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Abstract: The ever-increasing use of smartphones and computers has led to a culture of instant gratification, shaping the way information 

is sought and shared in today's digital age. Natural language understanding (NLU) is the linchpin that allows machines to access, process, 

and provide answers from the vast amount of human knowledge stored in natural language (NL) text. The ongoing development of NLU 

technologies continues to drive advances in question answering and a wide range of other natural language processing (NLP) applications. 

Ontology plays a pivotal role in question answering by enhancing the system's ability to understand, contextualize, and retrieve relevant 

information from a structured knowledge base or unstructured textual data. In this work, we designed an Ontology-based Question 

Answering (QA) using a self-created dataset is an interesting and valuable endeavour. The system can leverage augmented term extraction 

on automatically created ontology to understand the domain context and relationships between concepts and is well integrated into the QA 

system. The performance of QA prototype is accessed using appropriate evaluation metrics This involve using a portion of self-created 

dataset as a test set and comparing the system's answers to the ground truth. 

Keywords: Question answering system,; natural language processing, ontology, ontology-based question answering system, term 

extraction 

1. Introduction 

Ever-increasing use of smart phones and exponential growth 

of computers in communication, supported by high-speed 

free internet and others, motivated the users to get the 

answers of respective questions in no time. Now the users 

are more aware of technology, but consequently losing 

patience to wait for reaching exact answers. Search engines 

provide impeccable support to offer answering in almost 

any domain, but still pose certain limitations [1] including 

manipulated ranking algorithms, limited answering in 

natural language question, lacking deduction capabilities 

and personal privacy issues are among others. Question 

Answering System (QAS) came as a solution and acts 

similar to search engines and works better for close and 

restricted domains [2]. Obviously, such systems are 

restricted to answer only from the database-encoded 

information.  

Then comes the era of semantic search which drastically 

promoted the use of ontology-based information to make 

data more meaningful. This encouraged the new era of 

Ontology Based Question Answering Systems (OBQAS) 

that are built on state-of-art technology attempting to answer 

user queries from heterogeneous and scattered data sources 

like semantic web. OBQAS takes input in natural languages 

and output relatively short answers [3] and is more focused 

on Answer Driven Search. Most of the earlier OBQAS such 

as [4] and [5], require manual construction of ontology with 

enormous human efforts and high dependency on relational 

database like MySQL [6] and other structured database [7] 

to store QA data and require additional external 

installations. Though such manually crafted ontologies give 

good results, but these are still not very popular due to the 

involvement of highly paid experts and domain specialists. 

Previous studies show that there are still many chances of 

improvement in reaching exact results, especially by 

formulating methods for automatic ontology construction 

and answering the user-specific questions more precisely.  

In this proposed approach, we try to minimize the gap by 

introducing automatic ontology generation for QA task. 

This is achieved by identifying terms from text, extracting 

correct entities from these identified terms and establishing 

the correct relationships between the extracted entities. The 

proposed system is also capable of auto translating the NL 

input question to SPARQL Protocol and Resource 

Description Framework Query Language (SPARQL) [8] 

query for answer retrieval. Instead of relational database, we 

used JSON [9] / XML [10] format as input dataset and 

output question-answer base. 

Problem statement for the currently proposed work is 

focussed on following points: 

1. Understanding the structure and nature of an ontology. 

2. Determine the domain that the intended ontology will 

encompass. 
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3. Exploring the practical application of the intended 

ontology in QA. 

4. Defining the specific types of questions that will be 

addressed using the intended ontology.  

5. Determining the necessary packages or tools required 

to construct an ontology from NL text. 

6. Validating the developed ontology through the use of 

question answering. 

The key contributions of this work include: 

1. A through study is done to review existing QAS, 

encompassing both ontology-based and non-ontology-

based QAS. 

2. The creation of a customised closed domain dataset, 

which serves as a foundational resource for ontology 

construction and useful in comprehending OBQAS 

prototype. 

3. Developed a small class library in JAVA [11] [12] 

using NetBeans IDE [13] for the automatic 

construction of ontology from input text. This library 

seamlessly integrates with Stanford's CoreNLP 

package [14] and comprises a range of classes and 

methods that provides sustenance to the automatic 

ontology construction as well as for question 

answering. 

4. The formulation of rules for converting NL questions 

into their equivalent SPARQL queries. 

5. Lastly, the evaluation of the proposed OBQAS using 

standard performance metrics. 

The remaining sections in this paper are organized as: 

Section-2 contains the background and related work about 

the state of the art of Question Answering (QA) systems. 

Section-3 briefly explains about resources and methods 

showcased in this work along with the tools and packages 

used. Section-4 explains about experimental results of the 

proposed approach. Section-5 outlines the conclusions of 

the proposed work and summarizes the main contributions. 

