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Abstract: As a well-known fact sensor nodes are collecting enormous amounts of data in real-time, task scheduling is a crucial problem 

in big data. It is essential in determining the effectiveness and performance of networks. The current methods only address the node angle 

that degrades the system's performance. This research presents two distinct frameworks to which a flexible Q-learning technique has 

been offered. The first scheduling architecture selects the suitable data node based on buffer latency using a Q-learning algorithm. In the 

second, feed forward neural networks are used to train the system while the reward mechanism is employed. To maintain the best 

records, the Advanced Cuckoo Search (A-CS) technique, a form of swarm intelligence, has been employed in conjunction with the K-

means clustering algorithm to determine the centroid. Accuracy is 93.25%, True Positive Rate (TPR) is 0.93, and False Positive Rate 

(FPR) is 0.07. These performance metrics have been measured. The results indicate that the accuracy of the suggested strategy has 

increased by 6%, 5%, and 12%, respectively, when compared to the random forest, naïve bayes, and multi-class support vector machine. 

Keywords: Cloud Computing, Task Scheduling, Big Data, Machine Learning, Advanced Cuckoo search, Feed Forward Neural Network 

(FFNN). 

1. Introduction 

The exponential growth in the use of internet technologies, 

Cloud Computing (CC) emerges as a scalable network 

which becomes very much useful for various applications 

in both industry and businesses. Cloud computing is a pool 

of various resources like storage units, processing unit, and 

other networking devices, etc. CC has the distinct features 

of grid computing, and utility computing but the concept is 

quite different from the resource virtualization. Apart from 

that, there are various important features of CC such as 

scalability, resource utilization, economic use, and its 

ubiquitous properties. However, users need the internet 

access to access the various facilities of the CC. The user 

can easily use the resource and pay when the service is 

fully utilized. Thus, massive volumes of data have been 

gathered by the sensor nodes in a real time environment. 

This data fall has been fallen under the category of Big 

Data that possesses volume, variety, and velocity of data 

transmission. The combination of these factors became 

difficult to handle such data [1]. Thus, innovative 

techniques and methods employed in the literature to 

handle the big data [2]. Scheduling is a technique used to 

allocate the tasks to the Virtual Machines (VM’s) for 

processing[3]. In Big data, task scheduling is a difficult 

problem and can be optimized by applying several optimal 

solutions [4, 5].  Thus, scheduling of massive volume of 

data poses a lot of problems to the efficient computing that 

lead to longer make span time and large cost that hinders 

the system performance. The process requires cloud 

computing tools [6]. The costs incurred on both server 

Physical Machines (PM’s) and users end make the data 

transmission costly and lengthy. But, efficient scheduling 

of tasks always needed for the efficient utilization of 

historical information and resources [7]. Thus, it does not 

only maintain the make span time but also manages the 

Service Level Agreement (SLA) to provide better service 

to the associated users by maintaining good Quality of 

Service (QoS). 

Specifically, MapReduce programming also used to 

process the Big Data using the software such as Apache 

Spark or Hadoop. But there are certain problems associated 

when using this technique, make it unsuitable for the 

processing the Big Data in the cloud platform [8]. It is 

noted that fast response of the cloud is one of the key 

features that falls shortened by the MapReduce paradigm. 

Thus, it also falls to timely generate a response due to the 

key’s generation in the process of map phase. MapReduce 

also fails to work with the complex classifiers such as 

Support Vector Machine (SVM) and other Machine 

Learning (ML) techniques due to longer compilation time. 

However, many algorithms were developed to tackle the 

problems as aforementioned. Ding proposed a Q-learning 

based two phase frameworks for efficient scheduling the 

tasks in the cloud environment.  In the developed 

framework, the former phase used to assign the tasks using 
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the centralized dispatcher and then request has been 

pushed on a global queue. The later phase used at VM 

level in which Q-learning based scheduler has been used to 

process the various tasks. All the users’ requests have been 

prioritized by applying incentives to the tasks based on 

different rewards. This also minimizes the response time 

and maximizes the utilization of CPU [9]. Thus, this also 

avoids the wastage of resources and makes span time. The 

advantages of Q-leaning based technique to schedule the 

task adapted to the environment and can easily benefit the 

system. But still system complexity increases and 

effectiveness of the system reduces due to the reward given 

to the agent actions in a complicated manner.  The other 

deficiencies demonstrated in the previous research are: -  

The past techniques focused only on the nodes 

perspectives as nodes only take actions to achieve the 

maximum rewards. The overall task scheduling is not ideal 

for this action as such a perspective not applicable but 

some approaches used to allocate the task considering a 

global view [10].  

It is difficult to distinguish the nodes and thus same 

incentive strategy has been applied to all the nodes. Thus, 

there is a need to define the more operations in the Q-

learning model.  

Therefore, to avoid these issues, classification algorithms 

have been used in the literature to schedule the task in a 

big data. Vashishth used the classification techniques to 

surge the efficiency and system reliability while managing 

the Big Data in the cloud environment. The task 

scheduling has been done using the Machine Leaning and 

then VM’s used for assignment purposes in the cloud 

environment. Further, Particle Swarm Optimization (PSO) 

also used effectively to reduce the overhead time and 

classify the task allocation technique [11]. 

The given Figure 1 illustrates that ML used as centered 

component interlinked with the four other components that 

includes Big Data, Customers or User, Domain, and linked 

system. The interconnection or communication between 

the devices is bidirectional. The learning engine is updated 

utilizing the current information that has been extracted 

from data. The engine processes the user query based on a 

repository that has been prepared during the training time. 

