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Abstract: Chronic kidney disease (CKD) is a prevalent health condition affecting a substantial number of adults globally. Early and 

accurate diagnosis of CKD is crucial for effective treatment and management. This study proposes a novel approach for the classification 

of CKD in adults using enhanced recurrent neural networks (RNNs). By incorporating advanced architectural enhancements and training 

techniques, the proposed model aims to improve the accuracy and interpretability of CKD classification. The methodology begins with the 

collection of relevant clinical and laboratory data from diverse sources, followed by preprocessing steps to handle missing values, normalize 

features, and remove noise or outliers. Important features related to CKD are then engineered from the preprocessed data using techniques 

such as time-series analysis or feature selection. The core of the proposed methodology lies in the design of an enhanced RNN architecture. 

This architecture incorporates advanced features, including long short-term memory (LSTM) cells, attention mechanisms, and residual 

connections. By leveraging these enhancements, the model aims to capture temporal dependencies, highlight salient information, and 

facilitate effective information flow, ultimately improving the overall performance. The enhanced RNN model is trained using an 

optimization algorithm: Adam optimizer, with appropriate hyperparameter tuning. Cross-validation techniques and statistical tests are 

employed to assess the significance of results. The results of the proposed methodology are expected to demonstrate improved classification 

accuracy and interpretability compared to traditional RNN models. The enhanced RNN model holds the potential to aid healthcare 

professionals in the early detection and management of CKD, leading to improved patient outcomes and reduced healthcare burden. Further 

research and validation on diverse datasets are necessary to establish the generalizability and effectiveness of the enhanced RNN model in 

real-world clinical settings. 
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1. Introduction  

Chronic kidney disease (CKD) is a significant issue 

affecting a substantial portion of the adult population 

worldwide. CKD is associated with various risk factors, 

including diabetes, hypertension, obesity, and age-related 

decline in kidney function. Early classification are crucial 

for timely intervention and effective management to 

prevent further complications such as end-stage renal 

disease (ESRD) and cardiovascular events [1]. The brief 

discussion on finding CKD and its relative diagnosis is 

given below: 

• Screening and Risk Assessment: Screening tests 

such as blood pressure measurement are used to 

identify individuals at risk of CKD. These tests help 

to assess kidney function and detect potential 

abnormalities that may indicate the presence of 

CKD. 

• Clinical Evaluation: A comprehensive clinical 

evaluation is conducted, which involves assessing 

the patient medical history, and risk factors 

associated with CKD, such as diabetes, 

hypertension, obesity, and cardiovascular disease. 

Physical examination and laboratory tests, including 

blood tests and urine tests, are performed to evaluate 

kidney function rule out other potential causes of 

kidney dysfunction [2]. 

• Diagnostic Criteria: The diagnosis of CKD is based 

on specific criteria, which typically include evidence 

of kidney damage (e.g., persistent albuminuria, 

abnormal imaging findings) and/or a decrease in 

kidney function persisting for at least three months. 

These criteria help to differentiate CKD from acute 

kidney injury or other renal disorders. 

• Differential Diagnosis: The relative diagnosis of 

CKD involves distinguishing it from other kidney-

related conditions or diseases that may present with 

similar symptoms or laboratory findings. This 

includes assessing for acute kidney injury, urinary 

tract infections, renal calculi, autoimmune kidney 

diseases, and inherited kidney disorders. Diagnostic 

imaging techniques like ultrasound, CT scan, or MRI 

may be used to visualize the kidneys and identify any 

structural abnormalities. 

1Research Scholar, PG & Research Department of Computer Science, 

A.V.V.M Sri Pushpam College (Autonomous), Poondi - 613503, Thanjavur, 

(Affiliated to Bharathidasan University, Tiruchirappalli-620024) 

TamilNadu, India. 

E-Mail- sksen88@gmail.com 
2Associate Professor& Research Supervisor, PG & Research Department 

of Computer Science, A.V.V.M Sri Pushpam College (Autonomous),Poondi 

- 613503, Thanjavur, (Affiliated to Bharathidasan University, 

Tiruchirapalli-620024) TamilNadu, India. 

