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Abstract: With the increasing demands on global agriculture, there is an imperative need to optimize crop yields and promote 

sustainable agricultural practices. Real-time monitoring and accurate predictions of soil health and crop yields have significant 

implications for farmers, agronomists, and policymakers. While existing soil analysis models offer certain predictive capabilities, their 

efficiency is often hindered by issues related to energy consumption, prediction delay, and accuracy levels. Contemporary soil models 

primarily fall short in addressing the multifaceted nature of soil attributes and their dynamic interactions. These models also struggle 

to provide real-time insights, frequently leading to delayed interventions, misallocated resources, and suboptimal yields. In this paper, 

we introduce an advanced, low-cost, and energy-aware multiparametric IoT-based soil analysis model designed to overcome the 

prevailing limitations. Our system harnesses the synergy of N, P, K, Humidity, and Temperature sensors, augmented with temporal 

datasets to offer a comprehensive view of the soil's current state. At the core of our analysis, an ensemble learning model combines the 

strengths of Naive Bayes, Logistic Regression, SVM, MLP, and 1D CNN methods, streamlining accurate yield level predictions. To 

further refine the model's efficiency, a Q Learning approach is integrated, ensuring both energy conservation and heightened 

prediction accuracy. When deployed in various agronomic scenarios, the proposed model manifested a marked improvement in 

prediction metrics. Notably, we observed a 10.5% enhancement in precision, 9.4% in accuracy, 8.5% in recall, and 4.5% in AUC. 

Moreover, the model reduced the prediction delay by 9.5% compared to its counterparts. These advancements underscore the potential 

of our model to revolutionize soil analysis techniques, paving the way for smarter, energy-efficient, and productive agricultural 

practices. 
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1. Introduction 

Agriculture, the very backbone of human civilization, is 

witnessing unprecedented challenges and transformations 

in the 21st century. As the global population continues to 

burgeon, the demand for food has never been more 

pressing. At the nexus of this demand is the soil - the 

lifeline of agriculture. Soil health and quality not only 

influence the volume of agricultural production but also its 

sustainability and eco-friendliness. Hence, understanding 

and optimizing the myriad factors affecting soil becomes a 

paramount concern for today's agronomists [1, 2, 3]. 

In recent years, the significant advancements in Internet of 

Things (IoT) technology have spurred its integration into 

the agricultural domain. The ability of IoT devices to 

monitor, collect, and relay vast amounts of data in real-

time has paved the way for smarter agricultural practices. 

Real-time soil analysis can facilitate immediate 

interventions, optimizing resources, minimizing waste, and 

ensuring crop health. Such prompt actions, guided by 

accurate predictions, have immense implications. From 

aiding farmers in taking informed decisions to assisting 

policymakers in devising sustainable agricultural 

strategies, the benefits permeate various facets of the 

agricultural ecosystem. 

However, as promising as real-time soil analysis sounds, 

its implementation is not devoid of challenges. Traditional 

methods often provide a segmented view, focusing on one 

or a few soil parameters, thereby failing to capture the 

comprehensive nature of soil health. Furthermore, the 

efficiency and energy consumption of these traditional 

systems leave much to be desired. With rising energy costs 

and the global push towards sustainable practices, the 

development of an energy-efficient soil analysis model is 

not just a scientific pursuit but also an economic and 

environmental imperative using Extreme Learning 

Machine algorithm (ELM) operations [4, 5, 6]. 

In this paper, we delve deep into these challenges and 

explore a novel approach to soil analysis that not only 

captures the multifaceted nature of soil attributes but also 

addresses the aforementioned challenges. By leveraging an 

ensemble of sophisticated algorithms and the prowess of 
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IoT, our model promises to reshape the landscape of soil 

analysis and its real-time impacts on agriculture. 

Motivation & Objectives: 

Motivation: 

As the world hurtles towards an estimated population of 

nearly 10 billion by 2050, the pressure on our agricultural 

systems is set to intensify manifold. This impending 

challenge underscores the need for not just increased 

production, but sustainable and optimized agricultural 

practices that can cater to the dual demands of quantity and 

quality. Traditionally, farmers and agronomists have relied 

on experience, intuition, and rudimentary tools to gauge 

soil health and make crop-related decisions. However, 

with the complex interplay of climatic changes, evolving 

crop diseases, and variable soil health, such methods are 

rapidly proving inadequate. 

Furthermore, agriculture is no longer just a local or 

regional concern; it has global implications. The ripple 

effects of crop failures, be it due to pestilence, poor soil 

health, or inadequate water management, can be felt 

worldwide, affecting commodity prices, food security, and 

even geopolitical dynamics. As such, there is a critical 

need for technological interventions that can provide real-

time insights, ensuring timely interventions and consistent 

yields. 

The rise of IoT in agriculture, often dubbed as "smart 

farming" or "precision agriculture," promises a solution. 

But while the technology to collect data exists, the 

methods to analyze and predict based on this data remain 

fragmented and often inefficient. This gap forms our 

primary motivation: to harness the potential of IoT fully 

and bridge the chasm between data collection and 

actionable insights. 

Objectives: 

• Comprehensive Analysis: To develop a 

multiparametric soil analysis model that can 

concurrently evaluate various critical parameters like 

N, P, K levels, humidity, and temperature, offering a 

holistic view of the soil's health. 

• Algorithmic Excellence: To engineer an ensemble 

learning model, amalgamating the robustness of 

diverse algorithms such as Naive Bayes, Logistic 

Regression, SVM, MLP, and 1D CNN. This ensemble 

approach aims to provide superior predictive 

capabilities than any individual algorithm. 

• Energy Efficiency: Recognizing the environmental 

and economic implications of energy consumption, 

one of our primary objectives is to devise a model that 

is not only accurate but also energy-efficient. By 

integrating Q Learning, we aim to optimize the 

model's operations, ensuring minimal energy wastage. 

• Real-world Applicability: Beyond theoretical 

advancements, our objective is to ensure that the 

model can be seamlessly integrated into real-world 

agricultural scenarios, providing tangible benefits to 

farmers, agronomists, and the broader agricultural 

ecosystem. 

• Benchmarking Excellence: To compare and contrast 

our model's performance against existing models, 

establishing its superiority in terms of precision, 

accuracy, recall, AUC, and prediction delay. Through 

rigorous testing and validation, our goal is to set a new 

benchmark in the domain of soil analysis and crop 

yield prediction. 

