

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 54

Enhancing Question Answering through Augmented Term Extraction

on Generated Ontology in Closed Domain

Vikas Bali1*, Amandeep Verma2

Submitted: 10/10/2023 Revised: 30/11/2023 Accepted: 10/12/2023

Abstract: The ever-increasing use of smartphones and computers has led to a culture of instant gratification, shaping the way information

is sought and shared in today's digital age. Natural language understanding (NLU) is the linchpin that allows machines to access, process,

and provide answers from the vast amount of human knowledge stored in natural language (NL) text. The ongoing development of NLU

technologies continues to drive advances in question answering and a wide range of other natural language processing (NLP) applications.

Ontology plays a pivotal role in question answering by enhancing the system's ability to understand, contextualize, and retrieve relevant

information from a structured knowledge base or unstructured textual data. In this work, we designed an Ontology-based Question

Answering (QA) using a self-created dataset is an interesting and valuable endeavour. The system can leverage augmented term extraction

on automatically created ontology to understand the domain context and relationships between concepts and is well integrated into the QA

system. The performance of QA prototype is accessed using appropriate evaluation metrics This involve using a portion of self-created

dataset as a test set and comparing the system's answers to the ground truth.

Keywords: Question answering system,; natural language processing, ontology, ontology-based question answering system, term

extraction

1. Introduction

Ever-increasing use of smart phones and exponential growth

of computers in communication, supported by high-speed

free internet and others, motivated the users to get the

answers of respective questions in no time. Now the users

are more aware of technology, but consequently losing

patience to wait for reaching exact answers. Search engines

provide impeccable support to offer answering in almost

any domain, but still pose certain limitations [1] including

manipulated ranking algorithms, limited answering in

natural language question, lacking deduction capabilities

and personal privacy issues are among others. Question

Answering System (QAS) came as a solution and acts

similar to search engines and works better for close and

restricted domains [2]. Obviously, such systems are

restricted to answer only from the database-encoded

information.

Then comes the era of semantic search which drastically

promoted the use of ontology-based information to make

data more meaningful. This encouraged the new era of

Ontology Based Question Answering Systems (OBQAS)

that are built on state-of-art technology attempting to answer

user queries from heterogeneous and scattered data sources

like semantic web. OBQAS takes input in natural languages

and output relatively short answers [3] and is more focused

on Answer Driven Search. Most of the earlier OBQAS such

as [4] and [5], require manual construction of ontology with

enormous human efforts and high dependency on relational

database like MySQL [6] and other structured database [7]

to store QA data and require additional external

installations. Though such manually crafted ontologies give

good results, but these are still not very popular due to the

involvement of highly paid experts and domain specialists.

Previous studies show that there are still many chances of

improvement in reaching exact results, especially by

formulating methods for automatic ontology construction

and answering the user-specific questions more precisely.

In this proposed approach, we try to minimize the gap by

introducing automatic ontology generation for QA task.

This is achieved by identifying terms from text, extracting

correct entities from these identified terms and establishing

the correct relationships between the extracted entities. The

proposed system is also capable of auto translating the NL

input question to SPARQL Protocol and Resource

Description Framework Query Language (SPARQL) [8]

query for answer retrieval. Instead of relational database, we

used JSON [9] / XML [10] format as input dataset and

output question-answer base.

Problem statement for the currently proposed work is

focussed on following points:

1. Understanding the structure and nature of an ontology.

2. Determine the domain that the intended ontology will

encompass.

1 Department of Computer Science, Panjabi University, Patiala, India

ORCID ID: 0000-0002-2829-5176
2 Department of Computer Science, Panjabi University, Patiala, India

ORCID ID: 0000-0002-2261-4957

* Corresponding Author Email: vikasbali.pu@yahoo.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 55

3. Exploring the practical application of the intended

ontology in QA.

4. Defining the specific types of questions that will be

addressed using the intended ontology.

5. Determining the necessary packages or tools required

to construct an ontology from NL text.

6. Validating the developed ontology through the use of

question answering.

The key contributions of this work include:

1. A through study is done to review existing QAS,

encompassing both ontology-based and non-ontology-

based QAS.

2. The creation of a customised closed domain dataset,

which serves as a foundational resource for ontology

construction and useful in comprehending OBQAS

prototype.

3. Developed a small class library in JAVA [11] [12]

using NetBeans IDE [13] for the automatic

construction of ontology from input text. This library

seamlessly integrates with Stanford's CoreNLP

package [14] and comprises a range of classes and

methods that provides sustenance to the automatic

ontology construction as well as for question

answering.

4. The formulation of rules for converting NL questions

into their equivalent SPARQL queries.

5. Lastly, the evaluation of the proposed OBQAS using

standard performance metrics.

The remaining sections in this paper are organized as:

Section-2 contains the background and related work about

the state of the art of Question Answering (QA) systems.

Section-3 briefly explains about resources and methods

showcased in this work along with the tools and packages

used. Section-4 explains about experimental results of the

proposed approach. Section-5 outlines the conclusions of

the proposed work and summarizes the main contributions.

Section-6 contains Funding section, disclose Conflicts of

Interest, information about data availability and code

availability and briefs about data availability and code

availability and briefs about Author’s contributions. And the

last section summarizes the references in the list form.

2. Background and Related Work

Research in QA is an ongoing process since decades.

Literature review addresses the QA problem since the

beginning of 1960s. As always referenced, the two earlier

QAS i.e. BASEBALL [3] and LUNAR [3] that are

developed in 1971, are the two well-known successful

models in their respective restricted domains. Whereas

BASEBALL system answers against the recorded data of

Baseball game played over one season by American league,

LUNAR is capable of answering questions dealing with

rock samples taken during Apollo moon missions. The

QUALM system [15], a story understanding system by

means of information retrieval, recognize and classify the

queries like human beings. AskJeeves [15] is another QA

problem in open domain that directs the user to Web pages

(similar to search engines) that might contain relevant

information about asked question by incorporating

advanced NLP and data mining techniques. Another system,

with a different approach, is the FAQFinder [15] QA

system, is developed for answering factual questions over

the web through statistical similarity and semantic similarity

on question-answer pairs in FAQ database. START [15]

(SynTactic Analysis Using Reversible Transformations)

system, is a dynamic open domain QA system and first web

based QA that extracts answers from different sources using

NL Annotation technique.

