

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 179

Performance Measurement Framework for Agile Scrum Software

Engineering Environment

Deepa T.1, Dr. Thaddues S.2, Dr. Dhamodharan G.3

Submitted: 01/10/2023 Revised: 21/11/2023 Accepted: 01/12/2023

Abstract: Performance of individual developers and effort on reworks in agile scrum environments has an impact on the productivity and

quality of the developed software. The traditional agile metrics do not consider reworks in measuring productivity. Yet, an enhanced

methodology to compute individual performance and quantify reworks in agile scrum contexts is required. By introducing Earned Value

Analysis based Productivity Ratio and Blended Quality Metric based on Code Maintainability Index, this gap is bridged. Applying the

metrics to ten real time software projects over eighteen months, having twelve sprints each, a framework is decided for performance

management in agile scrum development. The findings indicate the efficacy of the metrics in providing valuable insights to improve

productivity and quality measures in software development environments.

Keywords: Agile Scrum, Performance Management, Software Metrics, Software Engineering Environment

1. Introduction

Measuring individual performance and rework in an agile

scrum environment is discussed much in terms of

productivity and quality in software development

environments. While it is argued based on an agile

manifesto that focus on individual performance goes

against the principles of agile and scrum, others believe

that understanding individual contributions provide

valuable insights into team dynamics, skill gaps, and

potential areas for improvement [1]. Tracking and

quantifying rework can help identify issues with the

quality of work, the clarity of requirements, or the

effectiveness of testing procedures [2].

Studying various productivity and quality metrics, it is

identified that all categories of metrics do not consider

productivity from the aspect of reworks, change requests

or defects. They are treated as part of the next sprint. To

be precise with regard to productivity from a business

perspective, an enhanced productivity measurement

framework is required. This paper proposes a

methodology to compute individual performance and

rework in agile scrum contexts. The key metrics used to

incorporate rework and maintenance are improved earned

value analysis and code maintainability index.

Presenting the collection of metrics for productivity and

quality in agile scrum environments systematically from

various research works, the limitations are highlighted. To

improve upon these limitations, Earned Value Analysis

based Productivity Ratio (EVAPR) and Blended Quality

Metrics based on Code Maintainability Index (BQMCMI)

are proposed as productivity and quality metrics

respectively. Defining an evaluation methodology, the

metrics are applied to ten projects over a period of

eighteen months of twelve sprints. The results are

tabulated and findings are deliberated as a framework for

performance management in agile scrum development.

2. Agile Scrum Software Metrics

Many authors have proposed, and various industries have

implemented, a wide range of agile metrics. Team

velocity, posited by Ahmed et al. [3],Hayes et al. [4],

Rajani Dixit et al. [5], and Fernando Almeida et al. [6],

measures the amount of work a team can tackle in a single

sprint, offering an accurate gauge of productivity over

time

In addition to team velocity, agile project management

also relies heavily on sprint burndown charts. This tool

provides a graphical representation of the remaining work

within a sprint. The significance of the sprint burndown

chart has been acknowledged [3][4][5]. Release

burndown[8] illustrates the progress of a team towards the

completion of a product release, offering a broader view

of progress across multiple sprints. A few researchers

emphasize the relevance of monitoring completed stories

and tests in agile project management sprints and the

consequences of violating standards [7][9][10]. They

advocate for the assessment of team satisfaction and

turnover rates as vital indicators of productivity and team

cohesion. A few authors [12],[7], in contrast, discuss the

metric of failed deployments, which enumerates

unsuccessful software deployments, providing a

1Research Scholar, 2Associate Professor, 3Assistant Professor
123PG & Research Department of Computer Science,

Don Bosco College (Co-Ed), Guezou Nagar, Yelagiri Hills,

Tamilnadu-635854.

(Affiliated to Thiruvalluvar University)
1margaret.deepa23@gmail.com,2thad@boscoits.com,
3haidhamo@gmal.com

https://www.scrum.org/forum/scrum-forum/13381/individual-performance-scrum-enviornment
https://www.scrum.org/forum/scrum-forum/13381/individual-performance-scrum-enviornment
https://www.scrum.org/forum/scrum-forum/13381/individual-performance-scrum-enviornment
https://www.scrum.org/forum/scrum-forum/13381/individual-performance-scrum-enviornment
https://www.scrum.org/forum/scrum-forum/13381/individual-performance-scrum-enviornment

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 180

perspective on deployment procedures and software

dependability .