E-Mail- t_s_baskaran@yahoo.com 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 191–200 |  192 

• Biomarkers and Advanced Imaging: Advanced 

imaging modalities, such as renal biopsy or renal 

scintigraphy, may be employed in certain cases to 

obtain detailed information about kidney structure 

and function. 

The accurate diagnosis of CKD involves a 

multidimensional approach, combining clinical 

evaluation, laboratory tests, diagnostic criteria, and 

exclusion of other potential causes. Early detection and 

diagnosis of CKD facilitate timely intervention, 

monitoring, and management strategies to slow disease 

progression and mitigate associated complications. 

Regular monitoring of kidney function and appropriate 

follow-up are essential for individuals with CKD to 

manage their condition effectively and optimize their 

long-term health outcomes [3]. 

Accurate classification of CKD stages and subtypes is 

essential for tailoring appropriate treatment strategies and 

monitoring disease progression. Traditional diagnostic 

methods rely on clinical criteria, laboratory tests, and 

imaging studies. However, the complex and dynamic 

nature of CKD necessitates more advanced approaches 

that can capture intricate patterns and temporal 

dependencies in the data. Deep learning techniques, 

particularly recurrent neural networks (RNNs), have 

shown promise in various healthcare applications by 

leveraging their ability to model sequential data and 

extract high-level representations [4]. 

The primary objective of this study is to propose a novel 

approach for the classification of CKD in adults using 

enhanced recurrent neural networks. The proposed 

methodology aims to improve the accuracy and 

interpretability of CKD classification by incorporating 

advanced architectural enhancements and training 

techniques. Specifically, we will explore the integration of 

long short-term memory (LSTM) cells, attention 

mechanisms, and residual connections to enhance the 

performance of the RNN model. Additionally, the study 

will evaluate the effectiveness of the enhanced RNN 

model in correctly identifying different stages and 

subtypes of CKD using real-world clinical and laboratory 

data. 

By developing an enhanced RNN-based classification 

model, this research contributes to the field of CKD 

diagnosis by providing a more accurate and interpretable 

approach for clinicians and healthcare professionals. 

Additionally, the findings may contribute to reducing the 

healthcare burden associated with CKD by enabling 

efficient resource allocation and preventive interventions. 

This research makes several contributions to the field of 

chronic kidney disease (CKD) classification: 

The study proposes an advanced RNN architecture for 

CKD classification by incorporating architectural 

enhancements, including LSTM cells, attention 

mechanisms, and residual connections. This enhanced 

model aims to capture temporal dependencies, highlight 

salient information, and facilitate effective information 

flow, leading to improved classification accuracy. 

By leveraging the enhanced RNN model, the research 

aims to improve the accuracy of CKD classification 

compared to traditional methods. Additionally, the 

proposed methodology focuses on interpretability, 

allowing clinicians and healthcare professionals to 

understand the decision-making process of the model, 

enabling better trust, and aiding in clinical decision-

making. 

The study utilizes real-world clinical and laboratory data 

to evaluate the effectiveness of the enhanced RNN model. 

By incorporating diverse and representative datasets, the 

research aims to establish the generalizability and 

robustness of the proposed methodology in real-world 

clinical settings. 

The outcomes of this research have practical implications 

for healthcare professionals in the early detection and 

management of CKD. The enhanced RNN model has the 

potential to assist clinicians in making more accurate 

diagnoses, tailoring personalized treatment plans, and 

improving patient outcomes. Furthermore, the proposed 

methodology may contribute to reducing the healthcare 

burden associated with CKD by enabling timely 

interventions and efficient resource allocation. 

2. Related works 

CKD is associated with various risk factors, including 

diabetes, hypertension, obesity, and aging. Accurate 

classification of CKD stages and subtypes is crucial for 

appropriate treatment strategies and disease management 

[5]. 

2.2 Existing Approaches for CKD Classification: 

Several approaches [6] – [10] have been employed for 

CKD classification, traditional methods rely on clinical 

criteria, laboratory tests, and imaging studies to diagnose 

and classify CKD. These methods often use fixed 

threshold values for classifying stages, which may 

overlook subtle changes and fail to capture temporal 

dependencies. Machine learning techniques have been 

explored for CKD classification. However, these methods 

may struggle to handle complex and dynamic data 

patterns. 
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2.3 Limitations of Current Methods: 

Traditional methods [11]-[14] for CKD classification 

have limitations in accurately capturing the evolving 

nature of the disease. Fixed threshold values and 

simplistic models may lead to misclassifications and 

inadequate monitoring of disease progression. 