Section-6 contains Funding section, disclose Conflicts of 

Interest, information about data availability and code 

availability and briefs about data availability and code 

availability and briefs about Author’s contributions. And the 

last section summarizes the references in the list form. 

2. Background and Related Work 

Research in QA is an ongoing process since decades. 

Literature review addresses the QA problem since the 

beginning of 1960s. As always referenced, the two earlier 

QAS i.e. BASEBALL [3] and LUNAR [3] that are 

developed in 1971, are the two well-known successful 

models in their respective restricted domains. Whereas 

BASEBALL system answers against the recorded data of 

Baseball game played over one season by American league, 

LUNAR is capable of answering questions dealing with 

rock samples taken during Apollo moon missions. The 

QUALM system [15], a story understanding system by 

means of information retrieval, recognize and classify the 

queries like human beings. AskJeeves [15] is another QA 

problem in open domain that directs the user to Web pages 

(similar to search engines) that might contain relevant 

information about asked question by incorporating 

advanced NLP and data mining techniques. Another system, 

with a different approach, is the FAQFinder [15] QA 

system, is developed for answering factual questions over 

the web through statistical similarity and semantic similarity 

on question-answer pairs in FAQ database. START [15] 

(SynTactic Analysis Using Reversible Transformations) 

system, is a dynamic open domain QA system and first web 

based QA that extracts answers from different sources using 

NL Annotation technique. 

Modern QA systems are extended versions of these expert 

systems and implies NL techniques to process questions and 

the text & knowledge corpus. Text REtrieval Conference 

(TREC) [16] [17] retrieve precise answers to questions by 

searching collection of documents, rather than entire 

documents. Restricted-domain question answering (RDQA) 

such as MedQA [18] [19] [20] and HonQA (Health On the 

Net) [18] [21], are medical domain restricted QA systems 

that are designed to help biologists to access short 

definitional type answers. MOSES [16] [3], an OBQAS, 

exploits the techniques used in NLP, graph theory, text 

mining, etc. on semantic web to extract answers of queries 

posted by users. AQUA [16] [22], an OBQAS in closed 

domain, that combines domain-related documents and 

database knowledge through academic life based ontology. 

Another example is JAVELIN [23], an open-domain 

OBQAS that is extended to focus on restricted domains. 

JAVELIN is a star architecture where all subtasks such as 

question analysis, information retrieval, answer extraction 

and answer computing are observed as nodes that connected 

to a centre node. Another example of restricted domain 

ontology-based system, as mentioned in [24], represented an 

Intelligent QAS whose main aim is to build a QAS for 

students interested in online QA system without any 

interference of teacher in answering process.  

Two popular ontology based restricted domain QAS are 

PowerAQUA [25] and AquaLog [26]. PowerAQUA is a 

Multi-Ontology based QAS that focus on querying multiple 

Semantic Web resources and return answers from suitable 

distributed resources on the Semantic Web. AquaLog is 

ontology based restricted domain portable QAS that takes 

ontology as an input and return answers drawn from one or 

more knowledge bases through the use of GATE 

infrastructure - a linguistic component, to convert NL 

question to query triples. Currently, numerous OBQAS have 

emerged over the past two decades. A comprehensive and 

systematic comparison of all of them is not a practical 

undertaking. Therefore, a method is needed to compare 

ontological QAS effectively. In this context, we have 
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concentrated on specific benchmarking criteria and 

techniques utilized to distinguish and evaluate some of the 

most prominent ontology-based QAS, as discussed in [27]. 

In addition, QAS can also be assessed based on in-depth 

aspects, as elaborated in [28], such as searching, matching 

technology (Exact Match, Best Match, etc.), form of 

answers (Short Answers, Mixed Answers, etc.), types of 

questions (Simple, Wh-type, Descriptive, hypothetical, 

etc.), relevancy techniques (Pattern Matching, Syntactic 

Analysis, Pragmatic Analysis, etc.), knowledge source 

(Database, Syntactic Web, etc.), models used in information 

retrieval process (Bag of words, Bag of concepts, Bag of 

Knowledge, etc.) and reliability (Less, Good, Very Good, 

etc.). 

3. Resources and methods 

Ontology generation is initiated with extraction of relevant 

terms i.e. noun phrases and their corresponding 

relationships from the textual data. In pursuit of creating a 

prototype for an OBQAS, especially designed to address 

straightforward, fact-based natural language questions, we 

conducted experiments using a Self-Created Closed Domain 

Dataset (SCCDD). The motivation behind developing 

SCCDD stemmed from the absence of a dataset 

encompassing all three essential components necessary for 

QAS over Ontology: reading comprehension text data, the 

underlying ontology, and gold standard question-answer 

pairs based on that ontology.  

