

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 759

Big Data Advanced Scheduling Integrating Q-Learning and Cuckoo

Search

Nagina1*, Dr. Sunita Dhingra2

Submitted: 23/09/2023 Revised: 17/11/2023 Accepted: 29/11/2023

Abstract: As a well-known fact sensor nodes are collecting enormous amounts of data in real-time, task scheduling is a crucial problem

in big data. It is essential in determining the effectiveness and performance of networks. The current methods only address the node angle

that degrades the system's performance. This research presents two distinct frameworks to which a flexible Q-learning technique has

been offered. The first scheduling architecture selects the suitable data node based on buffer latency using a Q-learning algorithm. In the

second, feed forward neural networks are used to train the system while the reward mechanism is employed. To maintain the best

records, the Advanced Cuckoo Search (A-CS) technique, a form of swarm intelligence, has been employed in conjunction with the K-

means clustering algorithm to determine the centroid. Accuracy is 93.25%, True Positive Rate (TPR) is 0.93, and False Positive Rate

(FPR) is 0.07. These performance metrics have been measured. The results indicate that the accuracy of the suggested strategy has

increased by 6%, 5%, and 12%, respectively, when compared to the random forest, naïve bayes, and multi-class support vector machine.

Keywords: Cloud Computing, Task Scheduling, Big Data, Machine Learning, Advanced Cuckoo search, Feed Forward Neural Network

(FFNN).

1. Introduction

The exponential growth in the use of internet technologies,

Cloud Computing (CC) emerges as a scalable network

which becomes very much useful for various applications

in both industry and businesses. Cloud computing is a pool

of various resources like storage units, processing unit, and

other networking devices, etc. CC has the distinct features

of grid computing, and utility computing but the concept is

quite different from the resource virtualization. Apart from

that, there are various important features of CC such as

scalability, resource utilization, economic use, and its

ubiquitous properties. However, users need the internet

access to access the various facilities of the CC. The user

can easily use the resource and pay when the service is

fully utilized. Thus, massive volumes of data have been

gathered by the sensor nodes in a real time environment.

This data fall has been fallen under the category of Big

Data that possesses volume, variety, and velocity of data

transmission. The combination of these factors became

difficult to handle such data [1]. Thus, innovative

techniques and methods employed in the literature to

handle the big data [2]. Scheduling is a technique used to

allocate the tasks to the Virtual Machines (VM’s) for

processing[3]. In Big data, task scheduling is a difficult

problem and can be optimized by applying several optimal

solutions [4, 5]. Thus, scheduling of massive volume of

data poses a lot of problems to the efficient computing that

lead to longer make span time and large cost that hinders

the system performance. The process requires cloud

computing tools [6]. The costs incurred on both server

Physical Machines (PM’s) and users end make the data

transmission costly and lengthy. But, efficient scheduling

of tasks always needed for the efficient utilization of

historical information and resources [7]. Thus, it does not

only maintain the make span time but also manages the

Service Level Agreement (SLA) to provide better service

to the associated users by maintaining good Quality of

Service (QoS).

Specifically, MapReduce programming also used to

process the Big Data using the software such as Apache

Spark or Hadoop. But there are certain problems associated

when using this technique, make it unsuitable for the

processing the Big Data in the cloud platform [8]. It is

noted that fast response of the cloud is one of the key

features that falls shortened by the MapReduce paradigm.

Thus, it also falls to timely generate a response due to the

key’s generation in the process of map phase. MapReduce

also fails to work with the complex classifiers such as

Support Vector Machine (SVM) and other Machine

Learning (ML) techniques due to longer compilation time.

However, many algorithms were developed to tackle the

problems as aforementioned. Ding proposed a Q-learning

based two phase frameworks for efficient scheduling the

tasks in the cloud environment. In the developed

framework, the former phase used to assign the tasks using

1 Research Scholar, Department of Computer Science and Engineering,

University Institute of Engineering and Technology, Maharshi Dayanand

University, Rohtak, Haryana, India. nagina260@gmail.com
 2Associate Professor, Department of Computer Science and Engineering,

University Institute of Engineering and Technology, Maharshi Dayanand

University, Rohtak, Haryana, India. sunitadhingra@rediffmail.com

* Corresponding Author Email: nagina260@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 760

the centralized dispatcher and then request has been

pushed on a global queue. The later phase used at VM

level in which Q-learning based scheduler has been used to

process the various tasks. All the users’ requests have been

prioritized by applying incentives to the tasks based on

different rewards. This also minimizes the response time

and maximizes the utilization of CPU [9]. Thus, this also

avoids the wastage of resources and makes span time. The

advantages of Q-leaning based technique to schedule the

task adapted to the environment and can easily benefit the

system. But still system complexity increases and

effectiveness of the system reduces due to the reward given

to the agent actions in a complicated manner. The other

deficiencies demonstrated in the previous research are: -

The past techniques focused only on the nodes

perspectives as nodes only take actions to achieve the

maximum rewards. The overall task scheduling is not ideal

for this action as such a perspective not applicable but

some approaches used to allocate the task considering a

global view [10].

It is difficult to distinguish the nodes and thus same

incentive strategy has been applied to all the nodes. Thus,

there is a need to define the more operations in the Q-

learning model.

Therefore, to avoid these issues, classification algorithms

have been used in the literature to schedule the task in a

big data. Vashishth used the classification techniques to

surge the efficiency and system reliability while managing

the Big Data in the cloud environment. The task

scheduling has been done using the Machine Leaning and

then VM’s used for assignment purposes in the cloud

environment. Further, Particle Swarm Optimization (PSO)

also used effectively to reduce the overhead time and

classify the task allocation technique [11].

The given Figure 1 illustrates that ML used as centered

component interlinked with the four other components that

includes Big Data, Customers or User, Domain, and linked

system. The interconnection or communication between

the devices is bidirectional. The learning engine is updated

utilizing the current information that has been extracted

from data. The engine processes the user query based on a

repository that has been prepared during the training time.

Fig. 1. A Framework to Manage the Big Data using the

Machine Learning

Specifically, Swarm Intelligence (SI) techniques have been

used in conjunction with the ML to improve the system

reliability and reducing the execution time [12]. To guide

the Cc so that to select the appropriate scheduling

technique, a multi-criteria decision has been made to

optimize the system performance. The scheduling has been

done using the ABC and PSO technique to determine the

makes pan time and managing the task in three different

data centers. The outcomes are fruitful but unable to

determine the CPU capacity, bandwidth utilization and

usage of RAM. Moreover, system complexity also

increases in simulating the different tasks as per user

requirement. Jaber developed the modified Cuckoo Search

technique to reduce the processing cost and solve the

scheduling problems [13]. The outcomes are fruitful in

reducing the makes pan time but limited to provide the

desired results in terms of efficiency and accuracy. This

paper aimed to solve these issues by reducing the

computation complexity of the simulated big data. The

proposed solution is divided into two parts namely the

development of scheduling architecture using the Q-

learning algorithm. The proposed algorithm is used for the

selection of appropriate data node based on the buffer

delay. The second part utilizes the reward mechanism of

the Q-learning based technique and trains the system using

Feed Forward Neural Networks for the training of the

system.