Modern QA systems are extended versions of these expert

systems and implies NL techniques to process questions and

the text & knowledge corpus. Text REtrieval Conference

(TREC) [16] [17] retrieve precise answers to questions by

searching collection of documents, rather than entire

documents. Restricted-domain question answering (RDQA)

such as MedQA [18] [19] [20] and HonQA (Health On the

Net) [18] [21], are medical domain restricted QA systems

that are designed to help biologists to access short

definitional type answers. MOSES [16] [3], an OBQAS,

exploits the techniques used in NLP, graph theory, text

mining, etc. on semantic web to extract answers of queries

posted by users. AQUA [16] [22], an OBQAS in closed

domain, that combines domain-related documents and

database knowledge through academic life based ontology.

Another example is JAVELIN [23], an open-domain

OBQAS that is extended to focus on restricted domains.

JAVELIN is a star architecture where all subtasks such as

question analysis, information retrieval, answer extraction

and answer computing are observed as nodes that connected

to a centre node. Another example of restricted domain

ontology-based system, as mentioned in [24], represented an

Intelligent QAS whose main aim is to build a QAS for

students interested in online QA system without any

interference of teacher in answering process.

Two popular ontology based restricted domain QAS are

PowerAQUA [25] and AquaLog [26]. PowerAQUA is a

Multi-Ontology based QAS that focus on querying multiple

Semantic Web resources and return answers from suitable

distributed resources on the Semantic Web. AquaLog is

ontology based restricted domain portable QAS that takes

ontology as an input and return answers drawn from one or

more knowledge bases through the use of GATE

infrastructure - a linguistic component, to convert NL

question to query triples. Currently, numerous OBQAS have

emerged over the past two decades. A comprehensive and

systematic comparison of all of them is not a practical

undertaking. Therefore, a method is needed to compare

ontological QAS effectively. In this context, we have

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 56

concentrated on specific benchmarking criteria and

techniques utilized to distinguish and evaluate some of the

most prominent ontology-based QAS, as discussed in [27].

In addition, QAS can also be assessed based on in-depth

aspects, as elaborated in [28], such as searching, matching

technology (Exact Match, Best Match, etc.), form of

answers (Short Answers, Mixed Answers, etc.), types of

questions (Simple, Wh-type, Descriptive, hypothetical,

etc.), relevancy techniques (Pattern Matching, Syntactic

Analysis, Pragmatic Analysis, etc.), knowledge source

(Database, Syntactic Web, etc.), models used in information

retrieval process (Bag of words, Bag of concepts, Bag of

Knowledge, etc.) and reliability (Less, Good, Very Good,

etc.).

3. Resources and methods

Ontology generation is initiated with extraction of relevant

terms i.e. noun phrases and their corresponding

relationships from the textual data. In pursuit of creating a

prototype for an OBQAS, especially designed to address

straightforward, fact-based natural language questions, we

conducted experiments using a Self-Created Closed Domain

Dataset (SCCDD). The motivation behind developing

SCCDD stemmed from the absence of a dataset

encompassing all three essential components necessary for

QAS over Ontology: reading comprehension text data, the

underlying ontology, and gold standard question-answer

pairs based on that ontology.

3.1 SCCDD

The initial segment of the SCCDD centres on the 'Education'

domain, wherein the dataset creation process commenced

by gathering unstructured text paragraphs from the websites

of participating institutions and the Joint Admission

Information Brochure [29], which serves as the basis for

creating high-quality question-answer pairs. For the

remaining three randomly selected distinct domains, namely

'Personality,' 'Entertainment,' and 'Organization,' we utilized

the 'SQuAD v1.1' dataset [30], a dataset focused on reading

comprehension-based question answering. The domains in

SCCDD are briefly explained as follows:

1. Education - We focused on a specific real-world context

of college admissions process in various bachelor

courses of engineering, collaborating five participating

institutions. This is referred as “PU_and_JAC” and is

abbreviated as “PU”.

2. Personality - We centred our attention on a real-world

figure, the inventor known as ‘Nikolas Tesla.’ This is

referenced as ‘Nikola_Tesla’ abbreviated as ‘NT’.

3. Entertainment - Our emphasis was on a science-fiction

television program titled ‘Doctor Who.’ This is

identified as ‘Doctor_Who’ abbreviated as ‘DW’.

4. Organization - We directed our focus to a real-world

organizational entity, ‘Chicago University.’ This is

denoted as ‘University_of_Chicago’ abbreviated as

‘UC’.

The text paragraphs sourced from 'SQuAD v1.1' underwent

a pre-processing stage involving filtering and cleaning

before their integration into the SCCDD. Details about the

characteristics of context paragraphs and Wh-type questions

within SCCDD are available in

Table I.

Table I Characteristics of Context Paragraphs and Questions

The categorization of Wh-type questions across the four

closed domains within the SCCDD is provided in

Table II, while its corresponding chart representation can be

observed in Fig. 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 57

Table II Wh-type categorization of NL Questions in four domains

Fig. 1 Wh-type categorization of NL Questions in four domains

3.2 Proposed approach

In this study, we have developed a small class library in

JAVA JDK [11] [12] using NetBeans IDE [13] to facilitate

automatic ontology learning from English language context

paragraphs, with the objective of utilizing it for QA tasks to

obtain the desired answers. Our approach leverages the

Stanford CoreNLP syntactical parser to produce parse trees

from sentences, thus enabling the extraction of relation

triples, consisting of subject, predicate, and object, from the

input text [31] [13]. During this process, we recognized that

the identification and extraction of terms from the input text

are pivotal in the overall procedure and should be handled

judiciously. In addition, we adopted a rule-based technique

[32], in combination with POS taggers, to enhance term

extraction within each of the four domains individually. Fig.