3.1 SCCDD 

The initial segment of the SCCDD centres on the 'Education' 

domain, wherein the dataset creation process commenced 

by gathering unstructured text paragraphs from the websites 

of participating institutions and the Joint Admission 

Information Brochure [29], which serves as the basis for 

creating high-quality question-answer pairs. For the 

remaining three randomly selected distinct domains, namely 

'Personality,' 'Entertainment,' and 'Organization,' we utilized 

the 'SQuAD v1.1' dataset [30], a dataset focused on reading 

comprehension-based question answering. The domains in 

SCCDD are briefly explained as follows: 

1. Education - We focused on a specific real-world context 

of college admissions process in various bachelor 

courses of engineering, collaborating five participating 

institutions. This is referred as “PU_and_JAC” and is 

abbreviated as “PU”. 

2. Personality - We centred our attention on a real-world 

figure, the inventor known as ‘Nikolas Tesla.’ This is 

referenced as ‘Nikola_Tesla’ abbreviated as ‘NT’. 

3. Entertainment - Our emphasis was on a science-fiction 

television program titled ‘Doctor Who.’ This is 

identified as ‘Doctor_Who’ abbreviated as ‘DW’. 

4. Organization - We directed our focus to a real-world 

organizational entity, ‘Chicago University.’ This is 

denoted as ‘University_of_Chicago’ abbreviated as 

‘UC’. 

The text paragraphs sourced from 'SQuAD v1.1' underwent 

a pre-processing stage involving filtering and cleaning 

before their integration into the SCCDD. Details about the 

characteristics of context paragraphs and Wh-type questions 

within SCCDD are available in 

Table I. 

Table I Characteristics of Context Paragraphs and Questions 

 

The categorization of Wh-type questions across the four 

closed domains within the SCCDD is provided in 

Table II, while its corresponding chart representation can be 

observed in Fig. 1. 
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Table II  Wh-type categorization of NL Questions in four domains 

 

 

Fig. 1 Wh-type categorization of NL Questions in four domains 

3.2 Proposed approach 

In this study, we have developed a small class library in 

JAVA JDK [11] [12] using NetBeans IDE [13] to facilitate 

automatic ontology learning from English language context 

paragraphs, with the objective of utilizing it for QA tasks to 

obtain the desired answers. Our approach leverages the 

Stanford CoreNLP syntactical parser to produce parse trees 

from sentences, thus enabling the extraction of relation 

triples, consisting of subject, predicate, and object, from the 

input text [31] [13]. During this process, we recognized that 

the identification and extraction of terms from the input text 

are pivotal in the overall procedure and should be handled 

judiciously. In addition, we adopted a rule-based technique 

[32], in combination with POS taggers, to enhance term 

extraction within each of the four domains individually. Fig. 

2 below depicts the proposed architecture diagram of the 

QAS prototype keeping the implementation details 

underneath. 

 

Fig. 2 Proposed Architecture of self-constructing Ontology based QAS 

Each step in proposed flowchart is briefly explained as 

follows: 

• User question and input paragraph: This module 

handles the user's natural language question and 

domain paragraphs from which the ontology be 

constructed. It also detects the Expected Answer Type 

(EAT) or the focus of the input question, a critical step 

in arriving at the final answer. 

• Question Processing: This module is responsible for 

focus identification of question, question 

classification, question reformulation and conducting 

other pre-processing tasks. The generation and 
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execution of SPARQL from NL questions are also 

accomplished as a sub-task within this pharse. 

• Question Similarity Calculation: This module aids in 

retrieving corresponding answers from the Processed 

Question Answer Base (PQAB) when a matching 

question is found in the database. Sophisticated NLP 

and ranking technology are pivotal in determining the 

similarity between the input question and the 

previously stored question and its answer. 

• Paragraph Processing: This module carries out all 

lexico-syntactic operations and relationship extraction 

activities. General ontology also supports this module, 

contributing to the automatic construction and 

enrichment of the ontology. 

• Answer Extraction: This module identifies candidate 

answers, filters them and rank them. Ultimately, the 

most reliable answer is presented to the user interface, 

and the question-answer pair is stored in the PQAB.  

 

 

 

3.2.1 Ontology design 

The design of ontology plays a pivotal role in addressing the 

QAS problem. Ontology structure is primarily composed of 

class, instance, predicate, and property elements. In 

ontology design, the root class for any ontology is typically 

‘owl:thing,’ and under this, we established our initial 

custom class as ‘DomainEntity.’ Subsequently, subclasses 

of ‘DomainEntity’ were generated, and they were set as 

disjoint from one another. It's essential to note that this 

module is executed only once, specifically when the initial 

ontology is being created for the first time. 