The paper is organized as section 1 demonstrates the

introduction part in which different task scheduling

techniques in Big Data have been explained. This section

also discusses the various issues related to previous Q-

learning techniques and then SI techniques have been

discussed. In section 2, the background in which previous

techniques had been developed for task scheduling is

explained. Section 3 highlights the proposed work in which

Q learning technique and SI based Cuckoo Search

technique applied to optimize the various tasks. Further,

results have been discussed to compute the performance

metrics in terms of TPR, FPR, and accuracy and, paper

finally concluded in the last section.

2. Related Work

In the literature, different state of art techniques has been

proposed to schedule the task in the big data. Specifically,

technique that are based on Q-learning, and Machine

learning gaining an attention due to the promising

solutions with better performance [14, 15].

Jena 2015 proposed a multi-objective task scheduling

framework using the nested PSO. The proposed solution

was not only managing the processing time but also

optimize the energy consumption. The simulated results

had been developed using the Cloud Sim toolkit in which

objective function computed and then algorithm was

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 761

implemented to compute the mutation operator. Further,

experimental results have been compared to validate the

proposed solution in terms of time, energy, and failed task.

The outcomes are promising but limited to consider the

other objectives such as Bandwidth and overall cost of the

system. Moreover, there is also need to focus more on the

robustness of the algorithm [16].

Tian et al. 2020 proposed a hybrid task scheduling

algorithm considering the task clustering mechanism. The

proposed solution integrates the tasks and then task

duplication process was done to figure the execution cost

of the process. The outcomes show that developed

algorithm not only reduces the communication overhead

but also manages the successor tasks. The experimental

results further compared with the leading algorithms to

evaluate the superiority of the task scheduling algorithm

[17].

Alhubaishy & Aljuhani 2020 developed a model based

on the preferences of the customers and predefined criteria.

For this, the authors had been adopted the best-worst

method to structure the task scheduling problems. The

proposed study was provided reliable results by

accommodating the customer preferences and thus, deals

the task scheduling problem dynamically. The outcomes

were consistent but still other problems such as cost and

bandwidth still are the constraints that reduce the

applicability of the algorithm [18].

Rjoub et al. 2020 proposed a big data task scheduling

approach by understanding the problems of VM trust level

and resource consumption issues. The authors developed a

Big Trust Scheduling solution that worked in three

different phases: Computing the VM trust level,

prioritization of tasks, and scheduling the tasks based on

trusts. The experiments were performed using the real-

world dataset using the Google Cloud Platform and results

show that proposed solution minimize the make span time

by 59% in comparison to PSO and other existing

techniques. The developed solution was promising and

applicable to other task scheduling problems. Moreover,

the trust model also extended to other environments such

as IoT, Fog computing etc [19].

Ding et al. 2020 proposed a task assignment solution to

avoid the energy consumption issue in an analytical and

experimental manner. The Q-learning based solution had

been worked in two different phases in which first phase

used to design the centralized task dispatcher in

combination with the queuing model. The second phase

based on prioritizing the tasks to minimize the task life

time and laxity. The shorter response time and other

energy constraints were desirable that improves the system

performance. Further, SLA constraints were considered

using the dynamic task ordering strategy and thus enhance

the cloud services quality. The proposed solution also

designed the adaptive scheduler to reduce the response

time and thus, maximize the CPU utilization. The proposed

model is robust but increase in complexity makes the

system inefficient [20].

Tong et al. 2020 had integrated the Q-learning with deep

neural network to schedule the tasks in an effective

manner. The proposed approach used to solve the problem

of Directed Acyclic Graphs (DAG) in a cloud

environment. The model was developed in Workflow Sim

and performance was compared with the make span and

load balancing in a real-life environment. The proposed

solution is advantageous to provide the required

scalability, containment, and learning ability [21].

Fu et al. 2021 proposed an effective scheduling technique

using the PSO. In the first phase, dividing the particle

swarm and then particles position was changed using the

crossover mutation. The genetic algorithm further used to

emphasize the search range of the space and avoids the

probability to fall in the local optimal solution. Further,

feedback mechanisms were used to experience the particles

direction. The proposed solution is robust and outcomes

show that empowering mechanisms used to avoid the

space [8].

Sanaj & Prathap 2021 had been used the MAP reduce

framework to schedule the tasks in an efficient manner.

The authors initially extracted the task features and then

reduce the features using the proposed algorithm. Further,

massive tasks were separated into small tasks using the

framework and scheduled using the optimization

technique. The experimental results show that tasks were

efficiently scheduled and proposed solution outperforms

the other techniques [22].

Jalalian & Sharifi 2022 proposed a hierarchical task

scheduling mechanism to enhance the efficiency of the

resources. Further, K-means clustering algorithm was

developed to optimize the clusters and then evolutionary

algorithms were used to reduce the makes pan time. The

proposed work was simulated in the Cloud Sim toolkit and

experimental outcomes show that there is a reduction of

makes pan time, and CPU utilization in comparison to

Reinforcement Learning algorithms. The data transfer cost

had been analyzed further to predict the overall cost of the

distribution system. The results were prominent but limited

to schedule the task in a real environment [23].

Arunadevi, & Thulasiraaman 2022 proposed an effective

Cuckoo Search based task scheduling algorithm. The study

includes the pre-processing of the data streams in which

information was discretized and then consolidate the

information using the Chi-square method. The authors also

introduce the MapReduce framework utilizing the multi-

objective CS to target the CPU time, memory utilization,

and energy consumption. The proposed study shows robust

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 762

information but limited to analyse the operational

parameters such as CPU utilization, cost and bandwidth

[24].

Loheswaran et al. 2019 proposed a hybrid algorithm,

called Hybrid Cuckoo Search with Iterative Local Search

(HCS-ILS), for task scheduling in the cloud environment.

The algorithm combines cuckoo search optimization with

iterative local search to improve efficiency. Simulation

results show that HCS-ILS outperforms the conventional

cuckoo search algorithm and its variants in terms of

minimizing makespan and increasing resource utilization

[25].

García et al. 2018 utilized Big Data techniques to

implement metaheuristic algorithms for industrial decision-

making. They evaluated the algorithm's performance in

terms of result quality and convergence times under

various conditions. The proposed approach was a cuckoo

search binary algorithm implemented in Apache Spark,

tested on multiple crew scheduling instances. However, the

experiments showed that achieving satisfactory results and

iterations depended on specific problem characteristics and

was not consistently guaranteed [26].

Agarwal et al. 2016 proposed a cuckoo search-based

approach for task scheduling, aiming to efficiently

distribute tasks among available virtual machines (VMs)

while minimizing overall response time (QoS). This

algorithm allocated tasks to VMs based on their processing

power (measured in million instructions per second, MIPS)

and task length. They compared the cuckoo search

algorithm with first-in-first-out (FIFO) and greedy-based

scheduling algorithms using the CloudSim simulator. The

results demonstrated that cuckoo search outperformed the

other algorithms [27].