2 below depicts the proposed architecture diagram of the

QAS prototype keeping the implementation details

underneath.

Fig. 2 Proposed Architecture of self-constructing Ontology based QAS

Each step in proposed flowchart is briefly explained as

follows:

• User question and input paragraph: This module

handles the user's natural language question and

domain paragraphs from which the ontology be

constructed. It also detects the Expected Answer Type

(EAT) or the focus of the input question, a critical step

in arriving at the final answer.

• Question Processing: This module is responsible for

focus identification of question, question

classification, question reformulation and conducting

other pre-processing tasks. The generation and

Wh-type PU NT DW UC Total Q uestions

How 46 6 10 24 86

What / In what 104 31 38 67 240

When 16 32 14 5 67

Where 25 18 1 3 47

Which 2 1 1 0 4

Who 33 13 30 28 104

Total 226 101 94 127 548

0

200

400

600

How What /

In what

When Where Which Who Total

N
o

.
o

f
N

L
 Q

u
es

ti
o

n
s

NL Question begins with

PU NT DW UC

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 58

execution of SPARQL from NL questions are also

accomplished as a sub-task within this pharse.

• Question Similarity Calculation: This module aids in

retrieving corresponding answers from the Processed

Question Answer Base (PQAB) when a matching

question is found in the database. Sophisticated NLP

and ranking technology are pivotal in determining the

similarity between the input question and the

previously stored question and its answer.

• Paragraph Processing: This module carries out all

lexico-syntactic operations and relationship extraction

activities. General ontology also supports this module,

contributing to the automatic construction and

enrichment of the ontology.

• Answer Extraction: This module identifies candidate

answers, filters them and rank them. Ultimately, the

most reliable answer is presented to the user interface,

and the question-answer pair is stored in the PQAB.

3.2.1 Ontology design

The design of ontology plays a pivotal role in addressing the

QAS problem. Ontology structure is primarily composed of

class, instance, predicate, and property elements. In

ontology design, the root class for any ontology is typically

‘owl:thing,’ and under this, we established our initial

custom class as ‘DomainEntity.’ Subsequently, subclasses

of ‘DomainEntity’ were generated, and they were set as

disjoint from one another. It's essential to note that this

module is executed only once, specifically when the initial

ontology is being created for the first time.

For visualizing the ontology generated by our proposed

approach, we utilized an external tool called 'Protégé' [33],

which facilitates ontology visualization via the

'ProtégéVOWL' plugin [34] [35]. Additionally, 'Protégé'

offers validation capabilities for both ontology structure and

data through its internal reasoner, such as the Hermit

Reasoner, which can be configured to validate our proposed

ontology.

For the purpose of illustration within this paper, we have chosen to focus solely on the 'Education' domain to showcase

various facets of the created ontology. Fig. 3 represents a Tab View of the 'Education' domain ontology, including the Class

Hierarchy, Object Properties, and Data Properties. In

Table III , you can find an example of the class, its instances

and properties within the 'Education' domain ontology, and

in Fig. 4, a partial view of the 'Education' domain ontology

is presented.

Fig. 3 Tab View of ‘Education’ domain ontology

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 59

Table III Example of Class Design of ‘Education’ domain ontology

Fig. 4 Partial view of ‘Education’ domain ontology

3.2.2 Term extraction

In ontology-based systems, term extraction refers to a task

of identifying the useful terms from which real world

concepts can be mapped. The process of term extraction

begins with part-of-speech (POS) tagging and phrase

chunking which is done by linguistic techniques. In this

study, we employed pre-trained tokenizers provided by the

Stanford CoreNLP Group to achieve state-of-the-art results

in processing English language text. We conducted a

comparative analysis with the outcomes of TextRazor [36]

and spaCy-NER [37]. Our input dataset was SCCDD, which

lacks token-level annotations in natural language, adding

complexity to term and entity extraction tasks. To address

the domain variance, we processed each dataset file

separately. For each domain within the dataset, we divided

the context paragraphs into two parts: a training set

(approximately 70%) and a testing set (approximately 30%).

We conducted term extraction in two iterations on the

training dataset. In the first iteration (run 1), we utilized the

standard pipeline annotators from the Stanford CoreNLP

package. However, the results obtained were not highly

satisfactory, as they missed many valuable terms. In some

cases, only partial terms were extracted or the terms were

broken into fragments. This issue arose from the fact that

Stanford's POS tagger was not trained on the specific dataset

used, namely SCCDD.

For example, the term "sector-25" is parsed into its POS

form as follows: "sector/NN" for Noun, "-/HYPH" for a

hyphen symbol, and "25/CD" for a cardinal value. In this

case, "sector-25" is identified as three distinct terms,

although it should ideally be recognized as a single entity

categorized as "LOCATION".

In the second iteration (run 2), we utilized rule-based

parsing derived from a specialized pipeline annotator in

Stanford's toolkit, known as "regexner", facilitated by a

rule-based tab-separated text file [32], referred to as

"RegexNER.txt." Typically, this file is curated manually by

domain experts to achieve superior results when processing

English language text. We augment this rule-based

dictionary file by adding missing or correcting existing

terms. Once the training phase was finalized using the

training dataset, we employed the combined process of term

extraction and rule-based parsing on the test dataset. To

ensure data integrity, we meticulously eliminated duplicate

terms from the list of intermediate terms in both the training

and test datasets. The findings of our experiments are

detailed in Section 4. The process flow model of the

proposed term extraction methodology is illustrated in Fig.

5.