For visualizing the ontology generated by our proposed 

approach, we utilized an external tool called 'Protégé' [33], 

which facilitates ontology visualization via the 

'ProtégéVOWL' plugin [34] [35]. Additionally, 'Protégé' 

offers validation capabilities for both ontology structure and 

data through its internal reasoner, such as the Hermit 

Reasoner, which can be configured to validate our proposed 

ontology. 

For the purpose of illustration within this paper, we have chosen to focus solely on the 'Education' domain to showcase 

various facets of the created ontology. Fig. 3 represents a Tab View of the 'Education' domain ontology, including the Class 

Hierarchy, Object Properties, and Data Properties. In 

Table III , you can find an example of the class, its instances 

and properties within the 'Education' domain ontology, and 

in Fig. 4, a partial view of the 'Education' domain ontology 

is presented.

 

Fig. 3 Tab View of ‘Education’ domain ontology 
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Table III Example of Class Design of ‘Education’ domain ontology 

 

 

Fig. 4 Partial view of ‘Education’ domain ontology 

3.2.2 Term extraction 

In ontology-based systems, term extraction refers to a task 

of identifying the useful terms from which real world 

concepts can be mapped. The process of term extraction 

begins with part-of-speech (POS) tagging and phrase 

chunking which is done by linguistic techniques. In this 

study, we employed pre-trained tokenizers provided by the 

Stanford CoreNLP Group to achieve state-of-the-art results 

in processing English language text. We conducted a 

comparative analysis with the outcomes of TextRazor [36] 

and spaCy-NER [37]. Our input dataset was SCCDD, which 

lacks token-level annotations in natural language, adding 

complexity to term and entity extraction tasks. To address 

the domain variance, we processed each dataset file 

separately. For each domain within the dataset, we divided 

the context paragraphs into two parts: a training set 

(approximately 70%) and a testing set (approximately 30%). 

We conducted term extraction in two iterations on the 

training dataset. In the first iteration (run 1), we utilized the 

standard pipeline annotators from the Stanford CoreNLP 

package. However, the results obtained were not highly 

satisfactory, as they missed many valuable terms. In some 

cases, only partial terms were extracted or the terms were 

broken into fragments. This issue arose from the fact that 

Stanford's POS tagger was not trained on the specific dataset 

used, namely SCCDD.  

For example, the term "sector-25" is parsed into its POS 

form as follows: "sector/NN" for Noun, "-/HYPH" for a 

hyphen symbol, and "25/CD" for a cardinal value. In this 

case, "sector-25" is identified as three distinct terms, 

although it should ideally be recognized as a single entity 

categorized as "LOCATION".  

In the second iteration (run 2), we utilized rule-based 

parsing derived from a specialized pipeline annotator in 

Stanford's toolkit, known as "regexner", facilitated by a 

rule-based tab-separated text file [32], referred to as 

"RegexNER.txt." Typically, this file is curated manually by 

domain experts to achieve superior results when processing 

English language text. We augment this rule-based 

dictionary file by adding missing or correcting existing 

terms. Once the training phase was finalized using the 

training dataset, we employed the combined process of term 

extraction and rule-based parsing on the test dataset. To 

ensure data integrity, we meticulously eliminated duplicate 

terms from the list of intermediate terms in both the training 

and test datasets. The findings of our experiments are 

detailed in Section 4. The process flow model of the 

proposed term extraction methodology is illustrated in Fig. 

5. 

 

Fig. 5 Process flow model of the proposed methodology 

3.2.3 SPARQL 

The QA task performed on the leaned ontology hinges on a 

thorough comprehension of the input question and its 

Class Class Instance Property Value

-   Course_ID 101

-   Course_Name Computer Science & Engineering

-   Course_Seats 138

-   Course_Fee 106855

-   Course_ID 501

-   Course_Name Architecture

-   Course_Seats 44

-   Course_Fee 19434

-   First_Name Ajay

-   Last_Name Singh

-   Rank 12345

-   Eligible Yes

Engineering BE_CSE

Architecture B_Arch

StudentCandidate Student
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effective execution. To facilitate this, the user's NL question 

must be transformed into a format compatible with 

execution on the learned ontology, typically achieved 

through the use of SPARQL. Prior to formulating SPARQL 

query, the user entered NL question undergoes pre-

processing through linguistic techniques facilitated by 

Stanford’s CoreNLP library. The design encompasses 

various linguistics, including tokenization, lemmatization, 

POS tagging, and more [5], followed by sentence 

simplification, identification of projection words and 

nominal. A visual representation of the system design for 

SPARQL query formulation and execution is depicted in 

Fig. 6 below. 