3. The Proposed Solution

The proposed solution aims to reduce the computation

complexity of the simulated big data. The proposed

solution is divided in two segments namely the scheduling

architecture which uses Q-learning algorithm for the

selection of appropriate data node based on the buffer

delay. The second section utilizes the reward mechanism

and trains the system using Feed Forward Neural Networks

for the training of the system against two ground truth

labels namely “Acceptable”,” Moderate- Acceptable” in

order to further reduce the computation complexity of the

exploration part of the Q-learning algorithm.

3.1. Section 1: The scheduling architecture using the Q-

Learning

The scheduling architecture is now considered as the

defined problem of the Q-learning algorithm. The learning

algorithm is learning from its taken actions in the systems

incorporating the state variables undertaken during the

simulation and has been referred as Agd in earlier

segments.

The State and the Variables(𝑺𝒗) : The state variable is a

set of finite attributes described Sv at a state time ‘t’ can be

defined as

𝑆𝑣 = {𝑙1, 𝑙2, … . 𝑙𝑛} where ‘l’ ={IIR, Buffer_Delay(BD)}∈

Agd and 𝐵𝐷 is the buffer delay of the data nodes under one

data center. Each data node has multiple buffers based on

the priority of the task which ranges from 1-8 viz each data

node will have 8 buffers to handle. Each data center is

found to be busy executing the buffer tasks and as per

assumption, no buffer is empty.

The action set (As={𝐴𝑠1, 𝐴𝑠2. . 𝐴𝑠𝑛 }) where n is total

number of users in Agd, is the set of possible actions that a

learning agent would select in order to generate maximum

reward. Any action will represent the allocation of the user

job to data center.

The environment and the observations from

environment

Consider the assumption that, user U1, at the current state

𝑆𝑣1
 is to be assigned to data node 𝑑𝑛1

 and task has a set of

attributes A1. By taking the action A1, U1 will be allocated

to 𝑑𝑛1
 at the end of respective buffer queue 𝜉. As per the

policies of Q-learning, the learning agent will come to

know the situation of the new state as soon as A1 has been

performed. The next state will provide either a reward

generated against the action A1 or the agent will be

penalized as the result of the action. In both the cases, the

learner will update its information regarding its

surrounding objects. The average 𝐵𝐷 can be calculated as

follows.

𝐵𝐷 = 𝑇𝑐𝑡 + ∑
𝑈𝑝

𝐸𝑟

𝑝
𝑖=1 (1)

Where 𝑇𝑐𝑡 is the task completion time, p is total number of

users in the buffer, UP is the pth user, Er is the execution

rate under 1 specific buffer. All the tasks are associated

with some completion time and that is pre-defined. The

reward for such a situation is defined as follows.

𝑅

=
1 {min { 𝑈. 𝐵𝐷𝑡

} < ℵ + 𝜑1 ≤ 𝑑𝑛 . 𝑐𝑝𝑢𝑢𝑡𝑖𝑙 ≤ 𝜑2 }

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

where 𝜑1 and 𝜑2 are upper and lower threshold of CPU

utilization of the data node dn for the User U with Buffer

delay for job type t and ℵ is the task deadline. There are

total number of B buffers in the list. The reward uses the

buffer delay time and the upper and lower threshold of

CPU utilization against the given priority of the task. The

data node is over-utilized if the CPU utilization of the

current data node is higher than the upper threshold 𝜑2.

The data node is under-utilized if the CPU utilization of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 763

the data node is below lower threshold 𝜑1. If the CPU

Utilization of the data node remains under the boundary of

𝜑1𝑎𝑛𝑑𝜑2, the data node is considered as a suitable

candidate for the allocation of the user. Though, it is not

necessary that if the data node is one of the suitable

candidates for allocation, it must be the best candidate for

allocation and hence a Q-table is created for all the

possible actions as allocations has been considered. It is to

be noted that, the overall deadline of the task should not be

exceeded by the Buffer Delay. The algorithmic

architecture for the Q-learning is illustrated in Algorithm 1.

For one Buffer, the total number of waiting tasks in the

buffer is equal to q, and hence the Q-table will be of size q

× 𝜛 where 𝜛 is the total number of waiting task in the

buffer.

Algorithm 1: The Q-learning Algorithm

Input: Q ,Sv , Bq , t-list // where t-list is the total task list ,

𝐵𝑞 is the buffer queue

Q-L[1] 𝐰𝐡𝐢𝐥𝐞 t − list. ϖ > 0

Q-L[2] 𝐖𝐚𝐢𝐭 if Bq = ϖ for all 1≤ B

Q-L[3] ϖl = Extract ϖ from pr from t − list // where pr

is the priority list

Q-L[4] Al = SelectAction(Q,St) // Use greedy method to

select an action

Q-L[5] Perform At // Merge ϖl to Bq ,

Q-L[6] Evaluate Rt and St+1

Q-L[7] Q(Svt
, At) = (1−∝)Q(Sv𝑡

, At)+∝ [Rt +

γ. maximumAt
 Q(Svt+1

, At)] // where ∝ is the

learning rate and γ is the discount.

Q-L[8]Svt
= Svt+1

Q-L[9]𝐄𝐧𝐝𝐰𝐡𝐢𝐥𝐞

The algorithm 1, takes the Q, St and Bq as buffer queue

along with task list as t-list. With every simulation

iteration, the Q-table which is hold by Q, is updated

utilizing the Bellman’s equation defined in Q-L[7] of

algorithm 1. The process repeats itself until all the tasks in

the buffer are not complete. At a given state value 𝑆𝑡, the

scheduling architecture selects an action At by applying

Greedy Search policy (ε -greedy-policy) in which the

exploration part dominates the exploitation part for a while

in order to understand the reward of selection.

𝑆𝑉1
̅̅ ̅̅ = 〈𝑙1 + 1, 𝑙2, … … … . . , 𝑙𝑘 , … … … … 𝑙𝑛〉,

𝑆𝑉2
̅̅ ̅̅ = 〈𝑙1, 𝑙2 + 1, … … . . , 𝑙𝑘, … … … … 𝑙𝑛〉

…… … …… ….

…… … …… ….

𝑆𝑉𝑘
̅̅ ̅̅ = 〈𝑙1, 𝑙2, . . … . . , 𝑙𝑘 + 1, … … … … 𝑙𝑛〉,

……. … … …

𝑆𝑛
̅̅ ̅ = 〈𝑙1, 𝑙2, . . … . . , 𝑙𝑘, … … … … 𝑙𝑛 + 1〉 (3)

When a system is forced to explore, viz. in case of ε -

greedy-policy, the system picks random state and performs

the action and a reward is generated. The process

continues, till all the possible actions are not suppressed

into actual implementation until the discount becomes too

big to be adjusted. The Q-value is updated using the

Bellman’s equation as given by eqn 4.