Fig. 5 Process flow model of the proposed methodology

3.2.3 SPARQL

The QA task performed on the leaned ontology hinges on a

thorough comprehension of the input question and its

Class Class Instance Property Value

- Course_ID 101

- Course_Name Computer Science & Engineering

- Course_Seats 138

- Course_Fee 106855

- Course_ID 501

- Course_Name Architecture

- Course_Seats 44

- Course_Fee 19434

- First_Name Ajay

- Last_Name Singh

- Rank 12345

- Eligible Yes

Engineering BE_CSE

Architecture B_Arch

StudentCandidate Student

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 60

effective execution. To facilitate this, the user's NL question

must be transformed into a format compatible with

execution on the learned ontology, typically achieved

through the use of SPARQL. Prior to formulating SPARQL

query, the user entered NL question undergoes pre-

processing through linguistic techniques facilitated by

Stanford’s CoreNLP library. The design encompasses

various linguistics, including tokenization, lemmatization,

POS tagging, and more [5], followed by sentence

simplification, identification of projection words and

nominal. A visual representation of the system design for

SPARQL query formulation and execution is depicted in

Fig. 6 below.

Fig. 6 System Design for Query Analysis and Execution

3.2.3.1. Identification of projection words from NL

questions

Identification of projection words and triples within the NL

query is a crucial factor in the effective execution of

SPARQL construction and execution. We have devised

specific rules, leveraging the dependency tree of the NL

question and certain POS tag patterns (or syntactic

constraints), to streamline the process of SPARQL

formulation. Our algorithm receives user questions in the

format of a simple sentence comprising various English

words. It initiates by examining the presence of coordinating

conjunctions like 'and' or 'or' within the Wh-based relational

question. Several established syntactic sequences or POS

(Part of Speech) patterns as explained in [38], identified by

POS taggers, determine whether a sentence is compound or

not.

For the purpose of illustration, we have focused solely on

questions that involve a relational phrase connecting two

nouns within a sentence. Consider an example that includes

a relational phrase along with coordinating conjunctions

such as ‘and’ or ‘or’. For instance, in the question, ‘Which

Indian astronaut and researcher was killed in a spacecraft

crash?’ The typed dependency parse output is provided in

Example 1 below:

root(ROOT-0, killed-7)

det(astronaut-3, Which-1)

amod(astronaut-3, Indian-2)

nsubj:pass(killed-7, astronaut-3)

cc(researcher-5, and-4)

conj:and(astronaut-3, researcher-5)

nsubj:pass(killed-7, researcher-5)

aux:pass(killed-7, was-6)

case(crash-10, in-8)

compound(crash-10, spacecraft-9)

obl:in(killed-7, crash-10)

punct(killed-7, ?-11)

Example 1 Output of Stanford typed dependency parse (in

list format)

By employing the Rule (1) outlined in [38] to Example 1

above, the two nouns ‘astronaut’ and ‘researcher’ are

identified as the projection words for the SPARQL query,

as demonstrated below:

∀wx, wy, wz . (nsubjpass(wx, wy) ∧ conj(wy, wz)

 ⇒ Target(wy) ∧ Target (wz))

Rule (1)

 i.e. nsubjpass(killed, astronaut) ˄ conj(astronaut, researcher)

 ⇒ Projection word 1 (astronaut) ˄

 Projection word 2 (researcher)

Here, ‘wx’, ‘wy’, ‘wz’ denote interdependent words

indicated by the dependency function dep(x, y) and dep(y,

z). 'nsubj:pass' signifies a 'passive nominal subject’ and

'conj:and' represents a 'conjunction word’ are the functions

utilized in the Stanford Typed Dependency Parser [39] [40].

This rule examines the question sentence, identifies the

projection word(s) within the question to serve as SPARQL

variable(s) by passing the input sentence to the dependency

parser [31] incorporated in the Stanford CoreNLP

annotators.

3.2.3.2. Identification of Triples from NL Questions

Triple patterns consist of three components: subject, object,

and predicate (SPO). The identification of triples and the

formulation of SPARQL queries from NL questions can be

a challenging task. In this study, we focused exclusively on

simple Wh-based queries that include a relational phrase

(forming the predicate part in the query triple) connecting

two nouns (forming the subject and object parts in the query

triple).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 61

The triple representing a relational statement is determined

by extracting the two nominal and the relational phrase that

connects them. For instance, in the sentence ‘Vikas is

enrolled to UIET’, we have ‘Vikas’ and ‘UIET’ as the two

nominals, and ‘enrolled’ as the relational phrase.

Consequently, the resulting triple consists of ‘Vikas’,

‘enrolled’, ‘UIET’ denoting the subject, predicate, and

object in the form {Vikas, enrolled, UIET}.

When it's not explicit which nominal a relational phrase

(verb) is connecting, two particular scenarios for triple

identification arise, and we employ the following rules:

1. When a question begins with ‘Who’, for example a

sentence ‘Who killed Osama?’, we refer to Rule (2)

outlined in [38] as follows:

∀we, wh, wi . (nsubj(we, wh) ∧ obj(we, wi))

 ⇒ Triple(?wh,we,wi))

Rule (2)

 nsubj(killed, who) ˄ obj(killed, Osama)

 ⇒ Triple (?who, killed, Osama)

2. In cases where the verb appears as the last word in

a sentence and does not occur between the two

nouns, as seen in a sentence such as ‘In which class

does Vikas study?’ we refer to Rule (3) described

in [71], which states as follows:

∀wh, wi, wj . (pobj(wj, wh) ∧ nsubj(wj, wi))

 ⇒ Triple(?wi,wj,wh))
Rule (3)

 pobj(In, class) ˄ nsubj(study, Vikas)

 ⇒ Triple (Vikas, study, Class)

3.2.3.3. SPARQL query formation and execution

The task of SPARQL query formulation holds great

significance in ensuring accurate answers. To facilitate this

process, we have incorporated the Apache Jena Library

[41], also known as the 'Jena API,' and 'Jena Fuseki' [41], a

SPARQL server provided by Apache, into our Java

Application. The Jena API allows for the creation of

SPARQL queries using either by utilizing the

‘SelectBuilder’ class from the Jena framework or by using

the ‘String’ class in Java.