The structure of the paper unfolds methodically, 

commencing with the Abstract, which offers a concise 

overview of the core research findings and contributions. 

This is succeeded by the Introduction section, setting the 

stage by outlining the need and real-time impacts of the 

study. Delving deeper into the historical and contemporary 

context, the Literature Review meticulously chronicles the 

evolution of soil analysis techniques, underscoring gaps in 

existing methodologies. Post this exploration, the paper 

introduces the innovative Proposed Model, elucidating its 

design, components, and operational mechanisms. As 

empirical validation forms the crux of any research, the 

Results section is dedicated to rigorous testing, presenting 

quantitative metrics to attest the model's superiority. 

Culminating the discourse, the Conclusion encapsulates 

the research's salient points, its implications, and potential 

future scopes. 

2. Literature Review 

A comprehensive understanding of any scientific endeavor 

necessitates a thorough examination of its historical and 

contemporary contexts. The realm of soil analysis and the 

integration of IoT in agriculture are no exceptions. In this 

section, we delve into the rich tapestry of literature, tracing 

the evolution of methodologies, highlighting significant 

milestones, and identifying gaps that provide opportunities 

for innovation in different scenarios [7, 8, 9]. Like the use 

of Green Red Texture (GRT) with Deep Neural Network 

(DNN) operations. 

Historically, soil health assessment was primarily based on 

physicochemical tests conducted in laboratories. Work in 

[10, 11, 12] elucidated on the manual extraction and 

measurement methods to determine the levels of N, P, K, 

and other micro-nutrients in the soil. While these methods 

offer accuracy, they lack real-time capabilities, are labor-

intensive, and are often decoupled from the farmer's 

immediate decision-making processes. 
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The concept of 'Precision Agriculture' began gaining 

traction in the late 20th century. Work in [13, 14, 15] 

identified the convergence of IoT and agriculture as a 

revolutionary step. Sensors for soil moisture, temperature, 

and nutrient levels provided granular data, facilitating 

nuanced farming strategies. However, as [16, 17, 18] used 

Dense CNNs and Transformer Network (DCTN) & 

pointed out, while data collection became sophisticated, 

the analytics part struggled to keep pace, leading to 

underutilized information sets. 

The early 2020s witnessed the inception of predictive 

models in agriculture operations. Work in [19, 20] 

employed simple linear regression models to forecast crop 

yields based on soil health indicators. Although a 

significant advancement, these models were often too 

simplistic to account for the multifarious nature of soil 

dynamics. 

Recognizing the limitations of singular predictive models, 

researchers began exploring ensemble methods. Work in 

[21, 22, 23] integrated decision trees with support vector 

machines, resulting in enhanced yield predictions for 

certain crops. However, these models still focused 

predominantly on individual or limited sets of soil 

parameters. 

The energy consumption of IoT devices in agriculture 

started gaining attention as the number of deployed 

devices surged in farming scenarios. Work in [24, 25] 

highlighted the need for energy-efficient algorithms, 

noting that many 

farms located in remote areas often rely on limited power 

sources. While many solutions proposed hardware 

modifications, the potential of algorithmic optimizations 

remained relatively untapped. 

The past decade has seen a resurgence in harnessing 

machine learning algorithms for agricultural analytics. 

Work in [16, 17, 18] also introduced deep learning 

methods like CNNs for soil image analysis, showcasing 

promising results. Concurrently, Q Learning's potential in 

optimizing operations emerged. Work in [21, 22, 23] 

utilized Q Learning for optimizing water usage in 

irrigation, hinting at its broader applications in agricultural 

IoT setups. A synthesis of the literature reveals some 

palpable gaps. While IoT integration and data collection 

have seen significant enhancements, the analytical models 

remain either too simplistic or too segmented. The holistic, 

multi-parametric nature of soil health requires a 

comprehensive analysis model, something the current 

literature indicates we lack. Additionally, while energy 

efficiency is acknowledged as a concern, few have delved 

into algorithmic solutions to this challenge. 

3. Proposed Deployment of an Efficient Low-

Cost & Energy-Aware Multiparametric Iot-

Based Fertilization and Irrigation Monitoring 

Model for Cotton Yield Analysis 

As per the review of existing models used to monitor 

cotton crops for yield predictions, it can be observed that 

most of these models are either have lower efficiency 

when applied to real-time scenarios, or cannot be scaled 

due to their higher complexity levels. To overcome these 

issues, this section discusses design of an efficient low-

cost & energy-aware multiparametric IoT-based 

Fertilization and Irrigation Monitoring Model for Cotton 

Yield analysis. Flow of the model can be observed from 

figure 1, where  it is seen that the model uses Temporal 

Datasets, & fuses them with IoT Sensor Data Samples to 

train an ensemble of machine learning components. 

 

Fig 1. Design of the proposed model for predicting yield of cotton crops 
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The model uses low-cost sensing components, along with 

low-cost & low-energy consumption communication 

components in order to deploy this model at multiple sites. 

As per figure 1.1, data from these sites is communicated to 

a single server, which deploys ensemble classification 

models. These models assist in identification of yield 

classes based on collected data samples. This assists in 

enhancing the efficiency of classification while 

maintaining lower communication overheads, thus 

maintaining better scalability under real-time scenarios. 

To perform this task, initially an Iterative Naïve Bayes 

Model was deployed, which is a probabilistic machine 

learning algorithm used for classification tasks. It's based 

on Bayes' theorem, which calculates the probability of a 

given event based on prior knowledge of conditions related 

to the events. 

 

Fig 1.1. Low-Power & Low-Cost deployment process 

Bayes' theorem is the foundation of Naive Bayes 

classification process. It calculates the posterior 

probability of a class (Yield Level) given the data (sensor 

measurements) and prior probabilities via equation 1, 

𝑃( 𝑌𝑖𝑒𝑙𝑑 = 𝑦 ∣∣ 𝐷𝑎𝑡𝑎 )

=
𝑃(𝐷𝑎𝑡𝑎 ∣ 𝑌𝑖𝑒𝑙𝑑 = 𝑦) ⋅ 𝑃(𝑌𝑖𝑒𝑙𝑑 = 𝑦)

𝑃(𝐷𝑎𝑡𝑎)
… (1) 

Where, P(Yield=y∣Data) is the posterior probability of the 

yield level y given the data, P(Data∣Yield=y) is the 

likelihood of the data given the yield level y, P(Yield=y) is 

the prior probability of the yield level y, P(Data) is the 

probability of the data (a normalization constant) samples. 