 

Fig. 1. A Framework to Manage the Big Data using the 

Machine Learning 

Specifically, Swarm Intelligence (SI) techniques have been 

used in conjunction with the ML to improve the system 

reliability and reducing the execution time [12]. To guide 

the Cc so that to select the appropriate scheduling 

technique, a multi-criteria decision has been made to 

optimize the system performance. The scheduling has been 

done using the ABC and PSO technique to determine the 

makes pan time and managing the task in three different 

data centers. The outcomes are fruitful but unable to 

determine the CPU capacity, bandwidth utilization and 

usage of RAM. Moreover, system complexity also 

increases in simulating the different tasks as per user 

requirement. Jaber developed the modified Cuckoo Search 

technique to reduce the processing cost and solve the 

scheduling problems [13]. The outcomes are fruitful in 

reducing the makes pan time but limited to provide the 

desired results in terms of efficiency and accuracy. This 

paper aimed to solve these issues by reducing the 

computation complexity of the simulated big data. The 

proposed solution is divided into two parts namely the 

development of scheduling architecture using the Q-

learning algorithm. The proposed algorithm is used for the 

selection of appropriate data node based on the buffer 

delay. The second part utilizes the reward mechanism of 

the Q-learning based technique and trains the system using 

Feed Forward Neural Networks for the training of the 

system. 

The paper is organized as section 1 demonstrates the 

introduction part in which different task scheduling 

techniques in Big Data have been explained. This section 

also discusses the various issues related to previous Q-

learning techniques and then SI techniques have been 

discussed. In section 2, the background in which previous 

techniques had been developed for task scheduling is 

explained. Section 3 highlights the proposed work in which 

Q learning technique and SI based Cuckoo Search 

technique applied to optimize the various tasks. Further, 

results have been discussed to compute the performance 

metrics in terms of TPR, FPR, and accuracy and, paper 

finally concluded in the last section. 

2. Related Work  

In the literature, different state of art techniques has been 

proposed to schedule the task in the big data. Specifically, 

technique that are based on Q-learning, and Machine 

learning gaining an attention due to the promising 

solutions with better performance [14, 15].  

Jena 2015 proposed a multi-objective task scheduling 

framework using the nested PSO. The proposed solution 

was not only managing the processing time but also 

optimize the energy consumption. The simulated results 

had been developed using the Cloud Sim toolkit in which 

objective function computed and then algorithm was 
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implemented to compute the mutation operator. Further, 

experimental results have been compared to validate the 

proposed solution in terms of time, energy, and failed task. 

The outcomes are promising but limited to consider the 

other objectives such as Bandwidth and overall cost of the 

system. Moreover, there is also need to focus more on the 

robustness of the algorithm [16].  

Tian et al. 2020 proposed a hybrid task scheduling 

algorithm considering the task clustering mechanism. The 

proposed solution integrates the tasks and then task 

duplication process was done to figure the execution cost 

of the process. The outcomes show that developed 

algorithm not only reduces the communication overhead 

but also manages the successor tasks. The experimental 

results further compared with the leading algorithms to 

evaluate the superiority of the task scheduling algorithm 

[17].  

Alhubaishy & Aljuhani 2020 developed a model based 

on the preferences of the customers and predefined criteria. 

For this, the authors had been adopted the best-worst 

method to structure the task scheduling problems. The 

proposed study was provided reliable results by 

accommodating the customer preferences and thus, deals 

the task scheduling problem dynamically. The outcomes 

were consistent but still other problems such as cost and 

bandwidth still are the constraints that reduce the 

applicability of the algorithm [18]. 

Rjoub et al. 2020 proposed a big data task scheduling 

approach by understanding the problems of VM trust level 

and resource consumption issues. The authors developed a 

Big Trust Scheduling solution that worked in three 

different phases: Computing the VM trust level, 

prioritization of tasks, and scheduling the tasks based on 

trusts. The experiments were performed using the real-

world dataset using the Google Cloud Platform and results 

show that proposed solution minimize the make span time 

by 59% in comparison to PSO and other existing 

techniques. The developed solution was promising and 

applicable to other task scheduling problems. Moreover, 

the trust model also extended to other environments such 

as IoT, Fog computing etc [19].  

Ding et al. 2020 proposed a task assignment solution to 

avoid the energy consumption issue in an analytical and 

experimental manner. The Q-learning based solution had 

been worked in two different phases in which first phase 

used to design the centralized task dispatcher in 

combination with the queuing model. The second phase 

based on prioritizing the tasks to minimize the task life 

time and laxity. The shorter response time and other 

energy constraints were desirable that improves the system 

performance. Further, SLA constraints were considered 

using the dynamic task ordering strategy and thus enhance 

the cloud services quality. The proposed solution also 

designed the adaptive scheduler to reduce the response 

time and thus, maximize the CPU utilization. The proposed 

model is robust but increase in complexity makes the 

system inefficient [20]. 

Tong et al. 2020 had integrated the Q-learning with deep 

neural network to schedule the tasks in an effective 

manner. The proposed approach used to solve the problem 

of Directed Acyclic Graphs (DAG) in a cloud 

environment. The model was developed in Workflow Sim 

and performance was compared with the make span and 

load balancing in a real-life environment. The proposed 

solution is advantageous to provide the required 

scalability, containment, and learning ability [21].  

Fu et al. 2021 proposed an effective scheduling technique 

using the PSO. In the first phase, dividing the particle 

swarm and then particles position was changed using the 

crossover mutation. The genetic algorithm further used to 

emphasize the search range of the space and avoids the 

probability to fall in the local optimal solution. Further, 

feedback mechanisms were used to experience the particles 

direction. The proposed solution is robust and outcomes 

show that empowering mechanisms used to avoid the 

space [8].  

Sanaj & Prathap 2021 had been used the MAP reduce 

framework to schedule the tasks in an efficient manner. 

The authors initially extracted the task features and then 

reduce the features using the proposed algorithm. Further, 

massive tasks were separated into small tasks using the 

framework and scheduled using the optimization 

technique. The experimental results show that tasks were 

efficiently scheduled and proposed solution outperforms 

the other techniques [22]. 

Jalalian & Sharifi 2022 proposed a hierarchical task 

scheduling mechanism to enhance the efficiency of the 

resources. Further, K-means clustering algorithm was 

developed to optimize the clusters and then evolutionary 

algorithms were used to reduce the makes pan time. The 

proposed work was simulated in the Cloud Sim toolkit and 

experimental outcomes show that there is a reduction of 

makes pan time, and CPU utilization in comparison to 

Reinforcement Learning algorithms. The data transfer cost 

had been analyzed further to predict the overall cost of the 

distribution system. The results were prominent but limited 

to schedule the task in a real environment [23].  