For instance, if we wish to retrieve the answer to the

question ‘Which course has a fee of 70000?’ from the

constructed ontology, sample code excerpt (written in Java)

for SPARQL execution is shown in Example 2 and a

screenshot of the proposed ontology-based QAS prototype

demonstrating the retrieved answer is against SPARQL

query is depicted in Fig. 7.

Example 2 SPARQL query formation and execution

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 62

Fig. 7 Screenshot of developed QA prototype

4. Results and discussions

In this work, we performed term extraction on SCCDD to

evaluate the efficiency that can be achieved by our proposed

approach. We used three standard performance metrics [42]

[43] to calculate the performance of the proposed term

extraction method i.e. Precision, Recall and F-score.

Table IV depicts the confusion matrix for the proposed

methodology that is applied on the four independent

domains in input dataset. The average Precision, Recall and

F-score for term extraction task performed by the proposed

methodology on a set of 114 context paragraphs is

calculated as 83.12%, 78.19% and 80.41%, respectively

Table IV Confusion Matrix for Term Extraction using Proposed Methodology

1 TP=‘True Positive’, 2 FP=‘False Positive’, 3 FN=‘False Negative’

Table V depics the comparative results based on the number

of correct terms identified by the proposed methodology,

TextRazor and spaCy-NER, alongwith achieved average of

Precision, Recall and F-score.

Table V Number of Correctly Identified Terms

To assess the performance of proposed QA approach when

applied to the SCCDD, we present two confusion matrices.

In addition, we used standard performance metrics i.e.

Precision, Recall, F-score, and Accuracy to demonstrate the

effectiveness of the proposed QA method.

Table VI depicts the confusion matrix for the proposed QA

task when applied on the four independent domains within

the input dataset. The average Precision, Recall and F-score

for QA task performed by the proposed approach on a set of

Sr. No. No. of Context Paragraphs – Title TP
1

FP
2

FN
3

Precision Recall F-Score

1 27 - PU_and_JAC 291 19 79 93.87 78.65 85.59

2 25 - Nikolas Tesla 147 31 22 82.58 86.98 84.72

3 30 - Doctor Who 179 58 88 75.53 67.04 71.03

4 32 - University of Chicago 338 82 84 80.48 80.09 80.28

83.12 78.19 80.41(114 paragraphs) Average

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 63

548 NL questions are calculated as 85. 82%, 91.02% and

87.62%, respectively. Out of the 548 questions, our

proposed approach correctly handled approximately 472

queries, achieving an accuracy of 79.07%.

Table VI Confusion Matrix for QA task: Precision, Recall, F-Score and Accuracy

4 TP=‘True Positive’, 5 TP=‘True Negative’, 6 FP=‘False Positive’, 7 FN=‘False Negative’

To assess syntactic robustness, we have provided the

Confusion Matrix for various Wh-type questions within the

SCCDD in

Table VII. It is evident that the system's performance in

responding to Wh-type questions that begin with ‘Which’ is

exceptionally strong. This is attributed to the limited

frequency of questions commencing with ‘Which,’ and the

system's effective ability to retrieve answers for such

queries. However, the system demonstrated excellent

performance when addressing questions that initiated with

‘Who,’ ‘How,’ and ‘Where’.

Table VII Confusion Matrix pertaining to Wh-type Questions within SCCDD

Table VIII provides a selection of sample questions that the

proposed system addresses. All of these questions share

same a common Prefix for their SPARQL queries, which is

‘<http://www.semanticweb.org/vikas/ontologies/2020/10/C

oursesOffered_Vikas#>‘.

Table VIII Sample questions answered by the proposed approach

Sr.

No.

Words

in

Answer

NL Question / SPARQL Form
Name

Entity
Answer

1. Where is Panjab University currently located? Chandigarh

Sr. No. # Questions - Title TP
4

TN
5

FP
6

FN
7

Precision Recall F-score Accuracy

1 226 - (PU) 175 4 14 33 92.59 84.13 88.16 79.2

2 101 - (NT) 70 2 21 2 76.92 97.22 85.89 75.79

3 94 - (DW) 67 10 19 5 77.91 93.06 84.81 76.24

4 127 - (UC) 104 4 7 12 93.69 89.66 91.63 85.04

(548 Questions) 85.28 91.02 87.62 79.07Average

Domain / Title ↓ Wh-type → How What / In what When Where Which Who

TP 44 64 15 22 2 28

FP 1 11 1 0 0 1

FN 1 27 0 2 0 3

TP 5 12 24 14 1 11

FP 1 7 8 2 0 1

FN 0 4 0 1 0 0

TP 10 27 4 1 1 27

FP 0 9 9 0 0 3

FN 0 1 1 0 0 0

TP 23 51 5 1 0 24

FP 1 5 0 1 0 0

FN 0 9 0 1 0 2

TP 82 154 48 38 4 90

FP 3 32 18 3 0 5

FN 1 41 1 4 0 5

Precision 96.47 82.8 72.73 92.68 100 94.74

Recall 98.8 79 98 90.5 100 94.7

F1-score 97.62 80.84 83.48 91.57 100 94.74

PU

NT

DW

UC

Total

Results

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 64

Sr.

No.

Words

in

Answer

NL Question / SPARQL Form
Name

Entity
Answer

One

word

SELECT ?city WHERE { table:PU_Chd

table:PU_Address_City ?city.}

Location

(City)

2. One

word

When was Panjab University established? Date 1882

SELECT ?date WHERE { table:PU_Chd

table:PU_Establishment_Year ?date.}

3. One

word

How many university hostels in Panjab

University?

Number 18

SELECT ?hostels WHERE { table:PU_Chd

table:PU_Hostels_Count ?hostels.}

4. One

word

What is the website of Panjab University? URL https://puchd.ac.in/

SELECT ?website WHERE{ table:PU_Chd

table:PU_URL ?website. }

5. Two

words

Who designed the Central Library? Person Pierre Jeanneret

SELECT ?person WHERE { table:PU_Library

table:Facility_Library_Designed_By ?person.}

6. Three

words

What is the start date for Document Verification? Date 28 June 2023

SELECT ?Doc_Verification_End_Date

WHERE { table:Register

table:Reg_Admission_StartDateDocVerification

?Doc_Verification_End_Date.}

7. Four

words

What group of industries has set up a chair in

Telecommunication at UIET?