Additionally, these methods often lack interpretability, 

making it challenging for clinicians to understand the 

reasoning behind the classification decisions. 

Furthermore, traditional machine learning techniques may 

struggle to effectively model sequential data and capture 

temporal dependencies [15] [16]. 

2.4 Deep Learning and RNNs in CKD Classification: 

Deep Neural Network (DNN) and Deep Auto Encoders 

(DAE) [17] [18], particularly RNNs, have shown promise 

in various healthcare applications, including CKD 

classification. RNNs can model sequential data by 

capturing temporal dependencies and retaining memory of 

past information. LSTM cells, a type of RNN architecture, 

have been effective in handling sequential data with long-

term dependencies. Furthermore, attention mechanisms in 

RNNs enable the model to focus on important features and 

improve the interpretability of the classification decisions. 

The integration of enhanced RNN models in CKD 

classification holds the potential to overcome the 

limitations of traditional methods and improve accuracy 

and interpretability. 

By exploring the existing literature on CKD classification, 

it is evident that there is a need for advanced approaches 

that can effectively capture the dynamic nature of the 

disease and provide interpretable classification decisions. 

Deep learning techniques, particularly enhanced RNN 

models, offer a promising solution for addressing these 

challenges. The next sections of this study will delve into 

the methodology of using enhanced RNNs for CKD 

classification and evaluate their effectiveness in 

improving accuracy and interpretability compared to 

traditional methods. 

3. Proposed Method 

The proposed work introduces novel aspects to the field 

of CKD classification. It integrates an enhanced RNN 

architecture with advanced features such as LSTM cells, 

attention mechanisms, and residual connections. This 

novel approach aims to improve accuracy and 

interpretability in CKD classification. By leveraging 

temporal dependencies and highlighting important 

features, the enhanced RNN model enhances the accuracy 

of CKD classification compared to existing approaches. 

Furthermore, the use of real-world clinical data for 

evaluation adds to the novelty of the work, ensuring its 

applicability in real clinical settings. The potential impact 

on clinical practice is also a notable aspect, as the 

proposed methodology can assist clinicians in making 

informed decisions, tailoring treatment plans, and 

improving patient outcomes. Overall, the combination of 

an enhanced RNN architecture, improved accuracy and 

interpretability, evaluation with real-world data, and 

potential impact on clinical practice makes this work a 

novel contribution to CKD classification. 

Algorithm 1: Proposed Model 

1. Import necessary libraries and modules 

2. Define the enhanced RNN model architecture: 

   - Initialize the model 

   - Add LSTM layers with specified number of units and activation functions 

   - Add attention mechanisms to capture important features 

   - Add residual connections for improved information flow 

   - Add dense layers for classification 

   - Define the output layer with appropriate activation function 

3. Compile the model: 

   - Specify the optimizer (e.g., Adam) and learning rate 

   - Choose the appropriate loss function (e.g., categorical cross-entropy) 

   - Specify additional evaluation metrics (e.g., accuracy) 

4. Preprocess the CKD dataset: 

   - Data cleaning and feature engineering 
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5. Train the enhanced RNN model: 

   - Set the number of epochs and batch size 

   - Loop over the specified number of epochs: 

     - Loop over the batches in the training set: 

       - Perform forward propagation 

       - Compute the loss 

       - Perform backward propagation and update model parameters 

   - Evaluate the model on the validation set after each epoch 

   - Track the training and validation performance metrics 

6. Hyperparameter tuning: 

   - Perform grid search or random search to optimize hyperparameters 

   - Iterate over different combinations of hyperparameters 

   - Train and evaluate the model for each combination 

7. Evaluate the model: 

   - Evaluate the model on the testing set 

   - Calculate the performance 

8. Interpretability analysis: 

   - Utilize attention weights to identify important features or time steps 

   - Analyze the decision-making process of the model 

9. End 

Fig 1: Proposed Model 

The proposed methodology involves the following steps: 

3.1. Data Collection:  

Relevant clinical and laboratory data of adult patients 

diagnosed with CKD are collected from diverse sources, 

such as electronic health records and medical databases. 