Arunadevi, & Thulasiraaman 2022 proposed an effective 

Cuckoo Search based task scheduling algorithm. The study 

includes the pre-processing of the data streams in which 

information was discretized and then consolidate the 

information using the Chi-square method. The authors also 

introduce the MapReduce framework utilizing the multi-

objective CS to target the CPU time, memory utilization, 

and energy consumption. The proposed study shows robust 
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information but limited to analyse the operational 

parameters such as CPU utilization, cost and bandwidth 

[24].  

Loheswaran et al. 2019 proposed a hybrid algorithm, 

called Hybrid Cuckoo Search with Iterative Local Search 

(HCS-ILS), for task scheduling in the cloud environment. 

The algorithm combines cuckoo search optimization with 

iterative local search to improve efficiency. Simulation 

results show that HCS-ILS outperforms the conventional 

cuckoo search algorithm and its variants in terms of 

minimizing makespan and increasing resource utilization 

[25]. 

García et al. 2018 utilized Big Data techniques to 

implement metaheuristic algorithms for industrial decision-

making. They evaluated the algorithm's performance in 

terms of result quality and convergence times under 

various conditions. The proposed approach was a cuckoo 

search binary algorithm implemented in Apache Spark, 

tested on multiple crew scheduling instances. However, the 

experiments showed that achieving satisfactory results and 

iterations depended on specific problem characteristics and 

was not consistently guaranteed [26]. 

Agarwal et al. 2016 proposed a cuckoo search-based 

approach for task scheduling, aiming to efficiently 

distribute tasks among available virtual machines (VMs) 

while minimizing overall response time (QoS). This 

algorithm allocated tasks to VMs based on their processing 

power (measured in million instructions per second, MIPS) 

and task length. They compared the cuckoo search 

algorithm with first-in-first-out (FIFO) and greedy-based 

scheduling algorithms using the CloudSim simulator. The 

results demonstrated that cuckoo search outperformed the 

other algorithms [27]. 

3. The Proposed Solution  

The proposed solution aims to reduce the computation 

complexity of the simulated big data. The proposed 

solution is divided in two segments namely the scheduling 

architecture which uses Q-learning algorithm for the 

selection of appropriate data node based on the buffer 

delay. The second section utilizes the reward mechanism 

and trains the system using Feed Forward Neural Networks 

for the training of the system against two ground truth 

labels namely “Acceptable”,” Moderate- Acceptable” in 

order to further reduce the computation complexity of the 

exploration part of the Q-learning algorithm. 

3.1. Section 1: The scheduling architecture using the Q-

Learning  

The scheduling architecture is now considered as the 

defined problem of the Q-learning algorithm. The learning 

algorithm is learning from its taken actions in the systems 

incorporating the state variables undertaken during the 

simulation and has been referred as Agd in earlier 

segments. 

The State and the Variables(𝑺𝒗) : The state variable is a 

set of finite attributes described Sv at a state time ‘t’ can be 

defined as  

𝑆𝑣 = {𝑙1, 𝑙2, … . 𝑙𝑛} where ‘l’ ={IIR, Buffer_Delay(BD)}∈ 

Agd and 𝐵𝐷  is the buffer delay of the data nodes under one 

data center. Each data node has multiple buffers based on 

the priority of the task which ranges from 1-8 viz each data 

node will have 8 buffers to handle. Each data center is 

found to be busy executing the buffer tasks and as per 

assumption, no buffer is empty.  

The action set (As={𝐴𝑠1, 𝐴𝑠2. . 𝐴𝑠𝑛 }) where n is total 

number of users in Agd, is the set of possible actions that a 

learning agent would select in order to generate maximum 

reward. Any action will represent the allocation of the user 

job to data center.  

The environment and the observations from 

environment  

Consider the assumption that, user U1, at the current state 

𝑆𝑣1
 is to be assigned to data node 𝑑𝑛1

  and task has a set of 

attributes A1. By taking the action A1, U1 will be allocated 

to 𝑑𝑛1
 at the end of respective buffer queue 𝜉. As per the 

policies of Q-learning, the learning agent will come to 

know the situation of the new state as soon as A1 has been 

performed. The next state will provide either a reward 

generated against the action A1 or the agent will be 

penalized as the result of the action. In both the cases, the 

learner will update its information regarding its 

surrounding objects. The average 𝐵𝐷 can be calculated as 

follows. 

𝐵𝐷 = 𝑇𝑐𝑡 + ∑
𝑈𝑝

𝐸𝑟

𝑝
𝑖=1            (1) 

Where 𝑇𝑐𝑡  is the task completion time, p is total number of 

users in the buffer, UP is the pth user, Er is the execution 

rate under 1 specific buffer. All the tasks are associated 

with some completion time and that is pre-defined. The 

reward for such a situation is defined as follows. 

𝑅

=
1 {min { 𝑈. 𝐵𝐷𝑡

} < ℵ + 𝜑1 ≤ 𝑑𝑛 . 𝑐𝑝𝑢𝑢𝑡𝑖𝑙 ≤ 𝜑2  }    

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (2) 

where 𝜑1 and 𝜑2 are upper and lower threshold of CPU 

utilization of the data node dn for the User U with Buffer 

delay for job type t and ℵ is the task deadline. There are 

total number of B buffers in the list. The reward uses the 

buffer delay time and the upper and lower threshold of 

CPU utilization against the given priority of the task. The 

data node is over-utilized if the CPU utilization of the 

current data node is higher than the upper threshold 𝜑2. 

The data node is under-utilized if the CPU utilization of 
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the data node is below lower threshold 𝜑1. If the CPU 

Utilization of the data node remains under the boundary of 

𝜑1𝑎𝑛𝑑𝜑2, the data node is considered as a suitable 

candidate for the allocation of the user. Though, it is not 

necessary that if the data node is one of the suitable 

candidates for allocation, it must be the best candidate for 

allocation and hence a Q-table is created for all the 

possible actions as allocations has been considered. It is to 

be noted that, the overall deadline of the task should not be 

exceeded by the Buffer Delay. The algorithmic 

architecture for the Q-learning is illustrated in Algorithm 1. 