Organization Bharti group of

industries

SELECT ?industry_name WHERE { table:UIET

table:Institute_Telecommunication_Chair_Owner

? industry_name.}

8. Five

words

What are Bachelor of Engineering (B.E.) courses

in SSBUICET?

Organization

(Customized

as Course)

Chemical Engineering

and Food Technology

SELECT ?courseName WHERE { table:UICET

table:o_hasCourse ?course.

?course table:Course_Name ?courseName.}

9. Six

words

What is the full form of UIET? Organization

(Customized

as Institute)

University Institute of

Engineering and

Technology SELECT ?fullname WHERE { table:UIET

table:Institute_Name ?fullname.}

10. Seven

words

What types of classrooms does CCET have? Organization

(Customized

as Facility)

Virtual Classrooms,

Tutorial Rooms and

Drawing Halls SELECT ?facility_type WHERE { table:CCET

table:o_hasFacility_Classrooms_Type ?facility.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 65

Sr.

No.

Words

in

Answer

NL Question / SPARQL Form
Name

Entity
Answer

?facility table:Facility_Classroom_Type

?facility_type.}

11. Eight

words

What university has UIET signed a MOU with? Organization University of Western

Australia, Nottingham

Trent University, UK SELECT ?MOUs_ForeignUniversity_Name

WHERE { table:UIET

table:Institute_MOUs_ForeignUniversity

?MOUs_ForeignUniversity_Name.}

12. Nine

words

NIL NIL NIL

13. Ten

words

What is SSBUICET currently known as? Organization

(Customized

as Institute)

Dr S.S. Bhatnagar

University Institute of

Chemical Engineering

and Technology

SELECT ?Institute_Name_Known WHERE {

table:UICET table:Institute_Name

?Institute_Name_Known.}

14. Thirteen

words

What are Bachelor of Engineering courses in

CCET?

Organization

(Customized

as Course)

Civil Engineering,

Computer Science and

Engineering, Electronics

and Communication

Engineering and

Mechanical Engineering

SELECT ?courseName WHERE {

table:CCET table:o_hasCourse ?course.

?course table:Course_Name ?courseName.}

15. Nineteen

words

What are Bachelor of Engineering courses in

UIET?

Organization

(Customized

as Course)

Biotechnology

Engineering, Computer

Science and Engineering,

Electronics and

Communication

Engineering, Electrical

and Electronics

Engineering, Information

Technology and

Mechanical Engineering

SELECT ?courseName WHERE { table:UIET

table:o_hasCourse ?course.

?course table:Course_Name ?courseName.}

Table IX presents comparison results of ontology-based

QAS where DBpedia dataset in used for QA purpose. We

have considered these QAS because our SCCDD has a

portion from SQuAD dataset which is inspired from the

DBpedia.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 66

Table IX Comparison results of proposed system vs other ontology-based QAS

We believe that the accuracy of the proposed system can be

further improved by expanding our knowledge base within

the constructed ontology and enhancing the linguistic

analysis and semantic understanding within the respective

domain.

5. Conclusions

In this study, state-of-art ontology based question answering

system for English language has been developed. An

integrated approach is proposed to that takes care of

accepting input in NL text in English language and proposes

the novel approach of using external standard packages to

speed up the work by reusing the existing functionalities.

We processed four independent domains composed of 114

paragraphs of 13477 words and 548 questions in total. The

suggested approach for extracting terms is much better than

the TextRazor API and spaCy-NER in the field of term

extraction. During term extraction task, we have submitted

two runs, one run (run 1) is the term extractor using standard

pipeline annotators, and the other run (run 2) is term

extractor combined with the rule-based parsing obtained

from Stanford’s special annotator “regexner” to train the

NER tagger for custom use-case. This may encourage in

system automation and achieve golden standard of NLP

performance. Average Precision, Recall and F-score of the

proposed method for term extraction on 114 paragraphs in

the four given domains is 83.12%, 78.19% and 80.41,

respectively as shown in

Table IV above. In

Table VI, we present the performance metrics for the

proposed QA approach, which include a Precision of

85.28%, a Recall of 91.02%, an F-score of 87.62% and

Accuracy of 79.07%. Lastly, in

Table IX, we provide an overview of popular OBQAS, the

datasets they utilized, the total number of questions

processed, and the performance metrics employed to

compare the results of our study. A set of rules with high

degree of feasibility is applied to find projection words is

helpful in SPARQL query formulation.

In conclusion, it is evident that achieving full automation of

the proposed QA system, capable of responding to any input

across all domains, is an exceptionally challenging task.

Nonetheless, a dedicated endeavour is ongoing to illustrate

how an ontology-based automated QA system can be

developed through the utilization of domain knowledge and

precise refinement. The proposed approach can be further

enhanced by incorporating additional classes, concepts, and

individuals into the established ontology.