The likelihood P(Data∣Yield=y) represents how well the 

observed data fits each of the yield levels. In a Naive 

Bayes classifier, we assume that the features (sensor 

measurements) are conditionally independent, which 

simplifies the calculation via equation 2, 

𝑃( 𝐷𝑎𝑡𝑎 ∣∣ 𝑌𝑖𝑒𝑙𝑑 = 𝑦 )

= 𝑃( 𝑁𝑃𝐾 ∣∣ 𝑌𝑖𝑒𝑙𝑑 = 𝑦 )

⋅ 𝑃( 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ∣∣ 𝑌𝑖𝑒𝑙𝑑 = 𝑦 )

⋅ 𝑃( 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 ∣∣ 𝑌𝑖𝑒𝑙𝑑 = 𝑦 ) … (2) 

Where, P(NPK∣Yield=y), P(Temperature∣Yield=y), and 

P(Humidity∣Yield=y) are the conditional probabilities of 

NPK, Temperature, and Humidity given a specific yield 

level estimation process. P(Yield=y) represents the prior 

probability of each yield level, indicating the likelihood of 

each yield level occurring without considering the data, 

which is estimated via equation 3, 

𝑃(𝑌𝑖𝑒𝑙𝑑 = 𝑦) = √
1

𝑁
∑(𝑥(𝑖) − 𝜇)2

𝑁

𝑖=1

… (3) 

Where, 𝑥 represents the collected data samples, and 𝜇 

represents average values of these samples. The main 

purpose of this Bayesian process is to find the yield level 

that maximizes the posterior probability, which is 

represented via equation 4, 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑃( 𝑌𝑖𝑒𝑙𝑑 = 𝑦 ∣∣ 𝐷𝑎𝑡𝑎 ) … (4) 

Finally, the classification decision is made by selecting the 

yield level with the highest posterior probability as the 

predicted yield level classes. The Naive Bayes classifier 

calculates the probability of each yield level given the 

sensor data and selects the yield level with the highest 

probability as the predicted outputs. 

Similarly, the Multilayer Perceptron (MLP) is a type of 

artificial neural network used for classification tasks. It 

consists of multiple layers of interconnected neurons, 

including input, hidden, and output layers. The input layer 

of the MLP receives the collected sensor data as input 

features. The MLP typically consists of one or more 

hidden layers that perform nonlinear transformations on 

the input data samples. Let's represent the output of the i-th 

hidden layer as Hi, where i ranges from 1 to the number of 

hidden layers. Each hidden layer applies an efficient 

Rectified Linear Unit based activation function ReLU to its 

input via equation 5, 

𝐻𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑖 ⋅ 𝐻(𝑖 − 1) + 𝑏𝑖) … (5) 

Where, Wi represents the weight matrix for the i-th layer, 

H(i−1) is the output of the previous layer (or the input for 

the first hidden layer), bi is the bias vector for the i-th layer 

process. The output layer of the MLP produces the 

predicted yield levels via equation 6, 

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜 ⋅ 𝐻𝑖 + 𝑏𝑜) … (6) 

Where, Wo represents the weight matrix for the output 

layer, Hi is the output of the last hidden layer, and bo is the 

bias vector for the output layers. The softmax activation 
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function is used in the output layer to convert the raw 

scores into class probabilities via equation 7, 

𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑥(𝑗)) =
𝑒𝑥(𝑗)

∑ 𝑒𝑥(𝑖)𝑁
𝑖=1

… (7) 

Where, zi represents the raw score for class i, and k is the 

number of possible yield levels. To train the MLP, we use 

a suitable loss function such as categorical cross-entropy 

which assists in multiclass classifications. The loss 

measures the difference between the predicted 

probabilities and the actual yield level labels via equation 

8, 

𝐿𝑜𝑠𝑠 = −∑(𝑂𝑛𝑒𝐻𝑜𝑡(𝑌𝑡𝑟𝑢𝑒) ⋅ 𝑙𝑜𝑔(𝑌)) … (8) 

The MLP is trained using backpropagation and 

optimization techniques to minimize the loss functions. 

Once trained, it makes predictions on new sensor data to 

classify yield levels. The number of hidden layers and 

neurons in each layer should be determined based on the 

complexity of the problem and the amount of available 

data samples. 

While, Support Vector Machines (SVMs) are a type of 

supervised machine learning algorithm used for 

classification tasks. Unlike neural networks like MLP, 

SVMs don't have layers, but they work by finding a 

hyperplane that best separates the data into different 

classes. SVM aims to find a hyperplane that best separates 

the data into different classes. In this multiclass 

classification scenario, we use a one-vs-all (OvA) 

approach, where multiple binary classifiers are trained to 

distinguish one class from the rest via equation 9, 

𝑓(𝑋) = 𝑠𝑖𝑔𝑛(∑𝛼𝑖𝑦𝑖𝐾(𝑋𝑖, 𝑋) + 𝑏) … (9) 

Where, f(X) is the decision function that predicts the class 

label based on the input X, αi are the Lagrange multipliers 

(obtained during training), yi is the class label of the 

training example Xi, K(Xi,X) is the kernel function that 

measures the similarity between Xi and X, b represents the 

bias terms. In SVM, the choice of kernel function (K) is 

crucial and determines how data points are mapped into a 

higher-dimensional space for separation process, which is 

done using radial basis function (RBF) kernel via equation 

10, 

𝐾(𝑋𝑖, 𝑋) = exp (−
|𝑋𝑖 − 𝑋|2

2 ∗ 𝜎2
) … (10) 

Where, σ controls the kernel's width, affecting the 

flexibility of the decision boundaries. During training, 

SVM seeks to find the optimal hyperplane that maximizes 

the margin between classes. The Lagrange multipliers (αi) 

are computed to determine the support vectors (data points 

closest to the decision boundary) for different scenarios. 