The data include demographic information, medical 

history, laboratory test results (e.g., serum creatinine, 

glomerular filtration rate), and other relevant clinical 

variables. 

• Identify relevant sources of data: Determine the 

appropriate sources to collect data related to CKD in 

adults. This may include electronic health records, 

medical databases, clinical studies, or research 

repositories. 

• Define inclusion and exclusion criteria: Establish 

criteria for selecting appropriate data samples. 

Specify factors such as age, gender, CKD stage, and 

relevant clinical parameters to ensure the data aligns 

with the research objectives. 

• Validate data integrity: Check the integrity of the 

collected data by performing checks for missing 

values, inconsistencies, or errors. This can be done 

by examining the data for any obvious discrepancies 

or using statistical measures to identify outliers or 

abnormal values. 

3.2. Preprocessing:  

The collected data undergoes preprocessing steps to 

handle missing values, normalize features, and remove 

noise or outliers. Missing values are imputed using 

appropriate techniques such as mean imputation or 

regression imputation. Features are then normalized to 

ensure uniform scales across the dataset. Outliers and 

noisy data points are detected and either removed or 

adjusted using Z-score method. 

• Handling missing values: Assess the dataset for 

missing values and determine the appropriate 

strategy for handling them. This can involve 

techniques such as imputation, where missing values 

are replaced with estimated values based on 

statistical methods or algorithms, or removal of data 

points with missing values if the missingness is 

extensive and affects the analysis significantly. 

• Data normalization: Normalize the features or 

variables in the dataset to ensure they are on a similar 

scale. This is particularly important when working 
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with numerical features that have different units or 

ranges. The study uses z-score standardization 

depending on the distribution of the data. 

• Feature engineering: Analyze the dataset and 

identify relevant features or variables that can 

provide meaningful information for the analysis or 

modeling task. This may involve extracting 

additional features from existing ones, creating 

interaction terms, or applying mathematical or 

domain-specific transformations to enhance the 

discriminative power of the features (refer section 

3.3). 

• Outliers can distort the analysis or modeling results. 

Techniques such as Winsorization, trimming, or 

using robust statistical measures can be applied to 

mitigate the impact of outliers on the analysis. 

• Data scaling: Depending on the modeling algorithm 

being used, scaling the features to a specific range 

can improve model convergence and performance. 

This is especially important for distance-based 

algorithm that are sensitive to the scale of the 

features. 

3.3. Feature Engineering 

Feature engineering involves the identification and 

engineering of important features related to CKD. This 

step may include time-series analysis techniques to extract 

temporal patterns from longitudinal data or feature 

selection methods to identify the most relevant features. 

Feature engineering aims to enhance the discriminative 

power of the model and reduce the dimensionality of the 

input space. 

3.4. Enhanced RNN Architecture 

The proposed methodology leverages an enhanced RNN 

architecture for CKD classification. The enhanced RNN 

incorporates advanced features, such as LSTM cells, 

attention mechanisms, and residual connections, to 

improve the model performance. 

3.4.1. LSTM Cell: 

It incorporates memory cells and gating mechanisms to 

selectively store and update information over time. The 

equations for the LSTM cell are as follows: 

Input Gate (i): 

i[t] = sigmoid(Wix[t] + Wih[h[t-1]] + bi) 

Forget Gate (f): 

f[t] = sigmoid(Wfx[t] + Wfh[h[t-1]] + bf) 

Memory Cell (c): 

c[t] = f[t] * c[t-1] + i[t] * tanh(Wcx[t] + Wch[h[t-1]] + 

bc) 

Output Gate (o): 

o[t] = sigmoid(Wox[t] + Woh[h[t-1]] + bo) 

Hidden State (h): 

h[t] = o[t] * tanh(c[t]) 

3.4.2. Attention Mechanism: 

The attention mechanism makes the RNN to focus on the 

input sequence. The equations are as follows: 

Attention Scores (e): 

e[t] = f(a[s], h[t]) 

Attention Weights (α): 

α[t] = softmax(e[t]) 

Context Vector (c): 

c = Σ(α[t] * h[t]) 

3.4.3. Residual Connections: 

Residual connections create shortcuts between layers, 

allowing the gradient to flow more easily. The equations 

for the residual connections are as follows: 

Residual Layer Output (y): 

y = h + x 

3.4.4. Output Layer: 

The output layer is responsible for generating the final 

predictions or classifications. The equation for the output 

layer depends on the specific task and can include a 

softmax function for classification or a linear activation 

for regression. 