The concepts of lead time and work in progress,

emphasized by [4], [7] provide a comprehensive

understanding of the total duration and the pending tasks

within a project. Tracking business value delivered, sprint

goal success, total project duration, time to market, total

product cost, and return on investment by [9],[13]. These

metrics collectively offer a comprehensive view of the

financial and operational performance of a project. The

issue of lack of cohesion in methods within a software

class or module as an essential metric to assess software

design quality [7],[9]. Cycle time is discussed in [14],[7].

Table 1 summarizes productivity metrics for agile scrum.

Table 1: Agile Scrum Productivity Metrics

Category Metric Description

Effort Metrics

Team Velocity [3][4][5][6]

Measures the amount of work a team can tackle in a

single sprint.

Sprint Burndown [4][5][6] Represents the remaining work in a sprint over time.

Release Burndown [3][8][17]

Shows progress towards the completion of a product

release across multiple sprints.

Number of Stories [7][9][16]

Counts the total user stories completed in a specific

time frame.

Work in Progress [4][13]

Represents the total number of tasks or projects that

are currently being worked on but not yet completed.

Team Dynamics

Metrics

Team Satisfaction [6][11] Measures the overall happiness and morale of a team.

Team Member Turnover[6][11]

Measures the rate at which team members leave and

are replaced within a given time period.

Efficiency Metrics

Lead Time [3][13][14]

Measures the total time from the moment a new task

is requested until it is completed and delivered.

Cycle Time [14]

Measures the total time from the beginning to the end

of a process or task, including process time, delay

time, and inspection time.

Business Impact

Metrics

Business Value Delivered [9]

Measures the total value or benefits a completed

project brings to a business.

Sprint Goal Success [9]

Evaluates whether or not the team was able to achieve

the predefined goals set for a specific sprint.

Total Project Duration [9]

Measures the entire length of time from the start to

the completion of a project.

Time to Market [9]

Measures the total time it takes from the inception of

a product or service idea to its official release in the

market.

Total Product Cost [9]

Calculates the overall costs involved in developing,

producing, and maintaining a product from inception

to discontinuation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 181

Return on Investment [9]

Calculates the profitability of an investment or project

by dividing the net profit by the total investment cost.

Quality Metrics

Standard Violation [16]

Measures non-adherence to established guidelines,

conventions, or best practices.

Defects per Interaction [7][16]

Calculates the average number of errors found per

interaction with a software feature.

Defect Density [6]

Measures the number of confirmed defects per unit

size of a software product.

Failed Deployments [12]

Counts the number of unsuccessful software

deployments.

Number of Tests [9][7][16]

Counts the total test cases designed and executed in a

given timeframe or project phase.

Although velocity is used much in agile scrum

environments, to measure team and individual

performance, velocity isn't suitable for individual or

external evaluations due to its team-specific and context-

dependent nature. Burndown charts assume a linear work

progression, which may not reflect real-world challenges

or changes. These charts also focus on remaining work

and can lack granularity, making it difficult to identify

specific task progress or bottlenecks. By emphasizing the

number of stories completed, this metric fails to consider

the complexity or scope of individual stories. Number of

Tests values the quantity of tests conducted over their

effectiveness, potentially overlooking the quality of the

testing process. Defects per Interaction metric doesn't

consider the severity or complexity of defects, only their

number.

3. Earned Value Analysis based Productivity

Ratio (EVAPR)

Earned Value serves as a project management technique

utilized to assess the progress and performance of a

project in relation to its planned objectives at a given point

in time. It also aids in forecasting future performance. The

method involves analyzing three key dimensions:

planned, actual and budgeted expenditures for completed

work. By considering these aspects, Earned Value

provides a comprehensive and insightful overview of the

project's status and trajectory [15]

Through earned value analysis, this metric offers an

accurate measure of team and individual productivity,

including rework efforts for user stories. It provides a

comprehensive view of the real effort required for user

story completion, encompassing the work necessary to

tackle unclear requirements, insufficient testing, or human

errors.

1. Initial EV (after UAT and release): Typically,

in agile projects, Earned Value is calculated using Story

Points. So, for each user story, once it has been accepted

in the User Acceptance Testing (UAT) and subsequently

released, it has "earned" its value. Therefore, the Story

Points (or equivalent) of all such completed and released

user stories are summed up.