 

Fig. 6 System Design for Query Analysis and Execution 

 

3.2.3.1.  Identification of projection words from NL 

questions 

Identification of projection words and triples within the NL 

query is a crucial factor in the effective execution of 

SPARQL construction and execution. We have devised 

specific rules, leveraging the dependency tree of the NL 

question and certain POS tag patterns (or syntactic 

constraints), to streamline the process of SPARQL 

formulation. Our algorithm receives user questions in the 

format of a simple sentence comprising various English 

words. It initiates by examining the presence of coordinating 

conjunctions like 'and' or 'or' within the Wh-based relational 

question. Several established syntactic sequences or POS 

(Part of Speech) patterns as explained in [38], identified by 

POS taggers, determine whether a sentence is compound or 

not.  

For the purpose of illustration, we have focused solely on 

questions that involve a relational phrase connecting two 

nouns within a sentence. Consider an example that includes 

a relational phrase along with coordinating conjunctions 

such as ‘and’ or ‘or’. For instance, in the question, ‘Which 

Indian astronaut and researcher was killed in a spacecraft 

crash?’ The typed dependency parse output is provided in 

Example 1 below: 

root(ROOT-0, killed-7) 

det(astronaut-3, Which-1) 

amod(astronaut-3, Indian-2) 

nsubj:pass(killed-7, astronaut-3) 

cc(researcher-5, and-4) 

conj:and(astronaut-3, researcher-5) 

nsubj:pass(killed-7, researcher-5) 

aux:pass(killed-7, was-6) 

case(crash-10, in-8) 

compound(crash-10, spacecraft-9) 

obl:in(killed-7, crash-10) 

punct(killed-7, ?-11) 

Example 1 Output of Stanford typed dependency parse (in 

list format) 

By employing the Rule (1) outlined in [38] to Example 1 

above, the two nouns ‘astronaut’ and ‘researcher’ are 

identified as the projection words for the SPARQL query, 

as demonstrated below: 

∀wx, wy, wz . (nsubjpass(wx, wy) ∧ conj(wy, wz) 

 ⇒ Target(wy) ∧ Target (wz)) 

Rule (1) 

 i.e. nsubjpass(killed, astronaut) ˄ conj(astronaut, researcher)  

        ⇒ Projection word 1 (astronaut) ˄  

           Projection word 2 (researcher) 

Here, ‘wx’, ‘wy’, ‘wz’ denote interdependent words 

indicated by the dependency function dep(x, y) and dep(y, 

z). 'nsubj:pass' signifies a 'passive nominal subject’ and 

'conj:and' represents a 'conjunction word’ are the functions 

utilized in the Stanford Typed Dependency Parser [39] [40].  

This rule examines the question sentence, identifies the 

projection word(s) within the question to serve as SPARQL 

variable(s) by passing the input sentence to the dependency 

parser [31] incorporated in the Stanford CoreNLP 

annotators.  

3.2.3.2.  Identification of Triples from NL Questions 

Triple patterns consist of three components: subject, object, 

and predicate (SPO). The identification of triples and the 

formulation of SPARQL queries from NL questions can be 

a challenging task. In this study, we focused exclusively on 

simple Wh-based queries that include a relational phrase 

(forming the predicate part in the query triple) connecting 

two nouns (forming the subject and object parts in the query 

triple).  
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The triple representing a relational statement is determined 

by extracting the two nominal and the relational phrase that 

connects them. For instance, in the sentence ‘Vikas is 

enrolled to UIET’, we have ‘Vikas’ and ‘UIET’ as the two 

nominals, and ‘enrolled’ as the relational phrase. 

Consequently, the resulting triple consists of ‘Vikas’, 

‘enrolled’, ‘UIET’ denoting the subject, predicate, and 

object in the form {Vikas, enrolled, UIET}. 

When it's not explicit which nominal a relational phrase 

(verb) is connecting, two particular scenarios for triple 

identification arise, and we employ the following rules: 

1. When a question begins with ‘Who’, for example a 

sentence ‘Who killed Osama?’, we refer to Rule (2) 

outlined in [38] as follows:  

∀we, wh, wi . (nsubj(we, wh) ∧ obj(we, wi)) 

 ⇒ Triple(?wh,we,wi)) 

Rule (2) 

 nsubj(killed, who) ˄ obj(killed, Osama)  

           ⇒ Triple (?who, killed, Osama)  

2. In cases where the verb appears as the last word in 

a sentence and does not occur between the two 

nouns, as seen in a sentence such as ‘In which class 

does Vikas study?’ we refer to Rule (3) described 

in [71], which states as follows: 

∀wh, wi, wj . (pobj(wj, wh) ∧ nsubj(wj, wi)) 

 ⇒ Triple(?wi,wj,wh)) 
Rule (3) 

 pobj(In, class) ˄ nsubj(study, Vikas)  

      ⇒ Triple (Vikas, study, Class) 

3.2.3.3.  SPARQL query formation and execution 

The task of SPARQL query formulation holds great 

significance in ensuring accurate answers. To facilitate this 

process, we have incorporated the Apache Jena Library 

[41], also known as the 'Jena API,' and 'Jena Fuseki' [41], a 

SPARQL server provided by Apache, into our Java 

Application. The Jena API allows for the creation of 

SPARQL queries using either by utilizing the 

‘SelectBuilder’ class from the Jena framework or by using 

the ‘String’ class in Java.  