For one Buffer, the total number of waiting tasks in the 

buffer is equal to q, and hence the Q-table will be of size q 

× 𝜛 where 𝜛 is the total number of waiting task in the 

buffer.  

Algorithm 1: The Q-learning Algorithm  

Input: Q ,Sv , Bq , t-list   // where t-list is the total task list , 

𝐵𝑞  is the buffer queue  

Q-L[1] 𝐰𝐡𝐢𝐥𝐞 t − list. ϖ > 0 

Q-L[2] 𝐖𝐚𝐢𝐭 if Bq = ϖ for all 1≤ B  

Q-L[3] ϖl = Extract ϖ from pr from t − list  // where pr  

is the priority list  

Q-L[4] Al = SelectAction(Q,St) // Use greedy method to 

select an action  

Q-L[5] Perform At // Merge ϖl to Bq , 

Q-L[6] Evaluate Rt and St+1 

Q-L[7] Q(Svt
, At) = (1−∝)Q(Sv𝑡

, At)+∝ [Rt +

γ. maximumAt
 Q(Svt+1

, At)]  // where ∝ is the 

learning rate and γ is the discount. 

Q-L[8]Svt
= Svt+1

  

Q-L[9]𝐄𝐧𝐝𝐰𝐡𝐢𝐥𝐞 

The algorithm 1, takes the Q, St and Bq as buffer queue 

along with task list as t-list. With every simulation 

iteration, the Q-table which is hold by Q, is updated 

utilizing the Bellman’s equation defined in Q-L[7] of 

algorithm 1. The process repeats itself until all the tasks in 

the buffer are not complete. At a given state value 𝑆𝑡, the 

scheduling architecture selects an action At by applying 

Greedy Search policy (ε -greedy-policy) in which the 

exploration part dominates the exploitation part for a while 

in order to understand the reward of selection.  

𝑆𝑉1
̅̅ ̅̅ = 〈𝑙1 + 1, 𝑙2, … … … . . , 𝑙𝑘 , … … … … 𝑙𝑛〉, 

𝑆𝑉2
̅̅ ̅̅ = 〈𝑙1, 𝑙2 + 1, … … . . , 𝑙𝑘, … … … … 𝑙𝑛〉 

……       …    ……            …. 

……       …    ……            …. 

𝑆𝑉𝑘
̅̅ ̅̅ = 〈𝑙1, 𝑙2, . . … . . , 𝑙𝑘 + 1, … … … … 𝑙𝑛〉,   

…….  …  …  … 

𝑆𝑛
̅̅ ̅ = 〈𝑙1, 𝑙2, . . … . . , 𝑙𝑘, … … … … 𝑙𝑛 + 1〉   (3) 

When a system is forced to explore, viz. in case of ε -

greedy-policy, the system picks random state and performs 

the action and a reward is generated. The process 

continues, till all the possible actions are not suppressed 

into actual implementation until the discount becomes too 

big to be adjusted.  The Q-value is updated using the 

Bellman’s equation as given by eqn 4. 

Q(Svt
, At) = (1−∝)Q(Sv𝑡

, At)+∝ [Rt +

γ. maximumAt
 Q(Svt+1

, At)]    (4)  

Where ∝ is the learning rate and γ is the discount. The 

selected data node is supplied with the job and the data 

node performs the execution. It is to be noted that, Q-

learning gets the input from mini-max architecture, which 

uses map-reduce separation architecture. Post execution of 

the job, the data is aggregated as Agd∈

{U, Dn, IIR, Th, Sd, Ext, CO2e
, Our, Uur, Cp } attributes where 

U is user, Dn is the allocated data node, IIR is the 

instruction injection rate, This throughput, Sd is the storage 

demand, 𝐶𝑂2𝑒
is the carbon emission, Ext is the execution 

time, Our is the overutilization ratio, Uur is the 

underutilization, and Cp is the consumed power. The Agd 

is divided into three groups that are further labeled using 

statistical machine learning.  

3.2. Section 2: The data-selection, training, and 

classification model  

The data selection process incorporates a new search 

behavior based on the Levy flights generated to place the 

record to appropriate group. The group generation is 

performed utilizing centralized k-means algorithm. K-

means algorithm faces convergence issue due to its random 

centroid selection process for the first centroid [28]. 

The updated k-means algorithm can be illustrated using 

Pseudo code centralized k-means 

The segmented class label entries are passed for attribute 

set selection utilizing Advanced Cuckoo Search(A-CS) 

algorithm.  

Pseudo Code 1 for Centralized k-means 

𝐈𝐧𝐩𝐮𝐭: Count of Centroids (C);  Set of task (T);  centroids list 

assigned randomly (CC).  

𝐎𝐮𝐭𝐩𝐮𝐭: Task scheduled with their centroid  

𝐁𝐞𝐠𝐢𝐧  

1. Repeat 

2. For each task in T do 

3. Calculate the distance between the tasks assigned 

to each node and the quality value using the equation 3.  

4. Assign the tasks to the nearest centroid 
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5. End for 

6. For each task in CC do 

7. Compute the new centroid task allocation based on 

quality using the equation 4. 

8. End for 

9. Until all the tasks assigned to the VMs or the iterations 

reached to maximum. 

𝐄𝐧𝐝 

The K-means clustering algorithm has been used to 

determine the centroid of each task allocated to the VMs. 

K-Means has resolved different problems encountered 

during the task scheduling in the cloud environment to 

manage the Big Data. Initially, different tasks have been 

allocated by computing the centroid of each node. The 

node which is nearest to the centroid has been allocated 

and that are farther away from the centroid schedule the 

task accordingly.  