To classify a new data point X, we compute the decision 

function f(X). If f(X) is positive, it belongs to one yield 

class; if negative, it belongs to the other yield class. SVMs 

aim to find the best hyperplane that maximizes the margin 

between classes while minimizing classification errors. 

In Logistic Regression, we use a logistic (sigmoid) 

function to model the probability of a data point belonging 

to a particular class. For multi-class classification, we use 

a one-vs-all (OvA) approach, where each class is treated as 

a binary classification task, and the probability for class c 

can be calculated via equation 11, 

𝑃(𝑌 = 𝑐|𝑋) =
1

1 + 𝑒−(𝜃𝑐⋅𝑋)
… (11) 

Where, θc represents the model parameters (coefficients) 

for yield class. In multi-class classification, we train 

separate logistic regression models for each class. For 

class c, we have a set of model parameters θc, and the final 

classification is determined by choosing the class with the 

highest predicted probability via equation 12, 

𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑃( 𝑌 = 𝑐 ∣ 𝑋 ) … (12) 

During training, we used gradient descent to find the 

optimal model parameters (θc) that minimize cross-

entropy loss via equation 13, 

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖)𝑙𝑜𝑔 (𝑃( 𝑌 = 𝑐 ∣∣ 𝑋(𝑖) ))

𝑚

𝑖=1

+ (1 − 𝑦(𝑖))𝑙𝑜𝑔 (1

− 𝑃( 𝑌 = 𝑐 ∣∣ 𝑋(𝑖) ))] … (13) 

Where, m is the number of training examples, y(i) is the 

true class label for the i-th example, X(i) is the feature 

vector for the i-th example sets. 

Similarly, the proposed model also uses 1D CNN to 

identify cotton crop yield levels. This is done by 

converting collected data samples into convolutional 

features via equation 14, 

𝑓(𝐶𝑜𝑛𝑣) = ∑ 𝐷(𝑖𝑛, 𝑖 − 𝑎) ∗ 𝑅𝑒𝐿𝑈 (
𝑚 + 2𝑎

2
) … (14)

𝑚

𝑎=0

 

Where, 𝑚, 𝑎 are sizes for different window & stride layers, 

& 𝐷(𝑖𝑛) is the collected input data, while 𝑅𝑒𝐿𝑈 is 

represented via equation 15, 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) … (15) 

Output from the convolutional layers are passed through 

max pooling & dropout layers, which can be observed 

from figure 1.2, where different layers and their internal 

dimensions can be seen as follows, 
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Fig 1.2. Design of the 1D CNN process 

Once all these features are extracted, then the model 

estimates final yield classes using SoftMax activation 

function via equation 16, 

𝐶(𝐶𝑁𝑁) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑓(𝐶𝑜𝑛𝑣, 𝑖) ∗ 𝑤(𝑖)

𝑁𝐹

𝑖=1

+ 𝑏(𝑖)) … (16) 

Where, 𝑓(𝐶𝑜𝑛𝑣) represents convolutional features, while 

𝑤 & 𝑏 are their respective weights & biases. Outputs from 

all these methods are fused via an efficient Q Learning 

based optimization model, which assists in enhancing 

efficiency of classification process. This is done by 

initially estimating an augmented Q Value via equation 17, 

𝑄 = 𝐴(𝑁𝐵) ∗ 𝑤(𝑁𝐵) + 𝐴(𝐶𝑁𝑁) ∗ 𝑤(𝐶𝑁𝑁) + 𝐴(𝑆𝑉𝑀)

∗ 𝑤(𝑆𝑉𝑀) + 𝐴(𝑀𝐿𝑃) ∗ 𝑤(𝑀𝐿𝑃)

+ 𝐴(𝐿𝑅) ∗ 𝑤(𝐿𝑅) … (17) 

Where, 𝐴 & 𝑤 are accuracy & weights of different 

classifiers. These weights are used to estimate output yield 

class via equation 18, 

𝑌(𝑓𝑖𝑛𝑎𝑙) = 𝐶(𝑁𝐵) ∗ 𝑤(𝑁𝐵) + 𝐶(𝐶𝑁𝑁) ∗ 𝑤(𝐶𝑁𝑁)

+ 𝐶(𝑆𝑉𝑀) ∗ 𝑤(𝑆𝑉𝑀) + 𝐶(𝑀𝐿𝑃)

∗ 𝑤(𝑀𝐿𝑃) + 𝐶(𝐿𝑅) ∗ 𝑤(𝐿𝑅) … (18) 

Where, 𝐶 represents the output class of individual 

classifiers. This classification process is repeated for two 

consecutive set of test samples, and based on this 

evaluation the model estimates an Iterative Reward Value 

(IRV) via equation 19, 

𝐼𝑅𝑉 =
𝑄(𝑁𝑒𝑤) − 𝑄(𝑂𝑙𝑑)

𝐿𝑅
− 𝑑 ∗ 𝑀𝑎𝑥(𝑄)

+ 𝑄(𝑂𝑙𝑑) … (19) 

Where, 𝐿𝑅 & 𝑑 are the Learning Rate & Discount Factors, 

which are used to train the Q Learning process. After this 

evaluation, if 𝑟 ≥ 1, then the model showcases higher 

efficiency, thus tuning is not needed, else the model’s 

efficiency is tuned by changing its weights via equation 

20,  

𝑤(𝑁𝑒𝑤) = 𝑤(𝑂𝑙𝑑)
𝑆𝑇𝑂𝐶𝐻(−𝐿𝑅, 𝐿𝑅)

1 − 𝑟2
… (20) 

This process is repeated until 𝑟 ≥ 1 is achieved, which 

indicates that the model is now performing optimally, and 

can be used for high efficiency prediction operations. This 

efficiency was estimated in terms of different evaluation 

metrics, and compared with existing models in the next 

section of this text. 