6. Disclosure instructions

• Declaration of generative AI and AI-assisted

technologies in the writing process

During the preparation of this work the author(s)

did not use any tool/service to reviewed and edited

the content and take(s) full responsibility for the

content of the publication. The Authors declares

Q AS Dataset Used Total Q uestions Precision Recall F-measure

Our proposed approach Self-created dataset 548 0.85 0.91 0.88

UTQA [44] DBpedia 2015 100 0.82 0.69 0.75

SemGraphQA [44] DBpedia 2015 100 0.7 0.25 0.37

Xser [45] DBpedia 2014 50 0.74 0.72 0.73

QAnswer [45] DBpedia 2014 50 0.46 0.35 0.4

SemGraphQA [45] DBpedia 2014 50 0.31 0.32 0.31

YodaQA [45] DBpedia 2014 50 0.28 0.25 0.26

Xser [46] DBpedia 3.9 50 0.72 0.71 0.72

gAnswer [46] DBpedia 3.9 50 0.37 0.37 0.37

CASIA [46] DBpedia 3.9 50 0.32 0.4 0.36

gAnswer [47] DBpedia 3.8 99 0.4 0.4 0.4

Zhu et al. [48] DBpedia 3.8 99 0.38 0.42 0.38

RTV [49] DBpedia 3.8 99 0.32 0.34 0.33

SemSeK [50] DBpedia 3.7 100 0.44 0.48 0.46

BELA [51] DBpedia 3.7 100 0.73 0.62 0.67

QAKiS [50] DBpedia 3.7 100 0.39 0.37 0.38

FREyA [50] DBpedia 3.6 50 0.63 0.54 0.58

PowerAqua [50] DBpedia 3.6 50 0.52 0.48 0.5

TBSL [44] DBpedia 3.6 50 0.41 0.42 0.52

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 67

that there is no use of generative AI and AI-assisted

technologies.

• Funding information

This research did not receive any specific grant

from funding agencies in the public, commercial,

or not-for-profit sectors.

• Conflict of interest

The Authors declares that there is no conflict of

interest.

• Data availability

The self-created dataset ‘SCCDD’ will be provided

on request and ‘SQuAD v1.1’ dataset as referred in

this work is freely available to download from [30].

• Code availability

Code may be shared on request.

• Author contribution

First author, Vikas Bali, is fully responsible for the work

undertaken in terms of design of work, data acquisition,

coding, etc. under the supervision of second author i.e. Dr.

Amandeep Verma.

References

[1] L. A. Zadeh, "Chapter 9 From search engines to

question answering systems - The problems of world

knowledge, relevance, deduction and precisiation," in Fuzzy

Logic and the Semantic Web, vol. 1, E. Sanchez, Ed.

Elsevier, 2006, pp. 163-210.

[2] L. Zadeh, "From search engines to question-

answering systems - The role of fuzzy logic," Progress in

Informatics, vol. 1, p. 1, 2005.

[3] C. W. Lee, M. Y. Day, C. L. Sung, Y. H. Lee, T. J.

Jiang, C. W. Wu, D. W. Shih, Y. R. Chen and W. L. Hsu,

"Boosting Chinese Question Answering with Two

Lightweight Methods: ABSPs and SCO-QAT," ACM

Transactions on Asian Language Information Processing,

vol. 7, p. 12, 2008.

[4] S. Kalaivani and K. Duraiswamy, "Comparison of

Question Answering Systems Based on Ontology and

Semantic Web in Different Environment," Journal of

Computer Science, vol. 8, no. 9, pp. 1407-1413, 2012.

[5] P. M. Athira, M. Sreeja and P. C. Reghuraj,

"Architecture of an Ontology-Based Domain-Specific

Natural Language Question Answering System,"

International Journal of Web & Semantic Technology, vol.

4, no. 4, pp. 31-39, 2013.

[6] J. Letkowski, "Doing database design with

MySQL," Journal of Technology Research, vol. 6, 2015.

[7] L. Hirschman and R. Gaizauskas, "Natural

Language Question Answering: The View from Here,"

Natural Language Engineering, vol. 7, pp. 275-300, 2001.

[8] "SPARQL Query Language for RDF," W3C,

[Online]. Available: https://www.w3.org/TR/rdf-sparql-

query/. [Accessed June 2023].

[9] T. Lv, P. Yan and W. He, "Survey on JSON Data

Modelling," Journal of Physics: Conference Series, vol.

1069, p. 012101, 2018.

[10] L. Papaleo, "Introduction to XML and its

applications," in Handbook of Metadata, Semantics and

Ontologies, World Scientific, 2013.

[11] "Java SE at a Glance," Oracle, [Online]. Available:

https://www.oracle.com/java/technologies/java-se-

glance.html. [Accessed September 2023].

[12] "Java Downloads," Oracle, [Online]. Available:

https://www.oracle.com/java/technologies/downloads

/#java8-windows. [Accessed September 2023].

[13] "Apache NetBeans," The Apache Software

Foundation, [Online]. Available: https://jena.apache.org.

[Accessed September 2023].

[14] "Stanford CoreNLP – Natural language software,"

The Stanford NLP Group, [Online]. Available:

https://stanfordnlp.github.io/CoreNLP/. [Accessed

September 2023].

[15] R. Barskar, G. Ahmed and N. Barskar, "An

Approach for Extracting Exact Answers to Question

Answering (QA) System for English Sentences," Procedia

Engineering, vol. 30, pp. 1187-1194, 2012.

[16] D. Mollá and J. Vicedo, "Question Answering in

Restricted Domains: An Overview," Computational

Linguistics, vol. 33(1), pp. 41-61, 2007.

[17] E. M. Voorhees and D. M. Tice, "The TREC-8

Question Answering Track," in Proceedings of the Second

International Conference on Language Resources and

Evaluation (LREC '00), 2000.

[18] T. Dodiya and S. Jain, "Comparison of Question

Answering Systems," Advances in Intelligent Systems and

Computing, 1st ed., Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 99-107, 2013.

[19] D. Jin, E. Pan, N. Oufattole, W. H. Weng, H. Fang

and P. Szolovits, "What Disease does this Patient Have? A

Large-scale Open Domain Question Answering Dataset

from Medical Exams," Computation and Language, 2000.

[20] M. Lee, J. Cimino, H. R. Zhu, C. Sable, V.

Shanker, J. Ely and H. Yu, "Beyond Information Retrieval -

Medical Question Answering," AMIA Annu Symp Proc, p.

469–473, 02 2006.

[21] "HonQA," Health On the Net Foundation,

[Online]. Available: https://hon.ch/qa. [Accessed Feb

2017].

[22] S. Dongre and S. Lodhi, "A survey of different

semantic and ontology based question answering system,"

International Journal of Advanced Computational

Engineering and Networking, vol. 2, no. 9, pp. 69-74, 2014.