3.4.5. Classification Output (p): 

p = softmax(Wy * y + by) 

x: Input at a specific time step. 

h: Hidden state or output of the RNN at a specific time 

step. 

c: Memory cell state in the LSTM cell. 

i, f, o: Input gate, forget gate, and output gate of the LSTM 

cell. 

α: Attention weights. 

e: Attention scores. 

Wy, Wx, Wh, Wc: Weight matrices for the corresponding 

components. 

by, bo, bf, bc: Bias terms for the corresponding 

components. 

softmax: Softmax activation function. 
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3.5. Training and Optimization 

The enhanced RNN model is trained using an 

optimization algorithm, such as SGD. The model 

parameters, including the weights and biases, are updated 

iteratively to minimize a defined loss function. The 

backpropagation algorithm is used to compute the 

gradients and update the parameters. 

Loss Function (L): It quantifies the error that the model 

aims to minimize during training. 

Model Parameters (θ): The model parameters, denoted as 

θ, are the biases and learnable weights of the neural 

network. These parameters are updated iteratively during 

the training process to minimize the loss function. 

Gradient Calculation: The gradient represents the 

direction of steepest descent. It indicates how the loss 

function changes with respect to small changes in the 

parameters. 

Update Rule: SGD updates the model parameters in the 

opposite of the gradient, scaled by a learning rate (α), 

which controls the step size of the updates. The update 

rule for SGD is as follows: 

θ[t+1] = θ[t] - α * ∇L(θ[t]) 

where: 

θ[t+1] is the updated parameter  

θ[t] is the current parameter . 

α is the learning rate 

∇L(θ[t]) is the loss gradient function  

Stochasticity: 

The gradient is estimated using a subset of the training 

data, known as a mini-batch. This introduces a level of 

stochasticity in the optimization process. The size of the 

mini-batch can vary depending on the available 

computational resources. 

By iteratively updating the model parameters using the 

SGD update rule, the neural network gradually adjusts its 

parameters to minimize the loss function and improve its 

predictive performance. Batch normalization is employed 

to prevent overfitting and improve generalization. 

Dropout randomly sets a fraction of the neurons to zero 

during training, while batch normalization normalizes the 

activations of each layer. 

4. Results and Discussions 

The trained enhanced RNN model is evaluated using 

various performance metrics, such as accuracy, precision, 

recall, and F1 score. Additionally, statistical tests may be 

conducted to evaluate the significance of the results. 

The proposed methodology is applied on the collected 

CKD dataset, the performance of the enhanced RNN 

model is assessed in terms of its accuracy, interpretability, 

and ability to classify different stages and subtypes of 

CKD. The evaluation results provide insights into the 

effectiveness of the enhanced RNN model in improving 

CKD classification compared to traditional approaches. 

4.1. Dataset 

The dataset is collected from Kaggle repository 

(https://www.kaggle.com/datasets/mansoordaku/ckdiseas

e). The types of features that could be included in a dataset 

for classifying CKD in adults. The features are 

represented below: 

1. Age: The age of the patient (numeric). 

2. Gender: The gender of the patient (categorical: Male, 

Female). 

3. Blood Pressure: Systolic and diastolic blood pressure 

readings (numeric). 

4. Blood Glucose: Fasting blood glucose level 

(numeric). 

5. Serum Creatinine: Level of creatinine in the blood 

(numeric). 

6. Blood Urea Nitrogen (BUN): Amount of urea 

nitrogen in the blood (numeric). 

7. Serum Albumin: Level of albumin in the blood 

(numeric). 

8. Hemoglobin: Hemoglobin level in the blood 

(numeric). 

9. Urine Protein: Presence of protein in the urine 

(categorical: Yes, No). 

10. Estimated Glomerular Filtration Rate (eGFR): 

Estimated filtration rate of the kidneys (numeric). 

11. Diabetes: Presence of diabetes as a comorbidity 

(categorical: Yes, No). 