For instance, if we wish to retrieve the answer to the 

question ‘Which course has a fee of 70000?’ from the 

constructed ontology, sample code excerpt (written in Java) 

for SPARQL execution is shown in Example 2 and a 

screenshot of the proposed ontology-based QAS prototype 

demonstrating the retrieved answer is against SPARQL 

query is depicted in Fig. 7. 

  

Example 2 SPARQL query formation and execution 
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Fig. 7 Screenshot of developed QA prototype 

4. Results and discussions 

In this work, we performed term extraction on SCCDD to 

evaluate the efficiency that can be achieved by our proposed 

approach. We used three standard performance metrics [42] 

[43] to calculate the performance of the proposed term 

extraction method i.e. Precision, Recall and F-score. 

Table IV depicts the confusion matrix for the proposed 

methodology that is applied on the four independent 

domains in input dataset. The average Precision, Recall and 

F-score for term extraction task performed by the proposed 

methodology on a set of 114 context paragraphs is 

calculated as 83.12%, 78.19% and 80.41%, respectively 

Table IV Confusion Matrix for Term Extraction using Proposed Methodology 

 

1 TP=‘True Positive’, 2 FP=‘False Positive’, 3 FN=‘False Negative’ 

Table V depics the comparative results based on the number 

of correct terms identified by the proposed methodology, 

TextRazor and spaCy-NER, alongwith achieved average of 

Precision, Recall and F-score. 

Table V Number of Correctly Identified Terms 

 

To assess the performance of proposed QA approach when 

applied to the SCCDD, we present two confusion matrices. 

In addition, we used standard performance metrics i.e. 

Precision, Recall, F-score, and Accuracy to demonstrate the 

effectiveness of the proposed QA method. 

Table VI depicts the confusion matrix for the proposed QA 

task when applied on the four independent domains within 

the input dataset. The average Precision, Recall and F-score 

for QA task performed by the proposed approach on a set of 

Sr. No. No. of Context Paragraphs – Title TP
1

FP
2

FN
3

Precision Recall F-Score

1 27 - PU_and_JAC 291 19 79 93.87 78.65 85.59

2 25 - Nikolas Tesla 147 31 22 82.58 86.98 84.72

3 30 - Doctor Who 179 58 88 75.53 67.04 71.03

4 32 - University of Chicago 338 82 84 80.48 80.09 80.28

83.12 78.19 80.41(114 paragraphs) Average



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 |  63 

548 NL questions are calculated as 85. 82%, 91.02% and 

87.62%, respectively. Out of the 548 questions, our 

proposed approach correctly handled approximately 472 

queries, achieving an accuracy of 79.07%. 

Table VI Confusion Matrix for QA task: Precision, Recall, F-Score and Accuracy 

 

4 TP=‘True Positive’, 5 TP=‘True Negative’, 6 FP=‘False Positive’, 7 FN=‘False Negative’ 

To assess syntactic robustness, we have provided the 

Confusion Matrix for various Wh-type questions within the 

SCCDD in 

Table VII. It is evident that the system's performance in 

responding to Wh-type questions that begin with ‘Which’ is 

exceptionally strong. This is attributed to the limited 

frequency of questions commencing with ‘Which,’ and the 

system's effective ability to retrieve answers for such 

queries. However, the system demonstrated excellent 

performance when addressing questions that initiated with 

‘Who,’ ‘How,’ and ‘Where’. 

Table VII Confusion Matrix pertaining to Wh-type Questions within SCCDD 

 

Table VIII provides a selection of sample questions that the 

proposed system addresses. All of these questions share 

same a common Prefix for their SPARQL queries, which is 

‘<http://www.semanticweb.org/vikas/ontologies/2020/10/C

oursesOffered_Vikas#>‘.

 

Table VIII Sample questions answered by the proposed approach 

Sr. 

No. 