Table 1: Notations and Abbreviations 

 

 

The aim of the A-CS algorithm is to keep most relevant 

data records belonging to one class in order to train the 

system at its most precise manner. Hence here in the 

proposed solution, one class elements are considered as 

eggs of one host. The Cuckoo bird in the proposed solution 

does not put its egg into other host’s nest but, checks its 

own eggs in order to find any intruding egg from any other 

host’s nest. To do so, the cuckoo bird performs a rigorous 

analysis by dividing its own eggs into multiple segments 

and performs a Levy-flight evaluation method in order to 

check the sustainability of the examined egg with other 

eggs in the nest. The CS algorithm takes the aggregated 

data along with the clusters that are identified by the 

proposed k-means algorithm. The cuckoo bird keeps a 

Levy-flight and shuffles the egg’s attributes that are the 

simulation parameters evaluated under the policy.The 

policy contains three distribution ratio of {d1,d2,d3} as a 

set of two values. The first value represents the percentage 

of total number of eggs that would be taken from egg’s 

inner native host and the second value represent the 

percentage of total eggs that would be taken from egg’s 

inner non-native host. As for example, in the distribution 

policy ⊓𝑑1, 70 % eggs will be considered to be paired from 

egg’s inner native host and 30% eggs will be considered 

from egg’s non-native node. 

The proposed A-CS algorithm creates a hypothetical two 

nest system within a single host cuckoo. The aim of the 

algorithm is to keep the best records belonging to one 

single class. In order to do so, each record is referred as 

one cuckoo egg. Each egg must pass a 10 Levy flight 

organization in which each egg will be placed with random 

number of other eggs with each Levy flight. Levy flight is 

the duration of the time a cuckoo bird goes out of its nest. 

When the cuckoo comes back, it hypothetically shuffles 

the eggs one by one until the last egg is not considered. 

The proposed A-CS algorithm introduces an angularity-

oriented fitness function which utilizes cosine similarity 

for the calculation of the fitness value. Each Levy flight 

contains a reward of 1 unit if the fitness of cuckoo egg to 

the satisfaction of cuckoo bird matches. To do so, the 

cuckoo bird divides the entire eggs in two separate inner 

nest and it calls them native nest/hive and non-native 

nest/hive. The cuckoo bird applies the policy of 

distribution ⊓𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The fitness function calculates 

the cosine similarity between the selected random 

population along with their hive and the cosine similarity 

between the selected random population containing the 

current egg as well.  

Pseudo Code 2 for A-CS algorithm 

A-CS1. Pseudo Code A − CS  

A-CS2. Inputs: Agd,Output ∶  Selected Data (Sd) // where Agd is the aggregated data set//  
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A-CS3. Sd = [ ] // Initialize an empty index for selected data // 

A-CS4. Totalclasses = 3 // It is the total number of classes which is separated using centralized k − means // 

A-CS5. Formain class = 1: Totalclasses 

A-CS6. dtp = ∮ Agd. datavalues
t

i=1
 

A-CS7. // Extract the data values for the current class getting processed and put it to data to process (dtp)//  

A-CS8. Totaleggs = dtp  

//The total aggregated data against the supplied class will act as eggs of the cuckoo   

      that the bird will aim to place in other hives //    

A-CS9. innerhive = 2  // As the cuckoo bird will have to perform analysis over its own egg,  

A-CS10. the cuckoo bird divides the eggs in two different segments and validates the under −

                examination egg against both the classes //  

A-CS11. [Indexinner, Centroidinnner] = k − means(Totaleggs, innerhive)//

                 𝐷𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑡𝑤𝑜 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 // 

A-CS12. σ = 10 // Total Levy flights = 10 // 

A-CS13. Fitnessreward = 0s{1: σ}  

                 Initialize a reward array for the Levy flights each containing a 0 value                         

  for each egg and will be updated as per the flight reward  // 

A-CS14. For1 j = 1: Totaleggs. count  // consider each egg  

A-CS15. Cg = Totalegg[j] // Take out the first egg //  

A-CS16. ∅ = Totaleggs(τ)         τϵ Atset  

A-CS17. select random feature set, where τ is the random index of feature, At −

               set is the attribute set as Atset−→

                ∫ {U, Dn, IIR, Th, Sd, Ext, CO2e
, Our, Uur, Cp

simitr

t=1
} dt  where simitr is the total 

                number of simulation records aggregated. In case of proposed work model,  

                 simitr  ϵ{i1, i2 … . . il} where ‘i’ is 100000//     

A-CS18. For11
 jj = 1: σ // Loop for every Levy flight  

A-CS19. define ∂ϵ ⨅ distribution {70−30 ,60−40 ,50−50}   

A-CS20. 𝑤ℎ𝑒𝑟𝑒 𝜕 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑔𝑔 𝑚𝑎𝑑𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 ⨅   

                𝑡𝑜 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒 𝑒𝑔𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑠𝑡 𝑛𝑒𝑠𝑡 //  

a. totalpopulation = Totalegg. population() // Total cuckoo eggs in the nest// 

b. deployedpopulation = totalpopulation. random()//Generate a random population // 

c. discountedpopulation = { ⨅
⨅ distribution .e1

100
 ,

⨅ distribution .e2

100
 } 

d. //Create the discounted population following ⨅ distribution law, as for example if ∂ ==

1, e1 = 70 , e2 = 30 // 

e. pairingindex = discountedpopulation. index ()//

 Extract the indexes of the discounted population //  

A-CS21. pairedindex = (pairingindex ⋃ Cgj) 

                  𝑀𝑒𝑟𝑔𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑢𝑐𝑘𝑜𝑜 𝑒𝑔𝑔 𝑖𝑛𝑑𝑒𝑥 𝑡𝑜 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑 𝑖𝑛 𝑝𝑎𝑖𝑟𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 //  

CS1 = Avg − Cosinesimilarity(pairingindex, pairingindex . Centroid)// 

The cuckoo bird calculates similarity of the pairing index to its relative centroid // 

        CS2 = Avg − Jaccardsimilarity(pairedindex , pairingindex. Centroid)  

// The centroid for both the        indexes will be same //  

A-CS22. If CS2 > 𝐶𝑆1 

A-CS23. Fitnessreward[j] = 1  

A-CS24. End If   

A-CS25. End For11
 

A-CS26. Successfullevys = ∑ find(Fitnessreward > 0) 
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A-CS27. If Successfullevys > 𝜎 ×
50

100
 

A-CS28. Keep Egg 

A-CS29. Sd. append(j) 

A-CS30. Else 

A-CS31. Reject Egg  

A-CS32. End  

A-CS33. End For1 

A-CS34. End Formain 

A-CS35. Return Sd  

Cosine Similarity: The cosine similarity is a distance 

measure which uses eq (5) which is further simplified to eq 

(6). 