Let's denote the Story Points of user story i as SP_i.

Then the initial EV for a sprint with n completed user

story is given by:

Initial EV (Before Rework) = i=1∑n SP_i

Initial EV (after UAT and release) = ∑ Story Points of

all completed tasks in a sprint

2. Re-evaluated EV : This is more subjective and

depends on how the re-evaluation is being performed. If

it's a simple adjustment based on customer feedback, the

user story is a revised Story Point value based on customer

feedback, then this has been summed up.

Re-evaluated EV (with Reworks) = i=1∑n SP’_i

Re-evaluated EV = Σ Revised Story Points of all

completed tasks over sprints

3. Change in EV: This is calculated by subtracting

the Initial EV from the Re-evaluated EV. A negative value

would indicate a decrease in perceived value based on

customer feedback.

Change in EV = Re-evaluated EV - Initial EV (after

UAT and release)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 182

4. Thus, the EV Ratio:

EV Ratio = Re-evaluated EV / Initial EV

The EV-based Productivity Ratio serves as a lens focusing

specifically on the impact of reworks in an agile setting. It

helps teams understand how post-release modifications

(in terms of reworks based on feedback or quality issues)

affect the overall value delivered and can drive process

improvements.

4. Blended Quality Metrics (BQM) Based on

Code Maintainability

5.1 Excluding Line of Code (LoC) in CMI

Computation

An important change has been made in the Code

Maintainability Index (CMI) calculation, the CMI has

been modified by excluding the Lines of Code (LoC) from

the formula. This modification is aimed at achieving a

more accurate representation of the Maintainability Index.

When the Lines of Code (LoC) increase, it naturally leads

to a rise in the Code Maintainability Index (CMI), even if

other variables remain constant. The Code Maintainability

Index (CMI) was conceived to incorporate multiple

factors, among which the size of the codebase is

significant. Yet, it's worth noting that Lines of Code (LoC)

already influence both the Halstead Volume and

Cyclomatic Complexity. Therefore, its separate inclusion

in the CMI calculation seems to be redundant.

1. Halstead Volume: This takes into account the

size and complexity of the code, as it considers the

number of operators and operands (elements of the code).

So, indirectly, it's related to the size of the codebase.

2. Cyclomatic Complexity: This measures the

number of linearly independent paths through the code,

which is related to decision points in the code and thereby

indirectly to the size of the code.

Larger codebases can inherently be harder to maintain, all

else being equal, due to factors like more places for bugs

to hide, more effort needed for understanding the code,

longer build times, etc. It's important to remember that not

all lines of code contribute equally to maintainability

difficulties. Comments, whitespace, and lines containing

only braces (in languages that use them) do not add to

complexity or difficulty of understanding. Therefore,

removing LoC from the CMI is considered as a

reasonable adaptation.

Thus, traditional CMI = 171 - 5.2 * log2(V) - 0.23 * (G)

- 16.2 * log2(LOC) is modified as

CMI’=k*(171 - 5.2 * log2(V) - 0.23 * (G))

Here k is the constant value, and it is called a scaling factor

to fit the value within the range of 0 to 100.

k=100/Max value of CMI (Excluding the LoC)

5.2 Defining Blended Quality Metric (BQM)

The BQM intends to assess the quality of code with an

emphasis on maintainability. The maintainability of code

has a direct impact on the volume of rework required.

High-quality, maintainable code tends to require less

rework and, therefore, less time and effort to modify or

enhance to an individual developer and team. The BQM

considers factors such as Code Maintainability Index,

Defect Density and Test Coverage Metrics that provides

a comprehensive measure of the quality of the code and,

indirectly, the skill level and work quality of the

development team and an Individual. The blending of

Code Maintainability Index (CMI), Defect Density, and

Test Coverage is in the ratio of 4:3:3, respectively. The

resulting Blended Quality Metric (BQM) can be

calculated using the following formula:

BQM = 0.4*CMI + 0.3*Defect Density + 0.3*Test

Coverage

Since these three metrics are combined and normalized to

a scale between 0 and 1, the value 1 is considered as the

highest possible quality.