Q(Svt
, At) = (1−∝)Q(Sv𝑡

, At)+∝ [Rt +

γ. maximumAt
 Q(Svt+1

, At)] (4)

Where ∝ is the learning rate and γ is the discount. The

selected data node is supplied with the job and the data

node performs the execution. It is to be noted that, Q-

learning gets the input from mini-max architecture, which

uses map-reduce separation architecture. Post execution of

the job, the data is aggregated as Agd∈

{U, Dn, IIR, Th, Sd, Ext, CO2e
, Our, Uur, Cp } attributes where

U is user, Dn is the allocated data node, IIR is the

instruction injection rate, This throughput, Sd is the storage

demand, 𝐶𝑂2𝑒
is the carbon emission, Ext is the execution

time, Our is the overutilization ratio, Uur is the

underutilization, and Cp is the consumed power. The Agd

is divided into three groups that are further labeled using

statistical machine learning.

3.2. Section 2: The data-selection, training, and

classification model

The data selection process incorporates a new search

behavior based on the Levy flights generated to place the

record to appropriate group. The group generation is

performed utilizing centralized k-means algorithm. K-

means algorithm faces convergence issue due to its random

centroid selection process for the first centroid [28].

The updated k-means algorithm can be illustrated using

Pseudo code centralized k-means

The segmented class label entries are passed for attribute

set selection utilizing Advanced Cuckoo Search(A-CS)

algorithm.

Pseudo Code 1 for Centralized k-means

𝐈𝐧𝐩𝐮𝐭: Count of Centroids (C); Set of task (T); centroids list

assigned randomly (CC).

𝐎𝐮𝐭𝐩𝐮𝐭: Task scheduled with their centroid

𝐁𝐞𝐠𝐢𝐧

1. Repeat

2. For each task in T do

3. Calculate the distance between the tasks assigned

to each node and the quality value using the equation 3.

4. Assign the tasks to the nearest centroid

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 764

5. End for

6. For each task in CC do

7. Compute the new centroid task allocation based on

quality using the equation 4.

8. End for

9. Until all the tasks assigned to the VMs or the iterations

reached to maximum.

𝐄𝐧𝐝

The K-means clustering algorithm has been used to

determine the centroid of each task allocated to the VMs.

K-Means has resolved different problems encountered

during the task scheduling in the cloud environment to

manage the Big Data. Initially, different tasks have been

allocated by computing the centroid of each node. The

node which is nearest to the centroid has been allocated

and that are farther away from the centroid schedule the

task accordingly.

Table 1: Notations and Abbreviations

The aim of the A-CS algorithm is to keep most relevant

data records belonging to one class in order to train the

system at its most precise manner. Hence here in the

proposed solution, one class elements are considered as

eggs of one host. The Cuckoo bird in the proposed solution

does not put its egg into other host’s nest but, checks its

own eggs in order to find any intruding egg from any other

host’s nest. To do so, the cuckoo bird performs a rigorous

analysis by dividing its own eggs into multiple segments

and performs a Levy-flight evaluation method in order to

check the sustainability of the examined egg with other

eggs in the nest. The CS algorithm takes the aggregated

data along with the clusters that are identified by the

proposed k-means algorithm. The cuckoo bird keeps a

Levy-flight and shuffles the egg’s attributes that are the

simulation parameters evaluated under the policy.The

policy contains three distribution ratio of {d1,d2,d3} as a

set of two values. The first value represents the percentage

of total number of eggs that would be taken from egg’s

inner native host and the second value represent the

percentage of total eggs that would be taken from egg’s

inner non-native host. As for example, in the distribution

policy ⊓𝑑1, 70 % eggs will be considered to be paired from

egg’s inner native host and 30% eggs will be considered

from egg’s non-native node.

The proposed A-CS algorithm creates a hypothetical two

nest system within a single host cuckoo. The aim of the

algorithm is to keep the best records belonging to one

single class. In order to do so, each record is referred as

one cuckoo egg. Each egg must pass a 10 Levy flight

organization in which each egg will be placed with random

number of other eggs with each Levy flight. Levy flight is

the duration of the time a cuckoo bird goes out of its nest.

When the cuckoo comes back, it hypothetically shuffles

the eggs one by one until the last egg is not considered.

The proposed A-CS algorithm introduces an angularity-

oriented fitness function which utilizes cosine similarity

for the calculation of the fitness value. Each Levy flight

contains a reward of 1 unit if the fitness of cuckoo egg to

the satisfaction of cuckoo bird matches. To do so, the

cuckoo bird divides the entire eggs in two separate inner

nest and it calls them native nest/hive and non-native

nest/hive. The cuckoo bird applies the policy of

distribution ⊓𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛. The fitness function calculates

the cosine similarity between the selected random

population along with their hive and the cosine similarity

between the selected random population containing the

current egg as well.

Pseudo Code 2 for A-CS algorithm

A-CS1. Pseudo Code A − CS

A-CS2. Inputs: Agd,Output ∶ Selected Data (Sd) // where Agd is the aggregated data set//

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 765

A-CS3. Sd = [] // Initialize an empty index for selected data //

A-CS4. Totalclasses = 3 // It is the total number of classes which is separated using centralized k − means //

A-CS5. Formain class = 1: Totalclasses

A-CS6. dtp = ∮ Agd. datavalues
t

i=1

A-CS7. // Extract the data values for the current class getting processed and put it to data to process (dtp)//

A-CS8. Totaleggs = dtp

//The total aggregated data against the supplied class will act as eggs of the cuckoo

 that the bird will aim to place in other hives //

A-CS9. innerhive = 2 // As the cuckoo bird will have to perform analysis over its own egg,

A-CS10. the cuckoo bird divides the eggs in two different segments and validates the under −

 examination egg against both the classes //

A-CS11. [Indexinner, Centroidinnner] = k − means(Totaleggs, innerhive)//

 𝐷𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑜 𝑡𝑤𝑜 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 //

A-CS12. σ = 10 // Total Levy flights = 10 //

A-CS13. Fitnessreward = 0s{1: σ}

 Initialize a reward array for the Levy flights each containing a 0 value

 for each egg and will be updated as per the flight reward //

A-CS14. For1 j = 1: Totaleggs. count // consider each egg

A-CS15. Cg = Totalegg[j] // Take out the first egg //

A-CS16. ∅ = Totaleggs(τ) τϵ Atset

A-CS17. select random feature set, where τ is the random index of feature, At −

 set is the attribute set as Atset−→

 ∫ {U, Dn, IIR, Th, Sd, Ext, CO2e
, Our, Uur, Cp

simitr

t=1
} dt where simitr is the total

 number of simulation records aggregated. In case of proposed work model,

 simitr ϵ{i1, i2 … . . il} where ‘i’ is 100000//

A-CS18. For11
 jj = 1: σ // Loop for every Levy flight

A-CS19. define ∂ϵ ⨅ distribution {70−30 ,60−40 ,50−50}

A-CS20. 𝑤ℎ𝑒𝑟𝑒 𝜕 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑒𝑔𝑔 𝑚𝑎𝑑𝑒 𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 ⨅

 𝑡𝑜 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒 𝑒𝑔𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑜𝑠𝑡 𝑛𝑒𝑠𝑡 //

a. totalpopulation = Totalegg. population() // Total cuckoo eggs in the nest//

b. deployedpopulation = totalpopulation. random()//Generate a random population //

c. discountedpopulation = { ⨅
⨅ distribution .e1

100
 ,

⨅ distribution .e2

100
 }

d. //Create the discounted population following ⨅ distribution law, as for example if ∂ ==