[23] Y. Liu, X. Yi, R. Chen and Y. Song, "A Survey on

Frameworks and Methods of Question Answering," in 3rd

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 54–68 | 68

International Conference on Information Science and

Control Engineering (ICISCE), 2016.

[24] L. Mei, "Intelligent Question Answering System of

Research Based Ontology on Excellent Courses," in Fourth

International Conference on Computational and

Information Sciences, 2012.

[25] A. Bouziane, D. Bouchiha, N. Doumi and M.

Malki, "Question Answering Systems: Survey and Trends,"

vol. 73, pp. 366-375, 2015.

[26] P. Bhatia, R. Madaan, A. Sharma and A. Dixit, "A

Comparison Study of Question Answering Systems,"

Journal of Network Communications and Emerging

Technologies (JNCET), vol. 5, no. 2, pp. 192-198, 2015.

[27] V. Bali and A. Verma, "A Study on Components,

Benchmark Criteria and Techniques used in Ontology-

based Question Answering Systems," International Journal

of Intelligent Systems and Applications in Engineering, vol.

10, no. 1s, p. 09–17, 2022.

[28] A. Mishra and S. Jain, "A survey on question

answering systems with classification," Journal of King

Saud University - Computer and Information Sciences, vol.

28, no. 3, pp. 345-361, 2016.

[29] "Admission and eCounselling Services for Session

2023," Joint Admission Committee Chandigarh, [Online].

Available: https://jacchd.admissions.nic.in/. [Accessed

September 2023].

[30] "SQuAD2.0 - The Stanford Question Answering

Dataset," The Stanford NLP Group, [Online]. Available:

https://rajpurkar.github.io/SQuAD-

explorer/explore/1.1/dev/. [Accessed September 2023].

[31] A. Fader, S. Soderland and O. Etzioni, "Identifying

relations for Open Information Extraction," Proceedings of

the conference on empirical methods in natural language

processing (EMNLP), pp. 1535-1545, 2011.

[32] "Software > Stanford RegexNER," Stanford NLP

Group, [Online]. Available: https://nlp.stanford.edu/

software/regexner.html. [Accessed September 2023].

[33] "Protege," Stanford University, [Online].

Available: https://protege.stanford.edu/. [Accessed June

2023].

[34] "ProtégéVOWL: VOWL Plugin for Protégé,"

[Online]. Available: http://vowl.visualdataweb.org/

protegevowl.html. [Accessed June 2023].

[35] S. Lohmann, S. Negru and D. Bold, "The

ProtégéVOWL Plugin: Ontology Visualization for

Everyone," Proceedings of ESWC 2014 Satellite Events,

vol. 8798, p. 395–400, 2014.

[36] "TextRazor - The Natural Language Processing

API," TextRazor Ltd., [Online]. Available:

https://www.textrazor.com/. [Accessed September 2023].

[37] "spaCy Named Entity Recognizer (NER)," Text

Analysis Online, [Online]. Available:

https://textanalysisonline.com/spacy-named-entity-

recognition-ner. [Accessed September 2023].

[38] P. Ochieng, "PAROT: Translating natural

language to SPARQL," Expert Systems with Applications:

X, vol. 5, p. 100024, 2020.

[39] "Stanford Dependencies," Stanford NLP Group,

[Online]. Available: https://nlp.stanford.edu/software

/stanford-dependencies.html. [Accessed June 2023].

[40] M. C. Marnee and C. D. Manning, "Stanford typed

dependencies manual," 2010.

[41] "Apache Jena," The Apache Software Foundation,

[Online]. Available: https://jena.apache.org/download

/index.cgi. [Accessed September 2023].

[42] D. M. Powers, "Evaluation: from precision, recall

and F-measure to ROC, informedness, markedness &

correlation," Journal of Machine Learning Technologies,

vol. 2(1), p. 37–63, 2011.

[43] H. Dalianis, "Evaluation Metrics and Evaluation,"

in Clinical Text Mining: Secondary Use of Electronic

Patient Records, Cham: Springer International Publishing,

2018, p. 45–53.

[44] D. Diefenbach, V. Lopez, K. Singh and P. Maret,

"Core Techniques of Question Answering Systems over

Knowledge Bases: a Survey," vol. 55, 2018.

[45] C. Unger, C. Forascu, V. Lopez, . A. -C. Ngomo

and E. Cabrio, "Question Answering over Linked Data

(QALD-5)," In: Working notes for CLEF 2015 conference,

2015.

[46] C. Unger, C. Forascu, V. Lopez, A. -C. Ngomo and

E. Cabrio, "Question answering over linked data (QALD-

4)," In: Working notes for CLEF 2014 conference, vol.

1180, p. 1172–1180, 2014.

[47] L. Zou, R. Huang, H. Wang, J. Yu, W. He and D.

Zhao, "Natural language question answering over RDF - A

graph data driven approach," Proceedings of the ACM

SIGMOD International Conference on Management of

Data, 2014.

[48] C. Zhu, K. Ren, X. Liu, H. Wang, Y. Tian and Y.

Yu, "A Graph Traversal Based Approach to Answer Non-

Aggregation Questions over DBpedia," in Semantic

Technology, Springer International Publishing, p. 219–234,

2016.

[49] P. Cimiano, V. Lopez, C. Unger, E. Cabrio, A. -C.

Ngonga Ngomo and S. Walter, "Multilingual Question

Answering over Linked Data (QALD-3): Lab Overview," in

Information Access Evaluation. Multilinguality,

Multimodality, and Visualization, p. 321–332, 2013.

[50] V. Lopez, C. Unger, P. Cimiano and E. Motta,

"Evaluating Question Answering over Linked Data,"

Journal of Web Semantics, vol. 21, 2013.

[51] S. Walter, C. Unger, P. Cimiano and D. Bar,

"Evaluation of a Layered Approach to Question Answering

over Linked Data," in The Semantic Web, p. 362–374, 2012.