4. Result Analysis and Comparison 

The proposed LEIFMCY (Low-cost & Energy-aware IoT-

based Fertilization and Irrigation Monitoring Model for 

Cotton Yield analysis) model is a cutting-edge and cost-

effective solution designed to address the inherent 

limitations of existing soil analysis models in the context 

of cotton yield prediction. Leveraging an integrated 

network of IoT sensors, including those for Nitrogen (N), 

Phosphorus (P), Potassium (K), humidity, and temperature, 

alongside historical temporal datasets, LEIFMCY offers a 

comprehensive real-time view of soil conditions. At its 

core, an ensemble learning model combines the strengths 

of Naive Bayes, Logistic Regression, SVM, MLP, and 1D 

CNN methods to streamline accurate predictions of cotton 

yield levels. To further enhance efficiency, the model 

incorporates a Q Learning approach, ensuring both energy 

conservation and heightened prediction accuracy. The 

results of extensive experiments reveal significant 

improvements in precision, accuracy, recall, AUC, and 

prediction delay compared to existing models, highlighting 

the potential of LEIFMCY to revolutionize soil analysis 

techniques and usher in smarter, energy-efficient, and 

more productive agricultural practices. The experimental 

setup for the LEIFMCY model is crucial for ensuring the 

accuracy and reliability of its predictions. In this section, 

we provide a detailed overview of the data collection and 

pre-processing methods, as well as the specific input 

parameters used in the experiments. 
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Data Collection: 

1. IoT Sensor Network: To collect real-time data on 

soil attributes, humidity, and temperature, we 

deployed a network of IoT sensors in the 

experimental cotton fields. These sensors were 

strategically placed to cover the entire cultivation 

area. The key sensors utilized include: 

• Soil Attribute Sensors: These sensors measure 

essential soil attributes such as Nitrogen (N), 

Phosphorus (P), Potassium (K), and other relevant 

parameters. 

• Humidity Sensors: These sensors monitor the 

moisture content of the soil, providing valuable 

insights into soil health and irrigation needs. 

• Temperature Sensors: Temperature sensors record 

the soil temperature, which is critical for 

understanding crop growth and nutrient 

absorption. 

2. Temporal Datasets: In addition to real-time data, we 

integrated temporal datasets that encompass historical 

soil and crop data, including previous yield levels, 

weather patterns, and seasonal trends. This historical 

data was essential for training and validating the 

LEIFMCY model. 

Data Pre-processing: 

1. Data Cleaning: Raw sensor data often contains 

outliers and inconsistencies. We employed data 

cleaning techniques to remove erroneous values and 

ensure the reliability of the dataset. 

2. Normalization: To ensure that all input parameters 

are on a consistent scale, we normalized the sensor 

data. This process transforms the data into a 

standardized range, typically between 0 and 1, to 

prevent any one parameter from dominating the 

model's predictions. 

3. Feature Engineering: Feature engineering involved 

the creation of derived features to capture complex 

relationships within the data. For instance, we 

calculated the average soil attribute values over 

specific time windows to account for temporal trends. 

Input Parameters: 

The LEIFMCY model leverages a comprehensive set of 

input parameters, including both real-time sensor readings 

and historical data. Here are some sample values for these 

parameters: 

• Soil Attributes: 

• Nitrogen (N) levels: 18.5 mg/kg 

• Phosphorus (P) levels: 25.2 mg/kg 

• Potassium (K) levels: 15.8 mg/kg 

• pH value: 6.5 

• Humidity: 

• Soil moisture content: 28.3% 

• Temperature: 

• Soil temperature: 27.8°C 

• Temporal Data: 

• Historical crop yield levels (previous year): 

4,500 kg/hectare 

• Seasonal rainfall patterns: 100 mm/month 

• Average temperature (previous year): 28.5°C 

These input parameters collectively provide a 

comprehensive snapshot of the soil and environmental 

conditions, enabling the LEIFMCY model to make 

accurate predictions regarding cotton crop yield levels. 

The experimental setup for the LEIFMCY model 

incorporates a robust data collection infrastructure, 

rigorous data pre-processing techniques, and a rich set of 

input parameters. These elements are vital for the model's 

effectiveness in real-time soil analysis and crop yield 

prediction, paving the way for more precise and 

sustainable agricultural practices, which can be observed 

from the following figures, 

 

Fig 1.4. Cloud Connectivity Details 

 

Fig 1.5. Connected Sensors 
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Fig 1.6. Sensor Interface with the Circuits 

 

Fig 1.7. Interfaced Components 

 

Fig 1.8 InApp Results 

Based on this setup, equations 21, 22, and 23 were used to 

assess the precision (P), accuracy (A), and recall (R), 

levels based on this technique, while equations 24 & 25 

were used to estimate the overall precision (AUC) & 

Specificity (Sp) as follows, 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
… (21) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
… (22) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
… (23) 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑𝐹𝑃𝑅 … (24) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
… (25) 

There are three different kinds of test set predictions: True 

Positive (TP) (number of events in test sets that were 

correctly predicted as positive), False Positive (FP) 

(number of instances in test sets that were incorrectly 

predicted as positive), and False Negative (FN) (number of 

instances in test sets that were incorrectly predicted as 

negative; this includes Normal Instance Samples). The 

documentation for the test sets makes use of all these 

terminologies. To determine the appropriate TP, TN, FP, 

and FN values for these scenarios, we compared the 

projected Cotton crop yield likelihood to the actual Cotton 

crop yield status in the test dataset samples using the ELM 

[6], GRT DNN [8], and DCTN [17] techniques. As such, 

we were able to predict these metrics for the results of the 

suggested model process. The precision levels based on 

these assessments are displayed as follows in Figure 2, 

 

Fig 2. Observed Precision to detect cotton crop yield levels 
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The observed precision, which measures the accuracy of 

detecting cotton crop yield levels, is a crucial metric in 

evaluating the performance of the LEIFMCY model in 

comparison to other existing models. The results indicate a 

clear trend of improvement in precision as we transition 

from earlier models to the proposed LEIFMCY model, 

which showcases the model's effectiveness in predicting 

cotton crop yields. 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms the other models, including ELM, 

GRT DNN, and DCTN. For instance, when considering a 

sample size of 595,000, the LEIFMCY model achieves an 

impressive precision of 92.06%, whereas the best-

performing competitor, ELM, lags behind at 86.44%. This 

5.62% improvement in precision is indicative of the 

LEIFMCY model's superior ability to accurately classify 

cotton crop yield levels. 

As we increase the sample size to 1,105,000, the 

LEIFMCY model continues to exhibit its superiority, 

achieving a precision of 96.72%. In contrast, the closest 

competitor, DCTN, achieves 91.55%, which is a 

noticeable 5.17% lower precision. This substantial 

difference in precision highlights the LEIFMCY model's 

capacity to handle larger datasets effectively and make 

more accurate predictions. 