Words 

in 

Answer 

NL Question / SPARQL Form 
Name 

Entity 
Answer 

1.  Where is Panjab University currently located? Chandigarh 

Sr. No. # Questions - Title TP
4

TN
5

FP
6

FN
7

Precision Recall F-score Accuracy

1 226 - (PU) 175 4 14 33 92.59 84.13 88.16 79.2

2 101 - (NT) 70 2 21 2 76.92 97.22 85.89 75.79

3 94 - (DW) 67 10 19 5 77.91 93.06 84.81 76.24

4 127 - (UC) 104 4 7 12 93.69 89.66 91.63 85.04

(548 Questions) 85.28 91.02 87.62 79.07Average

Domain / Title  ↓ Wh-type → How What / In what When Where Which Who

TP 44 64 15 22 2 28

FP 1 11 1 0 0 1

FN 1 27 0 2 0 3

TP 5 12 24 14 1 11

FP 1 7 8 2 0 1

FN 0 4 0 1 0 0

TP 10 27 4 1 1 27

FP 0 9 9 0 0 3

FN 0 1 1 0 0 0

TP 23 51 5 1 0 24

FP 1 5 0 1 0 0

FN 0 9 0 1 0 2

TP 82 154 48 38 4 90

FP 3 32 18 3 0 5

FN 1 41 1 4 0 5

Precision 96.47 82.8 72.73 92.68 100 94.74

Recall 98.8 79 98 90.5 100 94.7

F1-score 97.62 80.84 83.48 91.57 100 94.74

PU

NT

DW

UC

Total

Results
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Sr. 

No. 

Words 

in 

Answer 

NL Question / SPARQL Form 
Name 

Entity 
Answer 

One 

word 

SELECT ?city WHERE { table:PU_Chd 

table:PU_Address_City ?city.} 

Location 

(City) 

2.  One 

word 

When was Panjab University established? Date 1882 

SELECT ?date WHERE { table:PU_Chd 

table:PU_Establishment_Year ?date.} 

3.  One 

word 

How many university hostels in Panjab 

University? 

Number 18 

SELECT ?hostels WHERE { table:PU_Chd 

table:PU_Hostels_Count ?hostels.} 

4.  One 

word 

What is the website of Panjab University? URL https://puchd.ac.in/ 

SELECT ?website WHERE{ table:PU_Chd 

table:PU_URL ?website. } 

5.  Two 

words 

Who designed the Central Library? Person Pierre Jeanneret 

SELECT ?person WHERE { table:PU_Library 

table:Facility_Library_Designed_By ?person.} 

6.  Three 

words 

What is the start date for Document Verification? Date 28 June 2023 

SELECT ?Doc_Verification_End_Date 

WHERE { table:Register 

table:Reg_Admission_StartDateDocVerification 

?Doc_Verification_End_Date.} 

7.  Four 

words 

What group of industries has set up a chair in 

Telecommunication at UIET? 

Organization Bharti group of 

industries 

SELECT ?industry_name WHERE { table:UIET 

table:Institute_Telecommunication_Chair_Owner 

? industry_name.} 

8.  Five 

words 

What are Bachelor of Engineering (B.E.) courses 

in SSBUICET? 

Organization 

(Customized 

as Course) 

Chemical Engineering 

and Food Technology 

SELECT ?courseName WHERE { table:UICET 

table:o_hasCourse ?course. 

?course table:Course_Name ?courseName.} 

9.  Six 

words 

What is the full form of UIET? Organization 

(Customized 

as Institute) 

University Institute of 

Engineering and 

Technology SELECT ?fullname WHERE { table:UIET 

table:Institute_Name ?fullname.} 

10.  Seven 

words 

What types of classrooms does CCET have? Organization 

(Customized 

as Facility) 

Virtual Classrooms, 

Tutorial Rooms and 

Drawing Halls SELECT ?facility_type WHERE { table:CCET 

table:o_hasFacility_Classrooms_Type ?facility. 
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Sr. 

No. 

Words 

in 

Answer 

NL Question / SPARQL Form 
Name 

Entity 
Answer 

?facility table:Facility_Classroom_Type 

?facility_type.} 

11.  Eight 

words 

What university has UIET signed a MOU with? Organization University of Western 

Australia, Nottingham 

Trent University, UK SELECT ?MOUs_ForeignUniversity_Name  

WHERE { table:UIET 

table:Institute_MOUs_ForeignUniversity 

?MOUs_ForeignUniversity_Name.} 

12.  Nine 

words 

NIL NIL NIL 

13.  Ten 

words 

What is SSBUICET currently known as? Organization 

(Customized 

as Institute) 

Dr S.S. Bhatnagar 

University Institute of 

Chemical Engineering 

and Technology 

SELECT ?Institute_Name_Known WHERE {  

table:UICET table:Institute_Name 

?Institute_Name_Known.} 

14.  Thirteen 

words 

What are Bachelor of Engineering courses in 

CCET? 

Organization 

(Customized 

as Course) 

Civil Engineering, 

Computer Science and 

Engineering, Electronics 

and Communication 

Engineering and 

Mechanical Engineering 

SELECT ?courseName WHERE { 

table:CCET table:o_hasCourse ?course. 