12. Hypertension: Presence of hypertension as a 

comorbidity (categorical: Yes, No). 

13. Smoking: History of smoking (categorical: Current 

smoker, Former smoker, Non-smoker). 

14. Family History: Family history of CKD (categorical: 

Yes, No). 

15. CKD Stage: The stage of chronic kidney disease 

(categorical: Stage 1, Stage 2, Stage 3, Stage 4, Stage 

5).

 

https://www.kaggle.com/datasets/mansoordaku/ckdisease
https://www.kaggle.com/datasets/mansoordaku/ckdisease
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Table 1: Samples of the Collected Data 

A

ge 

Gen

der 

Blood 

Pressu

re 

Blood 

Glucose 

Serum 

Creatinine 

Blood 

Urea 

Nitrogen 

(BUN) 

Serum 

Albumin 

Hemog

lobin 

Urine 

Protein 

eGFR Diabetes Hyperte

nsion 

Smoki

ng 

Family 

Histor

y 

CKD 

Stage 

45 Male 130/80 110 1.2 18 4.0 13.5 Yes 80 No Yes Non-

smoke

r 

Yes Stage 

2 

60 Fem

ale 

140/90 130 1.8 28 3.8 12.0 No 60 Yes Yes Forme

r 

smoke

r 

No Stage 

3 

35 Male 120/70 95 0.9 15 4.2 14.2 No 95 No No Curren

t 

smoke

r 

Yes Stage 

1 

70 Fem

ale 

150/80 140 2.5 40 3.5 11.8 Yes 45 Yes Yes Non-

smoke

r 

No Stage 

4 

52 Male 135/85 120 1.5 22 4.1 13.0 No 70 Yes Yes Non-

smoke

r 

Yes Stage 

2 

 

 

Fig 2: Accuracy 

  

Fig 3: Precision 
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Fig 4: Recall 

  

Fig 5: F-Measure 

From the results of Figure 2- 5, the performance of the 

proposed E-RNN model compared to the other models. In 

terms of accuracy, the E-RNN model achieves an 

improvement of 6.02% over the RNN model, 3.94% over 

the DNN model, and 3.72% over the DAE model. 

Similarly, in terms of precision, the E-RNN model 

outperforms the other models by 7.82% (RNN), 5.34% 

(DNN), and 4.52% (DAE). The differences in recall are 

6.22% (RNN), 5.05% (DNN), and 2.89% (DAE), 

indicating a higher ability of the E-RNN model to 

correctly identify positive cases of CKD. Lastly, in terms 

of F-measure, the E-RNN model demonstrates a 

significant improvement of 7.24% (RNN), 3.87% (DNN), 

and 3.52% (DAE) compared to the other models. These 

differences in percentage clearly show the effectiveness of 

the proposed E-RNN model in achieving higher accuracy, 

precision, recall, and F-measure in classifying CKD 

compared to the baseline RNN, DNN, and DAE models. 

5. Conclusions 

This research focuses on the classification of CKD in 

adults using an E-RNN as a deep learning model. The 

study collected and preprocessed a dataset of CKD cases, 

ensuring data quality and completeness. The E-RNN 

model, equipped with enhanced features and improved 

optimization techniques, demonstrated its effectiveness in 

capturing the underlying patterns and dependencies in the 

data.   The evaluation of the models revealed that the E-

RNN model achieved an accuracy of 88.45%, precision of 

89.44%, recall of 87.01%, and F-measure of 88.21%. 
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These results surpassed the performance of the other 

models, highlighting the superiority of the proposed E-

RNN approach in accurately classifying CKD. The 

significance of accurate CKD classification lies in its early 

detection, timely intervention, and effective management. 

By providing accurate diagnoses, the E-RNN model can 

aid healthcare professionals in making informed 

decisions, facilitating personalized treatment plans, and 

improving patient outcomes. 

This research demonstrates the potential of the proposed 

E-RNN model as a valuable tool for the classification of 

CKD in adults. Further studies and validations on larger 

and diverse datasets are necessary to consolidate its 

effectiveness and explore its application in clinical 

settings. The findings of this study provide a foundation 

for future research in utilizing deep learning techniques 

for improved CKD diagnosis and management. 
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