1, e1 = 70 , e2 = 30 //

e. pairingindex = discountedpopulation. index ()//

 Extract the indexes of the discounted population //

A-CS21. pairedindex = (pairingindex ⋃ Cgj)

 𝑀𝑒𝑟𝑔𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑢𝑐𝑘𝑜𝑜 𝑒𝑔𝑔 𝑖𝑛𝑑𝑒𝑥 𝑡𝑜 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥𝑒𝑠 𝑔𝑎𝑡ℎ𝑒𝑟𝑒𝑑 𝑖𝑛 𝑝𝑎𝑖𝑟𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 //

CS1 = Avg − Cosinesimilarity(pairingindex, pairingindex . Centroid)//

The cuckoo bird calculates similarity of the pairing index to its relative centroid //

 CS2 = Avg − Jaccardsimilarity(pairedindex , pairingindex. Centroid)

// The centroid for both the indexes will be same //

A-CS22. If CS2 > 𝐶𝑆1

A-CS23. Fitnessreward[j] = 1

A-CS24. End If

A-CS25. End For11

A-CS26. Successfullevys = ∑ find(Fitnessreward > 0)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 766

A-CS27. If Successfullevys > 𝜎 ×
50

100

A-CS28. Keep Egg

A-CS29. Sd. append(j)

A-CS30. Else

A-CS31. Reject Egg

A-CS32. End

A-CS33. End For1

A-CS34. End Formain

A-CS35. Return Sd

Cosine Similarity: The cosine similarity is a distance

measure which uses eq (5) which is further simplified to eq

(6).

𝐶𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐶1.𝐶2

||𝐶1||×||𝐶2||
 (5)

𝐶𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
∑ 𝐶1𝑖.𝐶2𝑖

𝑛
𝑖=1

√∑ 𝐶1𝑖
2𝑛

𝑖=1 .√∑ 𝐶2𝑖
2𝑛

𝑖=1

 (6)

where n is total number of attributes in the cluster

Being an angular similarity measure, the 900 𝑜𝑟 2700 is

the maximum value when it comes to least similarity and

arithmetically it is 𝐴𝑏𝑠(𝐶𝑜𝑠({900, 2700})) = 0 and hence

the aim is to maximize the co-relation value which can be

flt on the current object i.e 00𝑜𝑟1800.

Arithmetically, 𝐴𝑏𝑠(𝐶𝑜𝑠{00, 1800}) = 1. The fitness

function of the A-CS algorithm evaluates CS1 and CS2 for

the illustrated scenario by using eq (6).

𝑓𝑐𝑢𝑐𝑘𝑜𝑜 =
1 𝑖𝑓𝐶𝑆1 ≤ 𝐶𝑆2
𝑂 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7)

The selected data against each ground truth value is

supplied to Feed Forward Neural Networks for the

training.

3.3. Feed Forward Neural Networks (FFNN)

In this section, tasks are distributed considering the

different ratios such as 70:30, 80:20, and 90:10. The

propagation model namely Levenberg has been applied

accordingly and then stopping criteria namely Gradient has

been used to stop the scheduling process. The regression

model has been used to select the different tasks and the

developed FFNN model has been validated using the Mean

Square Error. The ordinal measures are as follows.

Table 2: The Ordinal Measures of Used Feed Forward

Neural Networks

Propagation Type Feed Forward

Distribution a)70-30

b)80-20

c)90-10

Model of propagation Levenberg

Stopping Criteria Gradient

Layers of Propagation 5-20

Selection type Regression

Validation type Mean Squared Error

4. Result and Elaborations

The learning rate of the proposed work model is illustrated

in contrast to the number of steps considered in the

architecture. A tabular representation is given as follows.

The table demonstrates the actions taken by the agents in

the proposed contrast. For the current instance, there are 3

users to be migrated from a list of 500 users. There are 30

users that are running on an overloaded data node. For the

migration of 2 users, 6 users have been selected based on

the lower utilization of the available resources. These users

were propagated through learning steps of greedy search

algorithm to form Q-table. The table can be illustrated as

follows. The Q-value for 8th step for three of the users is

same viz. 0.134752. It indicates that all the users were

falling into similar structure of jitter at the data node and

hence these two users are to be migrated from the current

data node to another data node based on step-8.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 767

Table 3: Q-value

Users 1 2 3 4 5 6

Q-

value

Step 1

0.13703 0.13475 0.13564 0.13475 0.13475 0.07521

Q-

value

Step 2

0.13564 0.13656 0.13475 0.13564 0.13564 0.13475

Q-

value

Step 3

0.13703 0.13475 0.13564 0.13475 0.13475 0.13703

Q-

value

Step 4

0.13475 0.13564 0.13656 0.13564 0.13656 0.13564

Q-

value

Step 5

0.13475 0.13656 0.07512 0.13475 0.13475 0.13475

Q-

value

Step 6

0.13475 0.13475 0.07567 0.07521 0.13656 0.13703

Q-

value

Step 7

0.07423 0.07512 0.13564 0.13475 0.13656 0.13475

Q-

value

Step 8

0.13656 0.13475 0.13475 0.13475 0.07549 0.13656

Q-

value

Step 9

0.13475 0.13564 0.13475 0.13656 0.13656 0.13475

Q-

value

Step 10

0.13475 0.13475 0.13475 0.13475 0.13564 0.13475

Q-

value

Step 11

0.07521 0.13475 0.13475 0.13475 0.13475 0.13475

Q-

value

Step 12

0.13475 0.13564 0.13475 0.13475 0.13564 0.13475

Q-

value

Step 13

0.13475 0.13475 0.13564 0.13475 0.13475 0.13475

The results have been evaluated on the base of two aspects.

The first aspect relates to the training and classification

architecture which involves the usage of SI for the

selection of the separated data. In order to evaluate and

validate the performance, following attributes have been

evaluated.

• True Positive Rate (TPR): It is the true detected

samples from each class to the total number of

samples of the respective class.

• False Positive Rate (FPR): It is the false detected

samples from each class to the total number of

samples in the respective class.

• Accuracy: It is the arithmetic mean of TPR.

To evaluate the performance of the proposed algorithm A-

CS, a set of users have been deployed over a set of data

nodes placed under the name node. The name node maps

the request from the user and finds the possible solution to

the requests of the users. Due to the application of the A-

CS that is integrated with k-means algorithm as shown in

Fig. 2, is supplied to feed-forward neural networks. The

neural network runs regressive engine that follows the

Levenberg principle of propagations in order to train the

system.

Fig. 2: Data Segmented by I-k-Means

A-CS selects the most relevant data from the list that are

concise and more applicable to the list. To do so, a novel

fitness function and a flight behavior is introduced in the

proposed work section. A-CS reduces the population size

as shown in Fig. 3.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 768

Fig. 3: The Selected Identities After the Application of A-

CS

It is evident from Fig. 3 that, A-CS reduces the unused

sample space or the sample space that is quite far from the

original centroid of the cluster. Due to the application of

A-CS algorithm, the centroids of the clusters also shift

more towards the data rather than being towards the free

space. To illustrate the working of A-CS, a small set of

examples is provided with statistical values as follows.