𝐶𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐶1.𝐶2

||𝐶1||×||𝐶2||
                (5) 

𝐶𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐶1𝑖.𝐶2𝑖

𝑛
𝑖=1

√∑ 𝐶1𝑖
2𝑛

𝑖=1 .√∑ 𝐶2𝑖
2𝑛

𝑖=1

     (6)  

where n is total number of attributes in the cluster 

Being an angular similarity measure, the 900 𝑜𝑟 2700 is 

the maximum value when it comes to least similarity and 

arithmetically it is 𝐴𝑏𝑠(𝐶𝑜𝑠({900, 2700})) = 0 and hence 

the aim is to maximize the co-relation value which can be 

flt on the current object i.e 00𝑜𝑟1800.  

Arithmetically, 𝐴𝑏𝑠(𝐶𝑜𝑠{00, 1800}) = 1. The fitness 

function of the A-CS algorithm evaluates CS1 and CS2 for 

the illustrated scenario by using eq (6). 

𝑓𝑐𝑢𝑐𝑘𝑜𝑜 =  
1 𝑖𝑓𝐶𝑆1 ≤ 𝐶𝑆2
𝑂 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (7) 

The selected data against each ground truth value is 

supplied to Feed Forward Neural Networks for the 

training. 

3.3. Feed Forward Neural Networks (FFNN) 

In this section, tasks are distributed considering the 

different ratios such as 70:30, 80:20, and 90:10. The 

propagation model namely Levenberg has been applied 

accordingly and then stopping criteria namely Gradient has 

been used to stop the scheduling process. The regression 

model has been used to select the different tasks and the 

developed FFNN model has been validated using the Mean 

Square Error. The ordinal measures are as follows. 

 

 

 

 

 

 

Table 2: The Ordinal Measures of Used Feed Forward 

Neural Networks 

Propagation Type Feed Forward  

Distribution  a)70-30 

b)80-20 

c)90-10 

Model of propagation  Levenberg  

Stopping Criteria  Gradient 

Layers of Propagation  5-20 

Selection type  Regression  

Validation type  Mean Squared Error  

 

4. Result and Elaborations  

The learning rate of the proposed work model is illustrated 

in contrast to the number of steps considered in the 

architecture. A tabular representation is given as follows. 

The table demonstrates the actions taken by the agents in 

the proposed contrast. For the current instance, there are 3 

users to be migrated from a list of 500 users. There are 30 

users that are running on an overloaded data node. For the 

migration of 2 users, 6 users have been selected based on 

the lower utilization of the available resources. These users 

were propagated through learning steps of greedy search 

algorithm to form Q-table. The table can be illustrated as 

follows. The Q-value for 8th step for three of the users is 

same viz. 0.134752. It indicates that all the users were 

falling into similar structure of jitter at the data node and 

hence these two users are to be migrated from the current 

data node to another data node based on step-8. 
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Table 3: Q-value 

Users 1 2 3 4 5 6 

Q-

value 

Step 1 

0.13703 0.13475 0.13564 0.13475 0.13475 0.07521 

Q-

value 

Step 2 

0.13564 0.13656 0.13475 0.13564 0.13564 0.13475 

Q-

value 

Step 3 

0.13703 0.13475 0.13564 0.13475 0.13475 0.13703 

Q-

value 

Step 4 

0.13475 0.13564 0.13656 0.13564 0.13656 0.13564 

Q-

value 

Step 5 

0.13475 0.13656 0.07512 0.13475 0.13475 0.13475 

Q-

value 

Step 6 

0.13475 0.13475 0.07567 0.07521 0.13656 0.13703 

Q-

value 

Step 7 

0.07423 0.07512 0.13564 0.13475 0.13656 0.13475 

Q-

value 

Step 8 

0.13656 0.13475 0.13475 0.13475 0.07549 0.13656 

Q-

value 

Step 9 

0.13475 0.13564 0.13475 0.13656 0.13656 0.13475 

Q-

value 

Step 10 

0.13475 0.13475 0.13475 0.13475 0.13564 0.13475 

Q-

value 

Step 11 

0.07521 0.13475 0.13475 0.13475 0.13475 0.13475 

Q-

value 

Step 12 

0.13475 0.13564 0.13475 0.13475 0.13564 0.13475 

Q-

value 

Step 13 

0.13475 0.13475 0.13564 0.13475 0.13475 0.13475 

The results have been evaluated on the base of two aspects. 

The first aspect relates to the training and classification 

architecture which involves the usage of SI for the 

selection of the separated data. In order to evaluate and 

validate the performance, following attributes have been 

evaluated. 

• True Positive Rate (TPR): It is the true detected 

samples from each class to the total number of 

samples of the respective class. 

• False Positive Rate (FPR): It is the false detected 

samples from each class to the total number of 

samples in the respective class. 

• Accuracy: It is the arithmetic mean of TPR.  

To evaluate the performance of the proposed algorithm A-

CS, a set of users have been deployed over a set of data 

nodes placed under the name node. The name node maps 

the request from the user and finds the possible solution to 

the requests of the users. Due to the application of the A-

CS that is integrated with k-means algorithm as shown in 

Fig. 2, is supplied to feed-forward neural networks. The 

neural network runs regressive engine that follows the 

Levenberg principle of propagations in order to train the 

system. 

 

Fig. 2: Data Segmented by I-k-Means 

A-CS selects the most relevant data from the list that are 

concise and more applicable to the list. To do so, a novel 

fitness function and a flight behavior is introduced in the 

proposed work section. A-CS reduces the population size 

as shown in Fig. 3. 
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Fig. 3: The Selected Identities After the Application of A-

CS 

It is evident from Fig. 3 that, A-CS reduces the unused 

sample space or the sample space that is quite far from the 

original centroid of the cluster. Due to the application of 

A-CS algorithm, the centroids of the clusters also shift 

more towards the data rather than being towards the free 

space. To illustrate the working of A-CS, a small set of 

examples is provided with statistical values as follows. 