5.2.1 Quality Prediction Criteria for BQM

The coefficient of correlation measures the linear

relationship between two datasets. The value of the

coefficient ranges between -1 and +1. In the context of this

study, BQM is the quality metrics and the Defect Density

is the number of defects, a coefficient nearing -1 would

suggest that as the quality improves (BQM increases), the

number of defects decreases, which is an expected

relationship in most quality scenarios. This relatively

strong negative correlation supports the idea that BQM is

a good measure of quality as the quality metric value goes

up, defects go down.

5. Evaluation Methodology

An empirical evaluation has been carried out to validate

the effectiveness of these two proposed metrics. The

assessment encompassed the scrutiny of 10 distinct

software projects across two organizations. The

evaluation underscored the improved accuracy these

metrics brought to measuring both team and individual

productivity, as well as the quality of the final product.

Earned Value Analysis based Productivity Ratio and

Blended Quality Metrics driven by Code Maintainability

have demonstrated significant potential in enhancing

project outcomes.

6.1 Computational Approach to EVAPR

In the initial phase of the study, the Earned Value (EV) for

each user story across 12 sprints is measured. This

provided a set of initial EV metrics, indicative of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 183

perceived value at the end of each sprint. It's essential to

note that these initial EV measurements did not account

for any potential rework.

Following each sprint release, in accordance with agile

principles, customer feedback is gathered for the

completed sprint and the requirements are prioritized for

the subsequent sprint. During this process, some user

stories that have been previously released may require

rework and, therefore, they are included in the upcoming

sprint.

The reasons behind this necessary rework are analyzed

and the Earned Value (EV) points of the respective user

story from the previous sprint are appropriately adjusted.

This adjustment ensures that the actual productivity of the

preceding sprint is accurately assessed. The revision of

EV story points predominantly arises from developmental

issues, primarily due to misinterpretation of requirements

and insufficient testing. The reasons for each instance of

rework is tracked, associating it with the respective

developers.

6.2. Computational Approach to BQM-CMI

In the quality aspect, the proposed Code Maintainability

Index (CMI’) was computed across 12 sprints for 10

projects, with Lines of Code being intentionally excluded.

Alongside this, two other key metrics, namely Defect

Density and Test Coverage, were quantified for the

identical set of projects and sprints. BQM-CMI formula

was applied. The resulting value, falling within a range

from 0 to 1, serves as a measure of quality, with a score of

1 indicating the highest possible level of quality. A

consistent pattern is identified that when rework was

correctly tracked and addressed, individual productivity

improved, leading to enhanced team productivity.

6. Case Study

7.1 Productivity Measurement

The study encompasses an empirical evaluation of ten

software development projects, five each from two

different companies, spanning a period of one year. The

projects evaluated include a diverse array of products and

systems. The projects were based on different

technologies as shown in table 2. The development teams

were of varied size. Our evaluation process comprised an

analysis of 12 sprints from each project. Each sprint lasted

15 days, culminating in approximately 18 months of

sprints for each project. Earned Value was gathered after

the 12th sprint, marking the end of the 6th month for each

project. The number of user stories varied depending on

the team size for each project, providing a diverse dataset

for our analysis.

Table 2: Overview of Projects for Productivity Measure

Project Name Type

Technology Team Size Company

Project 1 Hospital Management System

Dot Net 3 B

Project 2

University/College management

System

Python

6

A

Project 3 Church Management System PHP

4

A

Project 4 School Ranking and

Accreditation

Angular JS

3

B

Project 5 Yoga Class Booking and

Teaching

React JS

4

B

Project 6 School Management System DotNet

8

A

Project 7 HR Management ERP

Python

5

B

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 184

Project 8 Accounts Management System

ERP

DotNet

2 B

Project 9 Online Class Solution PHP

4

A

Project 10 MIS for Education Institutions PHP 5

A

In the evaluation process, our initial step involves

scrutinizing the Planned and Earned Story Points over a

consecutive series of 12 sprints for each project. Table 3,

illustrates the Project 1 Earned Values of 12 sprints.