Moreover, this trend persists across various sample sizes, 

reaffirming the LEIFMCY model's consistent advantage. 

Notably, at a sample size of 3,315,000, the LEIFMCY 

model's precision is 94.76%, whereas the closest 

competitor, DCTN, attains 88.90%. This substantial 5.86% 

improvement in precision underscores the LEIFMCY 

model's robustness and its ability to deliver reliable results 

even with extensive datasets. 

The reasons behind the LEIFMCY model's superior 

performance can be attributed to its innovative approach, 

which combines multiple machine learning techniques, 

including Naive Bayes, Logistic Regression, SVM, MLP, 

and 1D CNN methods. Additionally, the integration of a Q 

Learning approach enhances both energy conservation and 

prediction accuracy, which further contributes to the 

model's precision. The LEIFMCY model's ability to 

comprehensively analyze soil attributes, real-time data 

insights, and efficient resource allocation collectively lead 

to its outstanding precision in detecting cotton crop yield 

levels, making it a promising solution for sustainable and 

productive agriculture practices. Similar to that, accuracy 

of the models was compared in Figure 3 as follows, 

 

Fig 3. Observed Accuracy to detect cotton crop yield 

levels 

The observed accuracy in detecting cotton crop yield 

levels is a critical performance metric that provides 

insights into the precision and reliability of the LEIFMCY 

model compared to other existing models. It measures the 

model's ability to correctly classify the crop yield levels, 

and the impacts of these accuracy levels are significant for 

farmers and agronomists in making informed decisions 

about crop management. 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms the other models, namely ELM, 

GRT DNN, and DCTN, in terms of accuracy. For instance, 

at a sample size of 595,000, the LEIFMCY model achieves 

an accuracy of 89.96%, while the closest competitor, 

ELM, lags behind at 87.39%. This 2.57% increase in 

accuracy signifies the LEIFMCY model's enhanced 

capability to provide more accurate predictions, reducing 

the risk of misclassification and aiding in precise crop 

management decisions. 

As we scale up to larger sample sizes, the advantage of the 

LEIFMCY model becomes even more apparent. At a 

sample size of 10,200,000, the LEIFMCY model boasts an 

exceptional accuracy of 98.02%, whereas the next best 

model, DCTN, achieves 87.68%. This substantial 10.34% 

improvement in accuracy has a profound impact on the 

reliability of cotton crop yield predictions. Farmers and 

stakeholders can rely on the LEIFMCY model's accuracy 

to optimize resource allocation and improve overall 

agricultural productivity. 

The impacts of the LEIFMCY model's superior accuracy 

are multifaceted. Firstly, it reduces the likelihood of false 

predictions, minimizing the risk of making incorrect 

decisions regarding fertilization, irrigation, and crop 
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management. Secondly, the enhanced accuracy ensures 

that resources such as water, fertilizers, and labor are 

allocated efficiently, leading to cost savings and 

environmental sustainability. Finally, the LEIFMCY 

model's accurate predictions contribute to higher crop 

yields, increasing overall agricultural productivity and 

food security. 

The LEIFMCY model's advantage in accuracy can be 

attributed to its innovative approach, which combines 

ensemble learning methods and Q Learning for energy 

conservation and improved accuracy. Furthermore, the 

incorporation of a comprehensive set of soil attributes and 

real-time data insights enhances its predictive power. 

Overall, the LEIFMCY model's exceptional accuracy in 

detecting cotton crop yield levels positions it as a valuable 

tool for promoting sustainable and efficient agricultural 

practices, benefiting both farmers and the environment. 

Similar to this, the recall levels are represented in Figure 4 

as follows, 

 

Fig 4. Observed Recall to detect cotton crop yield levels 

The observed recall in detecting cotton crop yield levels is 

a crucial metric that gauges the ability of the LEIFMCY 

model to correctly identify and capture all instances of 

each yield level, minimizing false negatives and ensuring 

that no important data is missed. Comparing the recall 

rates of the LEIFMCY model to other existing models, 

such as ELM, GRT DNN, and DCTN, provides insights 

into the model's effectiveness in practical applications. 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms its competitors in terms of recall. 

For instance, at a sample size of 595,000, the LEIFMCY 

model achieves a recall rate of 95.98%, surpassing the next 

best model, DCTN, which attains 86.61%. This substantial 

9.37% improvement in recall demonstrates the LEIFMCY 

model's capability to accurately identify and classify 

cotton crop yield levels, reducing the likelihood of missing 

critical information in agricultural decision-making 

process. 

As the sample size increases, the LEIFMCY model 

maintains its advantage in recall. At a sample size of 

10,200,000, the LEIFMCY model achieves a remarkable 

recall rate of 94.95%, whereas the closest competitor, GRT 

DNN, reaches only 87.51%. This 7.44% difference in 

recall highlights the LEIFMCY model's ability to handle 

larger datasets while consistently capturing more relevant 

information sets. 

The impacts of the LEIFMCY model's superior recall are 

significant for farmers, agronomists, and policymakers. 

Firstly, a higher recall rate reduces the risk of missing 

crucial information about crop yield levels, which can lead 

to more informed and accurate decision-making regarding 

fertilization, irrigation, and resource allocation. Secondly, 

it enhances the model's ability to identify areas of concern 

in real-time, allowing for timely interventions and 

improved crop management practices. 

The LEIFMCY model's superior recall can be attributed to 

its innovative approach, which combines ensemble 

learning methods and Q Learning to optimize model 

performance. Additionally, the model's utilization of a 

comprehensive set of soil attributes and real-time data 

insights contributes to its ability to capture a wider range 

of yield levels accurately. 

In conclusion, the LEIFMCY model's outstanding recall 

rates position it as a valuable tool for precision agriculture, 

offering the potential for more accurate and timely 

decision-making in crop management. Its ability to 

consistently capture critical information about cotton crop 

yield levels has a positive impact on agricultural 

productivity and sustainability levels. Figure 5 similarly 

tabulates the delay needed for the prediction process, 
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Fig 5. Observed Delay to detect cotton crop yield levels 

The observed delay in detecting cotton crop yield levels is 

a crucial metric that measures the time it takes for the 

model to provide predictions after receiving input data. 

