of bug tracking and resolution, 

perfectly aligning with the objective of enhancing 

software quality and streamlining development 

procedures.   The incorporation of Just-in-Time (JIT) into 

bug tracking encompasses various essential elements:  

a. Real-Time Bug Triage:   

A key aspect of JIT integration involves promptly 

prioritizing and addressing reported bugs in real-time.   

Bug triage is the procedure of classifying and ranking 

reported problems according to their seriousness, 

immediacy, and influence on the software. JIT strategies 

guarantee that the triage process takes place promptly 

upon receiving bug reports, typically within a few hours. 

This enables a prompt reaction to crucial matters and 

guarantees that development teams can promptly handle 

the most urgent flaws.  

b. Assignment in Real-Time:  

Real-time bug assignment is facilitated by JIT strategies, 

ensuring bugs are promptly allocated to the appropriate 

developers or teams. Consequently, bugs are promptly 

allocated to the appropriate individuals or groups in 

charge of resolving them, as they are assessed and 

classified. Implementing real-time assignment effectively 

mitigates bottlenecks, decreases idle time, and guarantees 

prompt allocation of the appropriate expertise to each 

issue.  

c. Reduction in Resolution Time:  

The research data from the study emphasizes the decrease 

in resolution time due to the integration of JIT 

methodology. The study's results demonstrate a 

significant reduction in the time needed to fix software 

defects JIT strategies are combined with machine learning 

models.  

3. Results and Outputs 

i. Scatter plot 

A scatter plot is a visual depiction of data points, where 

each point corresponds to a distinct observation as shown 

in fig.2. Within the bug tracking domain, a scatter plot can 

visually depict the correlation between the number of code 

modifications or enhancements (such as lines of code) and 

the quantity of documented bugs. This visualization 

facilitates the identification of patterns and trends, such as 

determining whether there is a correlation between 

increased code volume and a higher number of reported 

bugs.

 

 

Fig. 2 Scatter plot 

ii. Spearman Correlation Matrix 

The Spearman correlation coefficient is a statistical metric 

utilized to evaluate the magnitude and orientation of the 

association between two variables.   In this instance, it can 

be utilized to assess the correlation between various 

software metrics, such as lines of code and bug counts. 

The Spearman correlation coefficient exhibits reduced 

sensitivity to outliers and is well-suited for capturing non-

linear relationships as shown in fig.3. The calculation is 

performed using the formula:  

𝜌 = 1 −  
6Σ𝑑2

𝑛(𝑛2 − 1)
 

where, 𝜌= “Spearman correlation coefficient”, d= 

“difference in rank between paired data points”, n = “no 

of data point”.
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Fig. 3 Spearman Correlation Matrix  

iii. ML evaluation parameters analysis 

Table 1 Various ML model parameters evaluation 

Model Accuracy Precision Recall F1 Score ROC AUC 

SVM 91.89 91.2 93.4 92.3 0.96 

Random Forest 94.33 93.98 94.3 94.3 0.97 

Naive Bayes 86.78 87.12 85.45 86.79 0.92 

Proposed Model 98.79 97.86 99.01 98.6 0.99 

 

Fig. 4 Comparison graph of Various ML models 
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Fig. 5 ROC-AUC comparison graph 

iv. JIT evaluation parameters analysis 

Table 2 JIT evaluation - Traditional vs Proposed (JIT + ML) 

Strategy Bug Triage 

Time (hours) 

Bugs Assigned in 

Real-Time (%) 

Reduction in 

Resolution Time 

JIT + ML 1.5 87% 32% 

Traditional 

JIT 

8 73% 18% 

 

 

Fig. 6 JIT parameters comparison graph 

Table- 1  and fig.4,5 presents the performance of different 

models and strategies in the context of bug tracking and 

resolution.  In terms of machine learning models, the 

SVM model achieved a commendable accuracy of 

91.89%, showcasing its ability to make accurate 

predictions.  The displayed precision and recall rates were 

well-balanced, indicating the effective identification and 

classification of software defects with minimal 

occurrences of false positives and false negatives. The 

Random Forest model exhibited superior performance 

compared to other models, achieving an accuracy rate of 

94.33%. This demonstrates its resilience in effectively 

tracking bugs. The model demonstrated exceptional 

performance in terms of precision, recall, and F1 Score, 

showcasing its ability to make accurate and well-balanced 

predictions.   The Naive Bayes model, with an accuracy 

of 86.78%, exhibited a consistent equilibrium between 

precision and recall.   Nevertheless, it exhibited a slight 

deficiency in terms of precision and F1 Score.   On the 

other hand, the Proposed Model stood out as the best 

performer, achieving an outstanding accuracy of 98.79%.   

The software demonstrated exceptional performance in 

terms of precision, recall, F1 Score, and ROC AUC, 

highlighting its ability to accurately detect and prioritize 

software defects.  

Table-2 and fig.6 represent parameter evaluation of bug 

tracking strategies, the JIT + ML strategy demonstrated 

exceptional efficiency, with a bug triage time of only 1.5 

hours. It demonstrated exceptional performance in 

ROC AUC
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promptly addressing and assigning newly reported 

defects, as evidenced by an impressive 87% of bugs being 

assigned in real-time. Achieving a remarkable 32% 

decrease in resolution time, the JIT + ML strategy clearly 

accelerates the software issue resolution process.   On the 

other hand, the Traditional JIT strategy, while moderately 

successful, was not as efficient in terms of time, as it took 

8 hours to triage a bug.   The real-time bug assignment rate 

was 73%, which was lower than the rate achieved by the 

JIT + ML strategy. Nevertheless, it exhibited a 

commendable 18% decrease in the time taken to resolve 

the issue.  

4. Conclusion and Future Scope 

This paper explored the complexities of contemporary 

bug tracking and defect resolution.   The conclusion of this 

research endeavor highlights a deep comprehension of the 

capacity to enhance bug tracking through the mutually 

beneficial combination of machine learning and JIT 

strategies. Our study focused on using the JM1 dataset as 

a testing ground for our innovative approach.   By 

combining feature engineering techniques with a hybrid 

model consisting of Random Forest and SVM, we were 

able to achieve an impressive accuracy rate of 98.79%. 

This discovery highlights the exceptional capacity of ML 

models to precisely detect and prioritize software defects, 

resulting in a significant improvement in bug tracking 

efficiency. Our implementation of JIT strategies, 

particularly when integrated with ML (JIT + ML), resulted 

in significant decreases in bug triage time and the duration 

needed to resolve defects.  The proposed approach 

significantly decreased the time required for bug triage to 

only 1.5 hours, achieving a real-time assignment rate of 

87% for bugs. Furthermore, this approach resulted in an 

impressive 32% decrease in the time it took to resolve 

issues, making a substantial impact on cost reduction and 

improving the efficiency of software development.  

There are promising prospects for improving bug tracking 

in software development in the future. By combining 

advanced deep learning algorithms with natural language 

processing (NLP) techniques, it is possible to achieve a 

higher level of bug tracking that takes into account the 

context in a more precise manner.   Moreover, the 

integration of real-time data streaming and big data 

analytics has the potential to significantly improve the 

precision and agility of bug-tracking systems. In order to 

effectively tackle the changing difficulties of bug 

tracking, it is imperative for future research to make use 

of AI and ML. Additionally, emerging technologies like 

blockchain should be taken into account to improve the 

security and transparency of bug-tracking systems. In 

addition, engaging with industry experts and practitioners 

can offer valuable perspectives for enhancing bug-

tracking solutions that are both precise and pragmatic, as 

well as user-friendly.  
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