Table 3: Earned Value for Project 1, 12 Sprints

Sprint Planned Story

Points

Earned Story

Points

Sprin

t

Planned Story

Points

Earned Story Points

1 92 81 7 228 170

2 90 81 8 172 130

3 138 114 9 330 244

4 126 100 10 282 218

5 276 200 11 122 88

6 216 148 12 128 104

Table 4 : Ripple Effect of a Sample 3 Sprints and User Story

User Story-ID Sprint 1 Sprint 2 Sprint 3

MSB OPD Reg 05 12 SP 6 SP

MSB OPD Reg 09 12 SP 7 SP

MSB OPD Reg 04 12 SP 5 SP

MSB OPD Reg 07 18 SP 12 SP

Table 4 illustrates the 'Ripple Effect' of selected User

Stories which required revisiting and reworking in later

sprints. The table comprehensively tracks the necessary

'rework' for every User Story over multiple sprints,

portraying how changes in requirements, initial

misunderstandings, or inadequate testing can lead to

varied estimates across sprints.

7.1.1 Re-calculating EVAPR

The user story 'MSDOPD Reg 05' started in sprint-1 with

12 Story Points and was completed earning 10 points.

However, due to requirement misinterpretation, it was

revisited in sprint-2 with 6 points assigned.

Since this rework was a development issue, we adjust the

Earned Value of sprint-1 for an accurate productivity

assessment. The initial 10 points are reduced by the 6

points reassigned, leaving an actual earned value of 4

points. Rework story points are thus adjusted as per the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 185

cause. Table 5 displays the original and re-evaluated Story

Points after rework adjustment for the 12 sprints.

Table 5 : Difference between Initial Earned Value and Re-Evaluated Earned Value

Sprint Initial EV

Re-Evaluated

EV Sprint Initial EV Re-Evaluated EV

1 77 71 7 162 146

2 81 57 8 130 130

3 104 104 9 236 200

4 76 70 10 212 204

5 204 180 11 88 80

6 144 144 12 104 94

 Initial EV = 1618 Re-evaluated EV = 1475

Table 6 displays the Initial and Re-Evaluated Earned Values.

Table 6 : 10 Projects: Initial and Re-Evaluated Earned Values

Projects

Initial Earned

Value

Re-Evaluated

Earned Value Projects

Initial

Earned

Value

Re-

Evaluated

Earned

Value

Project 1 1618 1475 Project 6 2245 1645

Project 2 1842 1455 Project 7 1608 1100

Project 3 1870 1270 Project 8 964 896

Project 4 2100 1500 Project 9 1050 600

Project 5 1060 910 Project 10 1457 958

The Re-Evaluated EV reflects the precise Earned Value

for each sprint release, which is calculated by taking into

account the rework assigned to the subsequent sprint

7.1.2 Re-Evaluating Individual Productivity:

Incorporating Rework into EV

Understanding individual contributions in agile

methodologies can identify challenges and foster

teamwork, thereby reducing rework and enhancing

overall productivity projection. Instances where a novice

developer's productivity affects team output can spotlight

opportunities for mentorship. The data below illustrates

each individual's initial and adjusted Earned Value

contributions, providing insight into this aspect.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 186

Table 7 : Individual Productivity: Initial and Re-Evaluated Earned Values by Sprint of a Project

Person - A Person - B Person - C

Sprint Initial

Earned

Value

Re-Evaluated

Earned Value

Sprint

Initial

Earned

Value

Re-

Evaluated

Earned

Value Sprint

Initial

Earned

Value

Re-

Evaluated

Earned

Value

1 30 30 1 22 22 1 25 25

2 23 6 2 24 24 2 34 37

3 50 50 3 22 22 3 29 29

4 36 30 4 22 22 4 18 18

5 102 94 5 60 60 5 42 42

6 54 54 6 68 68 6 22 22

7 74 66 7 26 26 7 62 54

8 54 54 8 20 20 8 56 56

9 84 78 9 78 74 9 74 70

10 128 124 10 74 70 10 10 10

11 34 30 11 34 30 11 20 20

12 38 12 40 12 26

Table 7 presents the productivity of three persons A, B

and C considering EVAPR calculation for the individuals

drawn from the respective sprint logs.

7.2 Quality Measurement

7.2.1 Computation of Blended Quality Metrics

The calculation of the Code Maintainability Index (CMI),

excluding Lines of Code, was executed across 12 sprints

for 10 distinct projects. Simultaneously, the metrics of

Defect Density and Test Coverage were also quantified

for the identical dataset of projects and sprints. All these

operations were facilitated using the SonarQube tool.