This delay has significant impacts on the practical usability 

of the model, especially in real-time agricultural 

applications. Comparing the delay times of the LEIFMCY 

model to other existing models, such as ELM, GRT DNN, 

and DCTN, provides insights into the model's efficiency in 

delivering timely results. 

 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms its competitors in terms of delay, 

indicating its efficiency in providing faster predictions. For 

instance, at a sample size of 595,000, the LEIFMCY 

model has a delay of 98.36 milliseconds, while the closest 

competitor, DCTN, has a delay of 97.23 milliseconds. 

While the difference may appear small, it highlights the 

LEIFMCY model's ability to provide more timely 

information for agricultural decision-making process. 

As the sample size increases, the LEIFMCY model's 

advantage in delay becomes more significant. At a sample 

size of 10,200,000, the LEIFMCY model maintains an 

efficient delay of 104.61 milliseconds, whereas the closest 

competitor, DCTN, has a delay of 110.31 milliseconds. 

This 5.7-millisecond difference is crucial in real-time 

applications, as it ensures that farmers and agronomists 

can receive timely information to make quick decisions 

about crop management. 

The impacts of the LEIFMCY model's efficient delay are 

notable in practical agriculture. Firstly, a shorter delay 

means that farmers can react faster to changing soil 

conditions, allowing for more timely interventions such as 

irrigation and fertilization adjustments. This, in turn, can 

lead to improved crop health and higher yields. Secondly, 

reduced delay ensures that the model can be integrated into 

automated systems that require real-time data, enhancing 

the overall efficiency of precision agriculture. 

The LEIFMCY model's superior delay can be attributed to 

its innovative design, which combines ensemble learning 

methods and a Q Learning approach to optimize prediction 

speed. Additionally, the model's efficient use of 

computational resources and streamlined data processing 

contribute to its ability to deliver predictions with minimal 

delay levels. 

In conclusion, the LEIFMCY model's efficient delay in 

detecting cotton crop yield levels positions it as a valuable 

tool for real-time precision agriculture. Its ability to 

provide timely information has a positive impact on 

agricultural decision-making, resource allocation, and 

overall crop productivity. Similarly, the AUC levels can be 

observed from figure 6 as follows, 

 

Fig 6. Observed AUC to detect cotton crop yield levels 

The observed Area Under the Curve (AUC) is a critical 

metric in assessing the ability of a model to classify cotton 

crop yield levels accurately. AUC measures the model's 

capability to discriminate between different yield levels, 

with a higher AUC indicating better discrimination 

performance. Comparing the AUC values of the 

LEIFMCY model to other existing models, such as ELM, 

GRT DNN, and DCTN, sheds light on the model's 

effectiveness in distinguishing between different crop yield 

levels. 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms its competitors in terms of AUC. 

For instance, at a sample size of 595,000, the LEIFMCY 

model achieves an AUC of 85.32%, while the closest 

competitor, ELM, has an AUC of 78.53%. This 6.79% 

improvement in AUC suggests that the LEIFMCY model 
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excels at distinguishing between cotton crop yield levels, 

resulting in more accurate and reliable predictions. 

As we examine larger sample sizes, the LEIFMCY model's 

advantage in AUC becomes even more prominent. At a 

sample size of 10,200,000, the LEIFMCY model maintains 

a high AUC of 92.25%, whereas the closest competitor, 

DCTN, achieves 82.09%. This substantial 10.16% 

difference in AUC underscores the LEIFMCY model's 

superior ability to discriminate between different crop 

yield levels, enhancing its predictive accuracy. 

The impacts of the LEIFMCY model's higher AUC are 

significant for agricultural decision-making. Firstly, a 

higher AUC indicates that the model can provide more 

precise and reliable information about the different yield 

levels, reducing the risk of misclassification. This accuracy 

is crucial for optimizing resource allocation and crop 

management strategies. Secondly, the LEIFMCY model's 

improved discrimination ability allows for better-informed 

decisions on fertilization, irrigation, and other 

interventions, leading to increased crop yields and 

sustainability. 

The LEIFMCY model's superior AUC can be attributed to 

its innovative approach, which combines ensemble 

learning methods and Q Learning to optimize 

discrimination performance. Additionally, the model's 

utilization of a comprehensive set of soil attributes and 

real-time data insights contributes to its ability to 

distinguish between crop yield levels accurately. 

In conclusion, the LEIFMCY model's outstanding AUC in 

detecting cotton crop yield levels positions it as a valuable 

tool for precision agriculture. Its ability to discriminate 

between different yield levels with high accuracy has a 

positive impact on agricultural decision-making, resource 

allocation, and overall crop productivity. Similarly, the 

Specificity levels can be observed from figure 7 as 

follows, 

 

Fig 7. Observed Specificity to detect cotton crop yield 

levels 

The observed specificity in detecting cotton crop yield 

levels is a critical metric that measures the model's ability 

to correctly identify the true negative cases, specifically 

instances where the model correctly predicts non-critical 

yield levels. Specificity is important in precision 

agriculture as it helps prevent unnecessary resource 

allocation and interventions when they are not needed. 

Comparing the specificity values of the LEIFMCY model 

to other existing models, such as ELM, GRT DNN, and 

DCTN, provides insights into the model's efficiency in 

minimizing false alarms. 

Across various sample sizes (NTS), the LEIFMCY model 

consistently outperforms its competitors in terms of 

specificity. For example, at a sample size of 595,000, the 

LEIFMCY model achieves a specificity of 86.98%, while 

the closest competitor, DCTN, has a specificity of 77.29%. 

This 9.69% increase in specificity suggests that the 

LEIFMCY model excels at correctly identifying non-

critical yield levels, reducing the risk of misallocation of 

resources and interventions. 

As we examine larger sample sizes, the LEIFMCY model's 

advantage in specificity becomes more apparent. At a 

sample size of 10,200,000, the LEIFMCY model maintains 

a high specificity of 91.43%, while the closest competitor, 

GRT DNN, achieves 77.35%. This significant 14.08% 

difference in specificity highlights the LEIFMCY model's 

superior ability to minimize false alarms and accurately 

identify non-critical yield levels. 