This provides conciseness to the training algorithm. To 

train the system, a total Starting from the first centroid, the 

following indexes have been identified to fall in the first 

centroid as shown in Table 4. 

Table 4: Elements of First Centroid 

2 3 4 5 8 9 11 13 
 

14 15 17 22 31 37 40 42 47 

Each record value of this centroid set, is now being 

considered as one egg from Cuckoo bird. 

10 random indexes as per policy 1 have been generated as 

follows. The first distribution states that, 70% of the 

population for the comparison should be generated from 

the existing set of data and rest 30% competitors will be 

selected from other two hives.  

First of all, a random sample of feature set will be selected 

to evaluate each cuckoo egg. The selection of the features 

will be done on the base of these features for the first levy 

flight and for the first cuckoo egg. There is total 11 

features that are supplied as input and hence the generated 

index would be 1-11. 

Table 5: Egg Features for the Evaluation of First Cuckoo 

Levy Flight 

5 3 2 3 5 4 8 10 1 1 

The elements of Cluster 1 are going to be divided into two 

separate inner hives and based on the properties, two 

further distribution is listed in table 5. 

Table 6: Egg Features for the Evaluation of First Cuckoo 

Levy Flight 

1 1 1 1 1 1 1 2 1 

1 1 1 1 1 1 1 1 
 

Based on the selected sample, five indexes have been 

selected for the evaluation of the current cuckoo bird. The 

indexes are {3  3        6 2 5 }. The current cuckoo bird will 

be collaborated with these indexes and the overall index 

will become {3 3 6 2 5    1} as the 

scheduler is on first bird right now. 

As shown in Table 7, first 7 identities have been selected 

from the same hive whereas 3 identities viz. 10,1 and 1 

belongs to other hive. The proposed work algorithm has 

not put any limit on duplicate identities and hence 

repetitive identities have also been observed. As for 

instance 3 and 5 repeats itself in 70% distribution and 1 

repeats itself in 30% distribution. Now the cuckoo set 

combined value with the other eggs is passed to cuckoo 

fitness function which uses two similarity measures 

namely Cosine similarity and Jaccard similarity and is 

illustrated in the pseudo code as well.  

The collaborative features will be indexes as follows. 

Table 7: Indexes Evaluation for Current Cuckoo Bird 

using Selected Samples 
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55 
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0142 

15.0

05 

0.3

41 

0.6

22 

138.

431 

 

The cuckoo search algorithm accepts two parameters as 

input, the first input is the collected egg values from the 

hives and the second value is the value of the centroids of 

the hive that contains more number of eggs in the list. An 

average of both the similarities have been evaluated and if 

the average similarity of the considered group is more than 

that of the similarity of the hive that contains a greater 

number of candidates, the cuckoo fitness return 1 in favor, 

else it return 0. For each flight, the proposed algorithm gets 
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0s and 1s in return and by the end of all flights, if number 

of 1s are more than that of number of 0s in the list, the egg 

is accepted and will remain in the save host value else it 

would be discarded from the existing group.  

The selected dataset from each category will be passed to 

multi-layer propagation model which is supported by 

Levenberg’s propagation architecture. The ordinal 

measures of the propagation network is provided in table 7. 

In order to select the total number of layers, a regression 

analysis has been formed utilizing the Neural Network 

toolbox of MATLAB. 

 

Fig. 4(a): Regression Analysis φ = 5 Rmax = .04       Fig. 4(b): Regression Analysisφ = 10 Rmax = .43105 

 

Fig. 4(c): Regression Analysisφ = 15 Rmax = .5132   Fig. 4(d): Regression Analysis φ = 20 Rmax = .64575 
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Fig.4(e): Regression Analysis φ = 25 Rmax = .51034 

Table 8: Classification Results 

Number 

of Test 

Samples 

Tpr 

Proposed 

Tpr 

Naïve 

Bayes 

Tpr 

Random 

Forest 

Tpr 

Multiclass-

SVM 

Fpr 

Proposed 

Fpr 

Naïve 

Bayes 

Fpr 

Random 

Forest 

Fpr 

Multiclass-

SVM 

1000 0.8962 0.8259 0.8374 0.8011 0.1038 0.17415 0.1626 0.1989 

2000 0.9004 0.8323 0.8473 0.8295 0.0996 0.16768 0.1527 0.1705 

3000 0.9176 0.8489 0.8511 0.8243 0.0824 0.15107 0.1489 0.1757 

4000 0.9279 0.8520 0.8607 0.8370 0.0721 0.14800 0.1393 0.1630 

5000 0.9399 0.8602 0.8742 0.8309 0.0601 0.13980 0.1258 0.1691 

10000 0.9413 0.9182 0.9212 0.8350 0.0587 0.08177 0.0788 0.1650 

15000 0.9479 0.9150 0.9265 0.8486 0.0521 0.08496 0.0735 0.1514 

20000 0.9545 0.9292 0.9300 0.8499 0.0455 0.07082 0.0700 0.1501 

30000 0.9675 0.9372 0.9344 0.8684 0.0325 0.06282 0.0656 0.1316 

 

The regression value at φ = 25 Rmax = .51034 is less as 

compared to the φ = 20 Rmax = .64575 which indicates 

that the most suitable propagation value is φ = 20 .The 

trained value is classified against the 30% separated data as 

classification test data. The classified results are also 

compared with other state of art techniques namely Naïve 

Bayes, Random Forest and multiclass SVM and the 

classification results are illustrated in the table 8. 

Out of 100000 simulation records, 30000 simulation 

records were kept separate in order to perform the 

classification. The ground truth of the test samples was 

already available for the processing and hence three 

individual parameters have been evaluated. The samples 

were tested against their ground truth value and True 

Positive Rate(tpr) represents the total true identified 

samples to the total number of samples. False Positive 

Rate(fpr) is evaluated using 1-tpr values. As evident from 

the results, the tpr of proposed algorithm architecture has 

highest values in all records comparisons. A certain raise 

in the classification percentage is also observed as the 

number of records increases from 1000 to 30,000. This is 

due to the correct sampling of the data in the proposed 

algorithm A-CS. A-CS helped the neural engine to 

establish the co-relation between the ground truth values 

and hence as the record set increases, the co-related 

samples are categorized to their original ground truth 

value. As tpr 1/∝ to fpr, higher tpr will result into lower fpr 

values. The overall accuracy of proposed algorithm is also 
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high as compared to other state of art classification 

algorithms as shown in Fig. 5. 