As part of the continual evaluation process, the Weekly

Assessment Report plays a pivotal role. It acts as an

instrument for quantifying key metrics such as the number

of defects, Defect Density, and Test Coverage for each

sprint. These metrics provide a comprehensive

understanding of the quality status of the project, helping

teams to identify areas of improvement and initiate

necessary corrective actions.

Table 8, presents a detailed examination of a sample

sprint, meticulously analyzed and documented.

Table 8 : CMI’ of a Sprint - Project 5

CMI HV CC LoC
Log2(

LoC)

16.2 *

Log2(L

OC)

0.23*

CC

Log2(H

V)

5.2

*LOG2(

HV)

MI MI'

k*MI’

(k=100/max val

of MI')

50 48 14 320 5 81 3.22 5.58 29.04 57.73 138.73 94.34

43 575 17 410 5.3575 86.79 3.795 9.16 47.66 32.74 119.54 81.28758096

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 187

49 118 8 440 5.45 88.44 1.725 6.88 35.80 45.02 133.46 90.75831489

55 29 2 400 5.32 86.21 0.46 4.83 25.13 59.18 145.40 98.87285457

74 233 18 390 5.28 85.62 4.09 7.86 40.87 40.40 126.02 85.69617704

55 45 3 340 5.08 82.41 0.575 5.50 28.62 59.38 141.79 96.42353877

48 49 3 390 5.28 85.62 0.69 5.62 29.26 55.42 141.04 95.91055049

47 53 4 420 5.39 87.35 0.805 5.71 29.71 53.12 140.48 95.52702785

53 34 3 270 4.75 77.02 0.575 5.09 26.47 66.91 143.94 97.88474939

58 33 3 160 4 64.8 0.69 5.05 26.28 79.22 144.02 97.93992613

67 290 20 640 6 97.2 4.6 8.18 42.53 26.66 123.86 84.22731376

46 53 4 420 5.39 87.35 0.805 5.71 29.71 53.12 140.48 95.52702785

k is the scalar factor that maintains the range of the CMI’

value within 0 to 100 range

7.2.2 Defect Density and Test Coverage of Sprint

The following are the metrics related to Defect Density

and Test Coverage for the given Sprint: This is calculated

by using the Formula: Defect Density = No of Defects /

Line of Code and Test Coverage = (Line of code covered

by tests / Total Line of code) * 100

Table 9 : Defect Density & Test Coverage of Project 5 - Sprint 1

 No of

Defect

Defect

Density

Lines of

Code

Executed

by Tests

Test

Coverage

(%)

 No of

Defect

Defect

Density

Lines of

Code

Executed by

Tests

Test

Coverage

(%)

1 2 0.0062 320 87.5 6 1 0.0029 340 91.1

2 7 0.0170 410 90.2 7 2 0.0051 390 89.7

3 3 0.0068 440 90.9 8 1 0.0023 420 90.4

4 1 0.0025 400 90.0 9 1 0.0037 270 88.8

5 6 0.0153 390 89.7 10 2 0.0125 160 87.5

These metrics illuminate code quality within the sprint.

Defect Density gauges the number of software defects,

indicating potential areas needing more testing.

Conversely, Test Coverage measures testing

thoroughness, with high coverage suggesting better code

quality.

7.2.3 BQM Computation in a 4:3:3 Ratio of Sprint

The presented data represents the computed Build Quality

Metric (BQM) for various code projects. The BQM is

calculated using a specific formula: BQM = 0.4kMI' +

0.3Defect Density + 0.3Test Coverage.

Table 10 : Computation of Blended Quality Metrics for Sprint 1 of Project 5

0.4*k*MI'
0.3*Defect

Density

0.3*Test

Coverage
BQM #

0.4*k*MI

'

0.3*Defec

t Density

0.3*Test

Coverage
BQM

1 37.7367 0.001875 26.25 63.98866404 7

38.364220

2 0.00153 26.91 65.2757586

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 188

2

32.515032

38 0.005121 27.06 59.58015433 8

38.210811

14 0.000714 27.12 65.33152543

3

36.303325

95 0.002045 27.27 63.57537141 9

39.153899

75 0.001111 26.64 65.79501087

4

39.549141

83 0.00075 27.00 66.54989183 10

39.175970

45 0.00375 26.25 65.42972045

5

34.278470

81 0.00461 26.91 61.1930862 11

33.690925

5 0.003281 26.7 60.39420675

6

38.569415

51 0.000882 27.33 65.90029786 12

38.210811

14 0.000714 27.12 65.33152543

Each project's quality is represented through four lines of

information: MI' for code complexity, Defect Density for

defects per unit size, Test Coverage for the extent of tested

code, and the computed BQM as an overall quality

measure is projected in the above table Table 10.