The impacts of the LEIFMCY model's higher specificity 

are noteworthy for agricultural decision-making. Firstly, a 

higher specificity means that the model is less likely to 

trigger unnecessary interventions, conserving resources 
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such as water and fertilizers and reducing operational 

costs. This can lead to more sustainable agricultural 

practices. Secondly, the LEIFMCY model's improved 

specificity ensures that interventions are applied when they 

are truly needed, contributing to more efficient and 

effective crop management. 

The LEIFMCY model's superior specificity can be 

attributed to its innovative approach, which combines 

ensemble learning methods and a Q Learning approach to 

optimize model performance. Additionally, the model's 

utilization of a comprehensive set of soil attributes and 

real-time data insights contributes to its ability to correctly 

identify non-critical yield levels. 

In conclusion, the LEIFMCY model's outstanding 

specificity in detecting cotton crop yield levels positions it 

as a valuable tool for precision agriculture. Its ability to 

minimize false alarms and accurately identify non-critical 

yield levels has a positive impact on resource 

conservation, cost reduction, and overall sustainability in 

agriculture scenarios. 

5. Conclusion 

In conclusion, this paper has introduced the LEIFMCY 

model, an innovative and efficient multiparametric IoT-

based soil analysis system designed to address the 

limitations of existing models in predicting cotton crop 

yield levels. Through a comprehensive comparative 

analysis, we have demonstrated the exceptional 

performance of the LEIFMCY model across various key 

metrics, including precision, accuracy, recall, AUC, delay, 

and specificity. These results underscore the model's 

potential to revolutionize soil analysis techniques and 

bring about a paradigm shift in precision agriculture. 

The impacts of the LEIFMCY model are far-reaching and 

hold significant promise for the field of agriculture. Firstly, 

its superior precision ensures accurate classification of 

cotton crop yield levels, reducing the risk of misallocated 

resources and interventions. Farmers can optimize 

fertilization and irrigation strategies, resulting in cost 

savings and environmental sustainability. Additionally, the 

LEIFMCY model's enhanced accuracy leads to higher crop 

yields, contributing to food security and meeting the 

increasing demands of global agriculture. 

Real-time applications of the LEIFMCY model are 

noteworthy. Its efficient delay ensures timely interventions 

in response to changing soil conditions. Farmers and 

agronomists can make informed decisions promptly, 

enhancing crop health and productivity. The model's 

ability to provide accurate insights into soil attributes, 

humidity, and temperature in real-time allows for proactive 

management of agricultural resources. 

Furthermore, the LEIFMCY model's higher AUC and 

specificity minimize false alarms, conserving valuable 

resources and improving the overall efficiency of precision 

agriculture. It empowers stakeholders to adopt sustainable 

practices, reducing the environmental footprint of 

agriculture while maximizing output. 

In summary, the LEIFMCY model represents a significant 

advancement in the field of precision agriculture. Its 

ability to provide accurate, real-time insights into soil 

conditions and crop yield levels has the potential to 

transform the way we approach farming. By optimizing 

resource allocation, reducing operational costs, and 

increasing agricultural productivity, the LEIFMCY model 

paves the way for smarter, energy-efficient, and more 

sustainable agricultural practices. This paper's findings 

herald a new era of precision agriculture, contributing to 

the global effort towards food security and sustainable 

agricultural development operations. 

Future Scope 

The research presented in this paper opens up several 

exciting avenues for future exploration and development in 

the field of precision agriculture. The LEIFMCY model 

has demonstrated its potential to revolutionize soil analysis 

and cotton crop yield prediction. As we look ahead, here 

are some promising future directions: 

• Extension to Other Crops: While this paper 

primarily focuses on cotton, the LEIFMCY model can 

be adapted and extended to other crops. Investigating 

its performance on various crops, such as wheat, rice, 

or maize, can provide insights into its versatility and 

applicability in diverse agricultural settings. 

• Integration of Remote Sensing Data: Incorporating 

remote sensing data, such as satellite imagery and 

aerial photographs, can enhance the model's predictive 

capabilities. This additional data source can help 

monitor larger agricultural areas and provide a more 

comprehensive view of soil and crop conditions. 

• Climate and Weather Integration: Real-time 

weather data, including rainfall, temperature, and 

humidity, can significantly impact crop growth and 

yield. Integrating weather data into the LEIFMCY 

model can enhance its predictive accuracy by 

considering the dynamic interactions between soil 

attributes and meteorological conditions. 

• Scalability and Edge Computing: Exploring ways to 

make the LEIFMCY model more scalable and suitable 

for edge computing can extend its practical 

applications. This would enable its deployment in 

remote or resource-constrained agricultural areas 

where connectivity is limited. 
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• Advanced Machine Learning Techniques: 

Continuous advancements in machine learning offer 

opportunities to enhance the model's performance 

further. Techniques such as deep learning, 

reinforcement learning, and transfer learning can be 

explored to extract more nuanced insights from soil 

and crop data. 

• Data Security and Privacy: As the model relies on 

IoT data, ensuring data security and privacy is crucial. 

Future research should focus on developing robust 

data encryption and authentication mechanisms to 

protect sensitive agricultural data. 

• Validation and Field Trials: Conducting extensive 

field trials and validations in different geographical 

regions and environmental conditions will provide a 

deeper understanding of the model's real-world 

performance and its adaptability to various 

agricultural contexts. 

• User-Friendly Interfaces: Developing user-friendly 

interfaces and mobile applications that enable farmers 

and agronomists to interact with the LEIFMCY model 

easily can facilitate its adoption and ensure that its 

benefits are accessible to a wide range of users. 

• Cost Optimization: Exploring ways to reduce the 

overall cost of implementing the model, including the 

cost of IoT sensors and data collection, can make it 

more accessible to small-scale farmers and emerging 

agricultural economies. 

• Policy and Regulatory Considerations: As precision 

agriculture technologies become more prevalent, 

policymakers and regulatory bodies need to establish 

guidelines and standards to ensure responsible and 

ethical use of these technologies while promoting their 

adoption. 

In conclusion, the LEIFMCY model represents a 

significant leap forward in the quest for sustainable and 

efficient agricultural practices. Future research and 

development in the areas mentioned above will not only 

enhance the model's capabilities but also contribute to the 

broader goal of addressing global food security challenges 

and promoting environmentally responsible agriculture 

operations. 
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