The overall algorithm architecture, results into improved 

overall QoS improvement and the statistical values are 

listed in table 9 to 11. The QoS evaluation is centric 

towards two parameters under three supplied load 

conditions. The load varies in a scenario 

{25000,30000,35000} packets/second. As the supplied 

load increases, the overall execution rate i.e the throughput 

also raises in each state of art technique along with the 

proposed algorithm. This is due to the fact that all the 

compared state of art techniques has worked on balancing 

the load and improving the overall execution rate of the 

system and hence it is not surprising to see that none of the 

algorithm whether it is the proposed algorithm or any other 

state of art technique fails when the load increases. Despite 

of the fact that none of the algorithm failed on increasing 

the load, the proposed algorithm outcasts the other 

techniques and are illustrated in table 8, 9  and 10. 

 

Fig. 5: Classification Accuracy and Prediction Error 

Table 9: QoS Analysis, load =25000 MIPS 

Total 

Number of 

Simulation

s 

Average 

Throughpu

t Proposed 

Average 

Throughput 

Loheswara

n et al. [25] 

Average 

Throughpu

t Garcia et 

al.[26] 

Average 

Throughpu

t Agarwal 

et al. [27] 

CO2 

Emissio

n 

Propose

d 

CO2 

Emission 

Loheshwara

n et al. [25] 

CO2 

Emissio

n Garcia 

et al. 

[26] 

CO2 

Emission 

Aggarwa

l et al. 

[27] 

1000 22902.625 21091.243 18832.788 18406.704 13.348 18.264 19.397 19.891 

2000 22727.966 20165.477 18521.188 18718.734 17.732 19.811 17.599 20.824 

5000 22912.37 21277.621 18340.445 17804.048 12.89 16.798 14.967 19.764 

10000 21996.265 21116.359 19387.12 19280.359 15.031 19.569 18.193 20.963 

15000 22910.127 20642.1 19338.176 18902.131 13.518 16.55 16.039 18.041 

20000 22311.409 21584.767 17866.551 19030.207 17.105 17.337 19.783 20.055 

25000 23196.854 20243.367 18957.814 18869.331 15.931 21.277 16.159 17.393 

30000 23256.834 21529.986 19294.957 18926.465 13.701 21.521 15.734 20.266 

50000 22848.297 22213.864 18127.326 19242.971 12.695 21.083 18.399 19.016 

60000 22855.363 22262.933 18065.593 19529.834 14.917 21.053 18.326 16.185 

80000 24263.146 22669.707 19952.424 18620.571 14.646 16.979 14.426 19.583 

100000 22957.014 21368.663 20129.65 20063.093 13.115 19.165 16.394 20.585 
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Table 10: Analysis, load=35,000 MIPS 

Total 

Numb

er of 

Simul

ations 

Average 

Throughput 

Proposed 

Average 

Throughput 

Loheswaran 

et al. [25] 

Average 

Throughput 

Garcia et 

al.[26] 

Average 

Throughput 

Agarwal et 

al. [27] 

CO2 

Emissi

on 

Propos

ed 

CO2 

Emission 

Loheshwara

n et al. [25] 

CO2 

Emission 

Garcia et 

al. [26] 

CO2 

Emission 

Aggarwal 

et al. [27] 

1000 26637.293 23122.870 20741.833 19636.846 19.276 22.547 22.463 19.991 

2000 26522.862 20983.829 19481.223 19391.589 15.058 19.612 20.261 18.280 

5000 26059.158 22571.834 21207.023 19795.774 14.264 22.318 22.718 22.145 

10000 26779.509 21702.818 19716.660 21170.620 18.180 21.494 18.055 19.238 

15000 26723.542 21590.502 20460.468 19746.355 15.350 22.809 18.583 22.192 

20000 26865.428 22342.254 20030.799 19823.284 18.219 24.521 21.810 20.135 

25000 26797.583 22013.887 21232.056 21329.115 18.181 23.360 20.065 21.975 

30000 26388.171 21585.021 20928.066 20255.314 15.357 24.346 21.584 18.465 

50000 27248.131 22983.666 20313.241 21703.867 18.278 24.400 18.946 18.253 

60000 27224.545 22056.537 21212.118 20783.430 15.562 20.738 22.024 20.494 

80000 27100.835 22490.209 21196.748 21526.341 17.529 23.156 19.183 18.239 

10000 27513.816 23161.359 21002.051 20712.199 17.633 23.739 20.851 21.419 

5. Conclusion  

In the cloud computing environment, it is vital to 

implement an effective task scheduling technique that 

affects the system performance in terms of carbon dioxide 

emission, energy consumption, and system load. The Q-

learning technique guarantees the task scheduling of the 

Sensor node in an optimal manner. Therefore, this paper 

elucidates the Machine Learning based Q-learning 

technique to schedule the task by validating the Quality 

value considering the different loads. Further, the Q-value 

for the different number of nodes has been computed and it 

is clear that the Q-value for 8th step for three of the users is 

same as 0.134752 which means that all the users were 

falling into similar structure and hence these users are to be 

migrated from the current data node to another data node 

based on step-8. Consequently, the average throughput 

value for the different number of nodes has been computed 

as 2.06E followed by illustrating the over utilization and 

underutilization of resources. Further, the average value for 

the overutilization and underutilization of resources is 

0.448 and 0.51 for the different number of nodes. The 

performance metrics in terms of TPR, FPR, and Accuracy 

has been measured to validate the results. The average 

TPR obtained using the proposed technique is 0.93 and 

that of FPR is 0.07. The proposed technique further 

compared with the Naïve Bayes Multi-class SVM, and 

Random Forest technique to determine the superiority. The 

proposed technique has been improved by 5.6% and 4.5% 

in comparison to Naïve Bayes and Random Forest 

technique. 
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