This provides conciseness to the training algorithm. To

train the system, a total Starting from the first centroid, the

following indexes have been identified to fall in the first

centroid as shown in Table 4.

Table 4: Elements of First Centroid

2 3 4 5 8 9 11 13

14 15 17 22 31 37 40 42 47

Each record value of this centroid set, is now being

considered as one egg from Cuckoo bird.

10 random indexes as per policy 1 have been generated as

follows. The first distribution states that, 70% of the

population for the comparison should be generated from

the existing set of data and rest 30% competitors will be

selected from other two hives.

First of all, a random sample of feature set will be selected

to evaluate each cuckoo egg. The selection of the features

will be done on the base of these features for the first levy

flight and for the first cuckoo egg. There is total 11

features that are supplied as input and hence the generated

index would be 1-11.

Table 5: Egg Features for the Evaluation of First Cuckoo

Levy Flight

5 3 2 3 5 4 8 10 1 1

The elements of Cluster 1 are going to be divided into two

separate inner hives and based on the properties, two

further distribution is listed in table 5.

Table 6: Egg Features for the Evaluation of First Cuckoo

Levy Flight

1 1 1 1 1 1 1 2 1

1 1 1 1 1 1 1 1

Based on the selected sample, five indexes have been

selected for the evaluation of the current cuckoo bird. The

indexes are {3 3 6 2 5 }. The current cuckoo bird will

be collaborated with these indexes and the overall index

will become {3 3 6 2 5 1} as the

scheduler is on first bird right now.

As shown in Table 7, first 7 identities have been selected

from the same hive whereas 3 identities viz. 10,1 and 1

belongs to other hive. The proposed work algorithm has

not put any limit on duplicate identities and hence

repetitive identities have also been observed. As for

instance 3 and 5 repeats itself in 70% distribution and 1

repeats itself in 30% distribution. Now the cuckoo set

combined value with the other eggs is passed to cuckoo

fitness function which uses two similarity measures

namely Cosine similarity and Jaccard similarity and is

illustrated in the pseudo code as well.

The collaborative features will be indexes as follows.

Table 7: Indexes Evaluation for Current Cuckoo Bird

using Selected Samples

239

00

19459.

329

6.1

96

0.0000

0439

14.6

84

0.3

49

0.6

37

150.

975

239

00

19459.

329

6.1

96

0.0000

0439

14.6

84

0.3

49

0.6

37

150.

975

249

61

20146.

855

9.8

98

0.0000

0614

16.9

50

0.5

65

0.4

10

139.

129

198

34

18765.

123

9.7

03

0.0000

1123

18.4

95

0.3

52

0.5

89

131.

174

219

82

18706.

155

3.0

85

0.0000

0663

14.3

74

0.5

52

0.4

15

133.

429

226

12

20700.

321

1.4

55

0.0000

0142

15.0

05

0.3

41

0.6

22

138.

431

The cuckoo search algorithm accepts two parameters as

input, the first input is the collected egg values from the

hives and the second value is the value of the centroids of

the hive that contains more number of eggs in the list. An

average of both the similarities have been evaluated and if

the average similarity of the considered group is more than

that of the similarity of the hive that contains a greater

number of candidates, the cuckoo fitness return 1 in favor,

else it return 0. For each flight, the proposed algorithm gets

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 769

0s and 1s in return and by the end of all flights, if number

of 1s are more than that of number of 0s in the list, the egg

is accepted and will remain in the save host value else it

would be discarded from the existing group.

The selected dataset from each category will be passed to

multi-layer propagation model which is supported by

Levenberg’s propagation architecture. The ordinal

measures of the propagation network is provided in table 7.

In order to select the total number of layers, a regression

analysis has been formed utilizing the Neural Network

toolbox of MATLAB.

Fig. 4(a): Regression Analysis φ = 5 Rmax = .04 Fig. 4(b): Regression Analysisφ = 10 Rmax = .43105

Fig. 4(c): Regression Analysisφ = 15 Rmax = .5132 Fig. 4(d): Regression Analysis φ = 20 Rmax = .64575

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 770

Fig.4(e): Regression Analysis φ = 25 Rmax = .51034

Table 8: Classification Results

Number

of Test

Samples

Tpr

Proposed

Tpr

Naïve

Bayes

Tpr

Random

Forest

Tpr

Multiclass-

SVM

Fpr

Proposed

Fpr

Naïve

Bayes

Fpr

Random

Forest

Fpr

Multiclass-

SVM

1000 0.8962 0.8259 0.8374 0.8011 0.1038 0.17415 0.1626 0.1989

2000 0.9004 0.8323 0.8473 0.8295 0.0996 0.16768 0.1527 0.1705

3000 0.9176 0.8489 0.8511 0.8243 0.0824 0.15107 0.1489 0.1757

4000 0.9279 0.8520 0.8607 0.8370 0.0721 0.14800 0.1393 0.1630

5000 0.9399 0.8602 0.8742 0.8309 0.0601 0.13980 0.1258 0.1691

10000 0.9413 0.9182 0.9212 0.8350 0.0587 0.08177 0.0788 0.1650

15000 0.9479 0.9150 0.9265 0.8486 0.0521 0.08496 0.0735 0.1514

20000 0.9545 0.9292 0.9300 0.8499 0.0455 0.07082 0.0700 0.1501

30000 0.9675 0.9372 0.9344 0.8684 0.0325 0.06282 0.0656 0.1316

The regression value at φ = 25 Rmax = .51034 is less as

compared to the φ = 20 Rmax = .64575 which indicates

that the most suitable propagation value is φ = 20 .The

trained value is classified against the 30% separated data as

classification test data. The classified results are also

compared with other state of art techniques namely Naïve

Bayes, Random Forest and multiclass SVM and the

classification results are illustrated in the table 8.

Out of 100000 simulation records, 30000 simulation

records were kept separate in order to perform the

classification. The ground truth of the test samples was

already available for the processing and hence three

individual parameters have been evaluated. The samples

were tested against their ground truth value and True

Positive Rate(tpr) represents the total true identified

samples to the total number of samples. False Positive

Rate(fpr) is evaluated using 1-tpr values. As evident from

the results, the tpr of proposed algorithm architecture has

highest values in all records comparisons. A certain raise

in the classification percentage is also observed as the

number of records increases from 1000 to 30,000. This is

due to the correct sampling of the data in the proposed

algorithm A-CS. A-CS helped the neural engine to

establish the co-relation between the ground truth values

and hence as the record set increases, the co-related

samples are categorized to their original ground truth

value. As tpr 1/∝ to fpr, higher tpr will result into lower fpr

values. The overall accuracy of proposed algorithm is also

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 771

high as compared to other state of art classification

algorithms as shown in Fig. 5.