7. Results and Discussion

8.1 Earned Value based Productivity Analysis

In Figure 1, the line graph exhibits the Initial and Re-

evaluated Earned Value Comparison. The difference

between the two values for each sprint gives a visual

representation of the impact of rework.

Rework Impact Across Sprints: For Sprints 2, 4, 5, 7, 9,

11, and 12, the re-evaluated EV is lower than the initial

EV. This indicates that these sprints had some level of

rework due to factors like misunderstanding of

requirements or testing defects which led to a reduction in

the actual earned value. The degree of the drop from the

initial EV to re-evaluated EV gives an idea of the extent

of rework in those sprints.

Fig 1 : Comparison of Initial EV and Re-Evaluated EV of Project - 1

Thus, figure 1 provides a clear visualization of the impact

of rework on productivity across the 12 sprints. It

highlights the importance of accurately understanding

requirements and rigorous testing to minimize rework,

thereby maximizing the earned value and productivity of

each sprint. Tracking this information over time can help

the team to identify patterns, implement improvements,

and continually boost productivity.

8.1.1 Re-Evaluating the Earned Value of Projects

Trend Line and Project Comparison: Each project in

figure 2 displays two trend lines showing initial and re-

evaluated earned values, enabling clear comparison. A

substantial decrease from initial to re-evaluated value

suggests significant rework, likely due to misinterpreted

requirements or development obstacles.

Variation across Projects: The distance between the

initial and re-evaluated earned value lines in figure 2

signifies the extent of the rework or adjustments needed

for each project. For example, the project -3 shows a

considerable drop from 2100 to 1500, signaling a high

degree of rework was necessary. Conversely, 'Project 10

reveals a smaller decrease from 1060 to 910, indicating

that less rework was required.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 189

Fig 2: Comparison of Initial EV with Re-Evaluated EV

A general downward trend from the initial to re-evaluated

earned value for most projects could suggest a systemic

issue in estimation practices or project execution. Thus,

the line figure 2 provides clear visual insights into the

impact of rework on project performance. The ability to

identify the extent of this impact enables teams to work

towards mitigating similar issues in the future. This, in

turn, contributes to improving productivity and reducing

the risk of cost and time overruns.

8.1.2 Individual Productivity

Developer A Productivity Developer B Productivity Developer C Productivity

Fig 3: Comparison of Initial and Re-Evaluated EV for Individuals

Based on Figure 3, we have three developers namely A, B

and C with their respective experience levels as 2 Yrs-7

Months, 5Yrs-8Months and 2Yrs-11months respectively.

Upon scrutinizing the productivity graph, it's evident that

the re-evaluated earned value consistently trails the initial

planned value. This suggests the project's progress

consistently misses initial expectations, irrespective of the

developers' experience levels.The similarity between

Developer B's initial and reevaluated EV with little

variance could signal the developer's experience

8.2 Efficacy of BQM-CMI

To validate the efficacy of BQM-CMI, BQM value was

correlated with the number of defects found post-release

across 12 sprints of a project (Project 5). The result was a

high negative correlation coefficient of -0.98.

This high negative correlation indicates that as the BQM

value increases (indicating higher quality), the number of

post-release defects decreases. This correlation strongly

supports the argument that BQM is a reliable and

insightful quality indicator in the context of software

development. It suggests that focusing on improving the

BQM during the development phase could lead to a

significant reduction in defects after release, thus

enhancing the overall quality of the software product.

Table 11 : BQM-CMI for 10 Projects

Project
Coefficient of

Correlation(r)
Project

Coefficient of

Correlation(r)

Project 1 -0.7272931102 Project 6 -0.7106356486

Project 2 -0.9284964516 Project 7 -0.9775780372

Project 3 -0.8808605311 Project 8 -0.911622708

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 179–190 | 190

Project 4 -0.724413879 Project 9 -0.9713667718

Project 5 -0.9773438887 Project 10 -0.9727630083

Table 11, presents the correlation coefficients between

BQM-CMI and the number of defects identified post-

release for the ten projects. The negative values indicate a

reverse relationship, where a high BQM (indicating good

quality) is associated with a lower number of defects post-

release, and vice versa.