?course table:Course_Name ?courseName.} 

15.  Nineteen 

words 

What are Bachelor of Engineering courses in 

UIET? 

Organization 

(Customized 

as Course) 

Biotechnology 

Engineering, Computer 

Science and Engineering, 

Electronics and 

Communication 

Engineering, Electrical 

and Electronics 

Engineering, Information 

Technology and 

Mechanical Engineering 

SELECT ?courseName WHERE { table:UIET 

table:o_hasCourse ?course.  

?course table:Course_Name ?courseName.} 

 

Table IX presents comparison results of ontology-based 

QAS where DBpedia dataset in used for QA purpose. We 

have considered these QAS because our SCCDD has a 

portion from SQuAD dataset which is inspired from the 

DBpedia.  
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Table IX Comparison results of proposed system vs other ontology-based QAS 

 

We believe that the accuracy of the proposed system can be 

further improved by expanding our knowledge base within 

the constructed ontology and enhancing the linguistic 

analysis and semantic understanding within the respective 

domain. 

 

5. Conclusions 

In this study, state-of-art ontology based question answering 

system for English language has been developed. An 

integrated approach is proposed to that takes care of 

accepting input in NL text in English language and proposes 

the novel approach of using external standard packages to 

speed up the work by reusing the existing functionalities.  

We processed four independent domains composed of 114 

paragraphs of 13477 words and 548 questions in total. The 

suggested approach for extracting terms is much better than 

the TextRazor API and spaCy-NER in the field of term 

extraction. During term extraction task, we have submitted 

two runs, one run (run 1) is the term extractor using standard 

pipeline annotators, and the other run (run 2) is term 

extractor combined with the rule-based parsing obtained 

from Stanford’s special annotator “regexner” to train the 

NER tagger for custom use-case. This may encourage in 

system automation and achieve golden standard of NLP 

performance. Average Precision, Recall and F-score of the 

proposed method for term extraction on 114 paragraphs in 

the four given domains is 83.12%, 78.19% and 80.41, 

respectively as shown in 

Table IV above. In 

Table VI, we present the performance metrics for the 

proposed QA approach, which include a Precision of 

85.28%, a Recall of 91.02%, an F-score of 87.62% and 

Accuracy of 79.07%. Lastly, in 

Table IX, we provide an overview of popular OBQAS, the 

datasets they utilized, the total number of questions 

processed, and the performance metrics employed to 

compare the results of our study. A set of rules with high 

degree of feasibility is applied to find projection words is 

helpful in SPARQL query formulation. 

In conclusion, it is evident that achieving full automation of 

the proposed QA system, capable of responding to any input 

across all domains, is an exceptionally challenging task. 

Nonetheless, a dedicated endeavour is ongoing to illustrate 

how an ontology-based automated QA system can be 

developed through the utilization of domain knowledge and 

precise refinement. The proposed approach can be further 

enhanced by incorporating additional classes, concepts, and 

individuals into the established ontology. 

6. Disclosure instructions  

• Declaration of generative AI and AI-assisted 

technologies in the writing process 

During the preparation of this work the author(s) 

did not use any tool/service to reviewed and edited 

the content and take(s) full responsibility for the 

content of the publication. The Authors declares 

Q AS Dataset Used Total Q uestions Precision Recall F-measure

Our proposed approach Self-created dataset 548 0.85 0.91 0.88

UTQA [44] DBpedia 2015 100 0.82 0.69 0.75

SemGraphQA [44] DBpedia 2015 100 0.7 0.25 0.37

Xser [45] DBpedia 2014 50 0.74 0.72 0.73

QAnswer [45] DBpedia 2014 50 0.46 0.35 0.4

SemGraphQA [45] DBpedia 2014 50 0.31 0.32 0.31

YodaQA [45] DBpedia 2014 50 0.28 0.25 0.26

Xser [46] DBpedia 3.9 50 0.72 0.71 0.72

gAnswer [46] DBpedia 3.9 50 0.37 0.37 0.37

CASIA [46] DBpedia 3.9 50 0.32 0.4 0.36

gAnswer [47] DBpedia 3.8 99 0.4 0.4 0.4

Zhu et al. [48] DBpedia 3.8 99 0.38 0.42 0.38

RTV [49] DBpedia 3.8 99 0.32 0.34 0.33

SemSeK [50] DBpedia 3.7 100 0.44 0.48 0.46

BELA [51] DBpedia 3.7 100 0.73 0.62 0.67

QAKiS [50] DBpedia 3.7 100 0.39 0.37 0.38

FREyA [50] DBpedia 3.6 50 0.63 0.54 0.58

PowerAqua [50] DBpedia 3.6 50 0.52 0.48 0.5

TBSL [44] DBpedia 3.6 50 0.41 0.42 0.52
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