The overall algorithm architecture, results into improved

overall QoS improvement and the statistical values are

listed in table 9 to 11. The QoS evaluation is centric

towards two parameters under three supplied load

conditions. The load varies in a scenario

{25000,30000,35000} packets/second. As the supplied

load increases, the overall execution rate i.e the throughput

also raises in each state of art technique along with the

proposed algorithm. This is due to the fact that all the

compared state of art techniques has worked on balancing

the load and improving the overall execution rate of the

system and hence it is not surprising to see that none of the

algorithm whether it is the proposed algorithm or any other

state of art technique fails when the load increases. Despite

of the fact that none of the algorithm failed on increasing

the load, the proposed algorithm outcasts the other

techniques and are illustrated in table 8, 9 and 10.

Fig. 5: Classification Accuracy and Prediction Error

Table 9: QoS Analysis, load =25000 MIPS

Total

Number of

Simulation

s

Average

Throughpu

t Proposed

Average

Throughput

Loheswara

n et al. [25]

Average

Throughpu

t Garcia et

al.[26]

Average

Throughpu

t Agarwal

et al. [27]

CO2

Emissio

n

Propose

d

CO2

Emission

Loheshwara

n et al. [25]

CO2

Emissio

n Garcia

et al.

[26]

CO2

Emission

Aggarwa

l et al.

[27]

1000 22902.625 21091.243 18832.788 18406.704 13.348 18.264 19.397 19.891

2000 22727.966 20165.477 18521.188 18718.734 17.732 19.811 17.599 20.824

5000 22912.37 21277.621 18340.445 17804.048 12.89 16.798 14.967 19.764

10000 21996.265 21116.359 19387.12 19280.359 15.031 19.569 18.193 20.963

15000 22910.127 20642.1 19338.176 18902.131 13.518 16.55 16.039 18.041

20000 22311.409 21584.767 17866.551 19030.207 17.105 17.337 19.783 20.055

25000 23196.854 20243.367 18957.814 18869.331 15.931 21.277 16.159 17.393

30000 23256.834 21529.986 19294.957 18926.465 13.701 21.521 15.734 20.266

50000 22848.297 22213.864 18127.326 19242.971 12.695 21.083 18.399 19.016

60000 22855.363 22262.933 18065.593 19529.834 14.917 21.053 18.326 16.185

80000 24263.146 22669.707 19952.424 18620.571 14.646 16.979 14.426 19.583

100000 22957.014 21368.663 20129.65 20063.093 13.115 19.165 16.394 20.585

93.26%
87.99% 88.70%

83.61%

6.74% 12.01% 11.30% 16.39%
0

10

20

30

40

50

60

70

80

90

100

Average

Accuracy

Proposed

Average

Accuracy

Naïve Bayes

Average

Accuracy

Random

Forest

Average

Accuracy

Multi-class

SVM

Avearge

Prediction

Error

Proposed

Average

Prediction

ErrorNaive

Bayes

Average

Prediction

Error

Random

Forest

Average

Prediction

Error Multi-

class SVM

P
A

R
A

M
E

T
R

IC
 V

A
L

U
E

 (
%

)

Average Accuracy and Prediction Error (%)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 772

Table 10: Analysis, load=35,000 MIPS

Total

Numb

er of

Simul

ations

Average

Throughput

Proposed

Average

Throughput

Loheswaran

et al. [25]

Average

Throughput

Garcia et

al.[26]

Average

Throughput

Agarwal et

al. [27]

CO2

Emissi

on

Propos

ed

CO2

Emission

Loheshwara

n et al. [25]

CO2

Emission

Garcia et

al. [26]

CO2

Emission

Aggarwal

et al. [27]

1000 26637.293 23122.870 20741.833 19636.846 19.276 22.547 22.463 19.991

2000 26522.862 20983.829 19481.223 19391.589 15.058 19.612 20.261 18.280

5000 26059.158 22571.834 21207.023 19795.774 14.264 22.318 22.718 22.145

10000 26779.509 21702.818 19716.660 21170.620 18.180 21.494 18.055 19.238

15000 26723.542 21590.502 20460.468 19746.355 15.350 22.809 18.583 22.192

20000 26865.428 22342.254 20030.799 19823.284 18.219 24.521 21.810 20.135

25000 26797.583 22013.887 21232.056 21329.115 18.181 23.360 20.065 21.975

30000 26388.171 21585.021 20928.066 20255.314 15.357 24.346 21.584 18.465

50000 27248.131 22983.666 20313.241 21703.867 18.278 24.400 18.946 18.253

60000 27224.545 22056.537 21212.118 20783.430 15.562 20.738 22.024 20.494

80000 27100.835 22490.209 21196.748 21526.341 17.529 23.156 19.183 18.239

10000 27513.816 23161.359 21002.051 20712.199 17.633 23.739 20.851 21.419

5. Conclusion

In the cloud computing environment, it is vital to

implement an effective task scheduling technique that

affects the system performance in terms of carbon dioxide

emission, energy consumption, and system load. The Q-

learning technique guarantees the task scheduling of the

Sensor node in an optimal manner. Therefore, this paper

elucidates the Machine Learning based Q-learning

technique to schedule the task by validating the Quality

value considering the different loads. Further, the Q-value

for the different number of nodes has been computed and it

is clear that the Q-value for 8th step for three of the users is

same as 0.134752 which means that all the users were

falling into similar structure and hence these users are to be

migrated from the current data node to another data node

based on step-8. Consequently, the average throughput

value for the different number of nodes has been computed

as 2.06E followed by illustrating the over utilization and

underutilization of resources. Further, the average value for

the overutilization and underutilization of resources is

0.448 and 0.51 for the different number of nodes. The

performance metrics in terms of TPR, FPR, and Accuracy

has been measured to validate the results. The average

TPR obtained using the proposed technique is 0.93 and

that of FPR is 0.07. The proposed technique further

compared with the Naïve Bayes Multi-class SVM, and

Random Forest technique to determine the superiority. The

proposed technique has been improved by 5.6% and 4.5%

in comparison to Naïve Bayes and Random Forest

technique.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Marozzo and D. Talia, “Perspectives on Big Data,

Cloud-Based Data Analysis and Machine Learning

Systems,” Big Data and Cognitive Computing 2023,

Vol. 7, Page 104, vol. 7, no. 2, p. 104, May 2023, doi:

10.3390/BDCC7020104.

[2] D. Soni, D. Srivastava, A. Bhatt, A. Aggarwal, S.

Kumar, et.al., An Empirical Client Cloud

Environment to Secure Data Communication with

Alert Protocol. Mathematical Problems in

Engineering, 2022.

[3] I. M. Ibrahim, et.al., “Task scheduling algorithms in

cloud computing: A review,” Turkish Journal of

Computer and Mathematics Education

(TURCOMAT), vol. 12, no. 4, pp. 1041–1053, 2021.

[4] D. Paulraj, T. Sethukarasi, S. Neelakandan, M.