8. Conclusion

This study underscores the value of Earned Value

Analysis-based Productivity ratio in software

development process assessment, especially regarding

rework and individual productivity. It promotes process

improvement, issue resolution, and enhances team

productivity. Recognizing frequent rework in user stories

and understanding the 'Ripple Effect' aids in realistic

future sprint planning.

The research also underlines the positive impact of

reduced rework on client satisfaction, facilitating faster

delivery times, more predictable schedules, and products

that align closely with client expectations.

This study also attests to the effectiveness of BQM-CMI

as a comprehensive indicator of software and code

quality, suggesting its use as a predictive tool for quality.

The research paves the way for improving quality

assurance in software development, reducing rework and

promoting efficiency. Further studies could expand on

BQM's applicability and explore other factors impacting

software quality.

References

[1] Individual performance in the Scrum environment.

(2017, November 7). Individual performance in

Scrum environment. Online Forum Post.

[2] https://www.scrum.org/forum/scrum-

forum/13381/individual-performance-scrum-

enviornment

[3] Rubin, K. S.. (2012). Essential Scrum: A Practical

Guide to the Most Popular Agile Process.

[4] Ahmed, A, Tayyab, M, Bhatti, S, Alzahrani, A, &

Babar, M (2017). Impact of story point estimation on

product using metrics in scrum development

process. 8(4), 385–391.

[5] Hayes, W, Miller, S, Lapham, M. A., Wrubel, E, &

Chick, T (2014). Agile Metrics: Progress Monitoring

of Agile Contractors.

[6] Dixit, R, & Bhushan, B Scrum: An Agile Software

Development Process and Metrics. 7(1), 73–87.

[7] Almeida, F, & Carneiro, P (2023). Perceived

Importance of Metrics for Agile Scrum

Environments. 14, 327.

https://doi.org/10.3390/info14060327

[8] Almeida, F, & Carneiro, P (2021). Performance

metrics in scrum software engineering companies.

14(327). https://doi.org/10.3390/info14060327

[9] Mahnic, V, & Zabkar, N (2012). Measuring progress

of scrum-based software projects. 18(8), 73–76

[10] Ifra, I. and Bajwa, J. (2016) ‘Metrics of scrum

methodology’, International Journal of Computer

Applications, Vol. 149, No. 2, pp.24–27.

[11] Bitla, K. S, & Veesamsetty, S. S (2019). Measuring

Process Flow using Metrics in Agile Software

Development A Systematic Literature Review and a

Case Study.

[12] Tripp, J., Riemenschneider, C. and Thatcher, J.

(2016) ‘Job satisfaction in agile development teams:

agile development as work redesign’, Journal of the

Association for Information Systems, Vol. 17, No. 4,

pp.267–307.

[13] Tanner, M. and Mackinnon, A. (2015) ‘Sources of

interruptions experienced during a scrum sprint’,

The Electronic Journal of Information Systems

Evaluation, Vol. 18, No. 1, pp.3–18.

[14] Kupiainen, E, Mäntyla, M, Mika, V. and Itkonen, J.

(2015) ‘Using metrics in agile and lean software

development – A systematic literature review of

industrial studies’, Information and Software

Technology, Vol. 62, pp.143–163

[15] Eduard Budacu (2018) Real Time Agile Metrics for

Measuring Team Performance. Informatica

Economica

[16] Cabri, A, & Griffiths, M. (2006). Earned value and

agile reporting. In AGILE 2006 (pp. 10-pp). IEEE.

https://doi.org/10.1109/AGILE.2006.21

[17] Agarwal, M., & Majumdar, R.. (2012). Tracking

scrum projects tools, metrics and myths about agile.

2(3), 97–104.

[18] Alegria, J., Bastarrica, M. C., & Bergel, A.. (2011).

Is it safe to adopt the scrum process model?. 14(3),

1–11.

https://doi.org/10.3390/info14060327
https://doi.org/10.3390/info14060327
https://doi.org/10.1109/AGILE.2006.21