Prakash Id, and E. Baburaj Id, “An Efficient Hybrid

Job Scheduling Optimization (EHJSO) approach to

enhance resource search using Cuckoo and Grey

Wolf Job Optimization for cloud environment,”

PLOS ONE, vol. 18, no. 3, p. e0282600, Mar. 2023,

doi: 10.1371/JOURNAL.PONE.0282600.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 773

[5] A. Agarwal, N. Bora, and N. Arora. "Goodput

enhanced digital image watermarking scheme based

on DWT and SVD." International Journal of

Application or Innovation in Engineering &

Management vol. 2, no. 9, pp. 36-41, 2013.

[6] H. A. Alsayadi, N. Khodadadi, and S. Kumar.

"Improving the Regression of Communities and

Crime Using Ensemble of Machine Learning

Models." Journal of Artificial Intelligence and

Metaheuristics vol. 1, no. 1, pp. 27-34, 2022.

[7] V. K. Chandarapu and M. Kasa, “Balanced Prediction

Based Dynamic Resource Allocation Model for

Online Big Data Streams using Historical Data,”

International Journal of Intelligent Systems and

Applications in Engineering, vol. 10, no. 2s, pp. 81–

87, Dec. 2022, Accessed: Nov. 17, 2023. [Online].

Available:

https://www.ijisae.org/index.php/IJISAE/article/view/

2366

[8] X. Fu, Y. Sun, H. Wang, and H. Li, “Task scheduling

of cloud computing based on hybrid particle swarm

algorithm and genetic algorithm,” Cluster

Computing, pp. 1–10, 2021.

[9] K. Kaur, S. Garg, G. Kaddoum, and N. Kumar,

“Energy and SLA-driven MapReduce job scheduling

framework for cloud-based cyber-physical systems,”

ACM Transactions on Internet Technology (TOIT),

vol. 21, no. 2, pp. 1–24, 2021.

[10] A. Aggarwal, S. Kumar, A. Bhatt, and M. A. Shah.

"Solving user priority in cloud computing using

enhanced optimization algorithm in workflow

scheduling." Computational Intelligence and

Neuroscience 2022.

[11] V. Vashishth, A. Chhabra, and A. Sood, “A

predictive approach to task scheduling for Big Data in

cloud environments using classification algorithms,”

in 2017 7th International Conference on Cloud

Computing, Data Science \& Engineering-

Confluence, 2017, pp. 188–192.

[12] L. Zhou, S. Pan, J. Wang, and A. V Vasilakos,

“Machine learning on big data: Opportunities and

challenges,” Neurocomputing, vol. 237, pp. 350–361,

2017.

[13] A. Aggarwal, P. Dimri, and A. Agarwal. "Survey on

scheduling algorithms for multiple workflows in

cloud computing environment." International Journal

on Computer Science and Engineering, vol. 7, no. 6,

pp. 565-570, 2019.

[14] [14] O. Y. Mohammed, H. I. Abed, and N. A.

Sultan, “Design and Implementation of Machine

Learning and Big Data Analytics models for Cloud

Computing platforms,” International Journal of

Intelligent Systems and Applications in Engineering,

vol. 11, no. 6s, pp. 185–192, May 2023, Accessed:

Nov. 17, 2023. [Online]. Available:

https://www.ijisae.org/index.php/IJISAE/article/view/

2840

[15] I. M. Alqahtani, E. Shadadi, and L. Alamer, “Big

Data and Reality Mining in Healthcare Smart

Prediction of Clinical Disease Using Decision Tree

Classifier,” International Journal of Intelligent

Systems and Applications in Engineering, vol. 10, no.

4, pp. 487–492, Dec. 2022, Accessed: Nov. 17, 2023.

[Online]. Available:

https://ijisae.org/index.php/IJISAE/article/view/2312

[16] R. K. Jena, “Multi objective task scheduling in cloud

environment using nested PSO framework,” Procedia

Computer Science, vol. 57, pp. 1219–1227, 2015.

[17] Q. Tian et al., “A hybrid task scheduling algorithm

based on task clustering,” Mobile Networks and

Applications, vol. 25, no. 4, pp. 1518–1527, 2020.

[18] A. Alhubaishy and A. Aljuhani, “The best-worst

method for resource allocation and task scheduling in

cloud computing,” in 2020 3rd International

Conference on Computer Applications \&

Information Security (ICCAIS), 2020, pp. 1–6.

[19] G. Rjoub, J. Bentahar, and O. A. Wahab,

“BigTrustScheduling: Trust-aware big data task

scheduling approach in cloud computing

environments,” Future Generation Computer

Systems, vol. 110, pp. 1079–1097, 2020, doi:

10.1016/j.future.2019.11.019.

[20] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J.

Zeng, “Q-learning based dynamic task scheduling for

energy-efficient cloud computing,” Future

Generation Computer Systems, vol. 108, pp. 361–

371, 2020.

[21] Z. Tong, H. Chen, X. Deng, K. Li, and K. Li, “A

scheduling scheme in the cloud computing

environment using deep Q-learning,” Information

Sciences, vol. 512, pp. 1170–1191, 2020.

[22] M. S. Sanaj and P. M. J. Prathap, “An efficient

approach to the map-reduce framework and genetic

algorithm based whale optimization algorithm for

task scheduling in cloud computing environment,”

Materials Today: Proceedings, vol. 37, pp. 3199–

3208, 2021.

[23] Z. Jalalian and M. Sharifi, “A hierarchical multi-

objective task scheduling approach for fast big data

processing,” The Journal of Supercomputing, vol. 78,

no. 2, pp. 2307–2336, 2022.

[24] N. Arunadevi and V. Thulasiraaman, “Cuckoo Search

Augmented MapReduce for Predictive Scheduling

With Big Stream Data,” International Journal of

Sociotechnology and Knowledge Development

(IJSKD), vol. 14, no. 1, pp. 1–18, 2022.

[25] K. Loheswaran, T. Daniya, and K. Karthick, “Hybrid

cuckoo search algorithm with iterative local search

for optimized task scheduling on cloud computing

environment,” Journal of Computational and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(6s), 759–774 | 774

Theoretical Nanoscience, vol. 16, no. 5–6, pp. 2065–

2071, 2019.

[26] J. García, F. Altimiras, A. Peña, G. Astorga, and O.

Peredo, “A binary cuckoo search big data algorithm

applied to large-scale crew scheduling problems,”

Complexity, vol. 2018, 2018, doi:

10.1155/2018/8395193.

[27] M. Agarwal and G. M. S. Srivastava, “A Cuckoo

Search Algorithm-Based Task Scheduling in Cloud

Computing,” Advances in Intelligent Systems and

Computing, vol. 554, pp. 293–299, 2018, doi:

10.1007/978-981-10-3773-3_29.

[28] H. Pan, Y. Lei, and S. Yin, “K-means clustering

algorithm for data distribution in cloud computing

environment,” International Journal of Grid and

Utility Computing, vol. 12, no. 3, pp. 322–331, 2021.

[29] Dhabliya, D., Ugli, I.S.M., Murali, M.J., Abbas,

A.H.R., Gulbahor, U. Computer Vision: Advances in

Image and Video Analysis (2023) E3S Web of

Conferences, 399, art. no. 04045, .

