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Abstract: Internet-of-Things (IoT) based applications has resulted use of Fog computing paradigm, which permit effortlessly exploiting 

both mobile-edge and cloud resources. Applications are hard to schedule due to restricted resource capabilities, IoT mobility factors, 

heterogeneity of resources, networking hierarchy, stochastic behaviors. Task arrival rates, task durations, resource needs are 

unpredictable in the edge-cloud ecosystem, making scheduling and resource monitoring problematic. In order to reduce parameters like 

Average Energy Consumption (AEC), Average Response Time (ART), Average Migration Time (AMT), Service Level Agreement 

Violations (SLAV), Chaotic Crossover Tuna Swarm Optimizer (CCTSO) presented in this work. CCTSO algorithm has also optimized 

application settings of hyper-parameters based on various user requirements. These requirements, together with information from the 

Resource Monitoring Service about the computer characteristics, are used by Residual Recurrent Neural Network (R2N2) model to 

predict the next scheduling options. R2N2 is known to update model parameters fast, whereas Asynchronous-Advantage-Actor-Critic 

(A3C) adaptation is recognized to dynamic conditions swiftly with less input. For stochastic Edge-Cloud contexts, A3C learning-based 

real-time scheduler that enables concurrent decentralized learning among many agents. When compared to other existing approaches, 

trials done on real-world data sets indicate substantial gains in terms of energy usage, reaction time, SLA, operation cost. 

Index Terms: Asynchronous-Advantage-Actor-Critic (A3C), Cloud Technology, Chaotic Crossover Tuna Swarm Optimizer (CCTSO), 

Deep Reinforcement Learning, Edge Computing, Residual Recurrent Neural Network (R2N2) and Task Scheduling. 

1. Introduction 

The Internet of Things (IoT) has made strides, which has 

led to a tremendous quantity of data being generated at an 

enormous velocity. Applications that use this data 

to analyze and take actions in accordance with defined 

goals need a sufficient computational infrastructure to meet 

user needs [1]. Many time-critical applications, like those 

used in healthcare, emergency response, and traffic 

monitoring, find it challenging to implement cloud-centric 

IoT apps because of rising network latency. Traditional 

cloud computing has been created to assist IoT (Internet of 

Things) successfully offload its responsibilities since 

consumer resources like storage capacity and signal 

resolution are limited [2-3]. On the other side, outsourcing 

localized tasks to a distant cloud center can result in 

significant delays, especially if a lot of task data needs to 

be exchanged across local computers and cloud centers. 

Almost all programs and scenarios that depend on latency 

find this sort of delay intolerable. Additionally, sending a 

lot of data through a network connected to a central server 

might seriously congest the network. To meet growing 

resource demands and increasing QoS (Quality of Service) 

requirements, new technologies are needed [4]. 

ECC (Edge Cloud Computing) paradigm is promising 

paradigm which gives lower latency response for IoT 

applications [5-7]. Since network edges have limitations in 

their processing capabilities and do not respond 

immediately in time-sensitive applications, ECC has been 

proposed [8]. ECC is an innovative component that is 

implemented among the on-premises level and the 

computing environment cloud layer in order to enhance 

service quality [9]. Unlike cloud computing, which 

requires data to be transferred across the core network, 

ECC places server hardware closest to the local side. ECC 

has an opportunity to prevent the undesirable delay caused 

by networks while offering high downstream bandwidth, 

which can lower the system latency [10]. As a result, ECC 

has garnered growing academic and industrial research 

attention [11]. The past several years have seen a lot of 

research on outsourcing computation in an ECC 

environment [12]. 

However, due to various circumstances, it is quite 

challenging to plan the computational paradigm of the 

Edge program. Computer servers adjust to the 

heterogeneity between faraway clouds and nearby edge 

nodes in terms of capacity, speed, reaction time, and 

energy usage. In addition, many types of computers may 

be present between the cloud and peripheral levels. 

Furthermore, the mobility element of the Edge paradigm 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Research Scholar, Department of Computer Science, Kongunadu Arts 

and Science College, Coimbatore.  
2 HOD, Department of Information Technology, Kongunadu Arts and 

Science College, Coimbatore. Email: kdhanalakshmimca@gmail.com  

* Corresponding Author Email: supriyasundaram@gmail.com 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 |  161 

causes the bandwidth to fluctuate continually between data 

sources and processing nodes, demanding ongoing 

dynamic tweaking to meet application requirements. The 

scheduling problem is made more complex by the ECC 

unpredictable task arrival rate, work duration, and resource 

needs. By efficiently leveraging multi-layer resources, 

dynamic task scheduling becomes necessary to reduce 

energy consumption while simultaneously raising 

application’s quality of service under uncertain 

circumstances. 

Heuristic computations, meta-heuristic techniques that 

employ biological motivation and swarm intellect, and 

hybrid task-scheduling algorithms are the several types of 

task-scheduling methods used in cloud centers [13]. 

Several performance metrics such as system utilization, 

execution time, load balancing, network communication 

cost, and delay have been used in the scheduling process 

[14]. The optimum answer can be found using the heuristic 

work scheduling technique. However, it cannot always be 

relied upon to produce the optimum outcomes and is prone 

to partial selection. The meta-heuristic approach is an 

enhanced version of a heuristic algorithm, which combines 

local search and random algorithms [15–16]. It manages a 

lot of search space knowledge and allows for the 

investigation and expansion of the search space. 

Additionally, it has the ability to find approximations of 

optimal solutions by using learning procedures to learn and 

master new information. 

Heuristics models are failed to include the ever changing 

conditions resulting from the requirements and the 

emergence of Edge-Cloud computing paradigm. In 

addition, they have a hard time adjusting to continuous 

system changes, which are common in Edge-Cloud 

environments. To do this, dynamic optimization of the 

system may benefit from a scheduling approach based on 

Reinforcement Learning (RL) [17]. Since the models are 

created using actual data, they are more precise and can 

recognize complex interactions between several 

interdependent components. Resource Management 

Systems (RMS) in remote systems has recently been 

optimized using a variety of value-based RL approaches 

[18]. The states of ECC environments which represent 

predicted cumulative rewards in RL setup, these solutions 

either employ neural networks or store Q-value functions 

in tables. Furthermore, no prior study has utilised temporal 

patterns in workload, network, or node activity to enhance 

scheduling decisions. These works also employ a centrally 

administered scheduling policy which is inappropriate for 

hierarchical or decentralized systems. The scheduling issue 

in stochastic edge-cloud systems are mapped and 

addressed using asynchronous policy gradient approaches. 

These methods may continually adjust to the dynamics of 

the system to provide better outcomes by employing 

recurrent neural networks to recognize behavioural 

patterns. 

In order to reduce indicators like AEC, ART, AMT, Cost 

(C), and SLAV, the CCTSO (Chaotic Crossover Tuna 

Swarm Optimizer) has been presented in this paper. 

Contrary to traditional DQN (Deep Q-Network) systems, 

the suggested solution may swiftly modify the allocation 

strategy in accordance with dynamic workloads, host 

behaviour, and QoS requirements. This research also 

shows how to plan in a hybrid Edge-Cloud scenario using 

an R2N2-based approach that takes temporal trends into 

account. 

2. Literature Review 

Liu et al. [19], a QoS-guaranteed edge user data 

deployment strategy is introduced to increase the reduction 

in service latency and reduces the overall system cost (SC) 

with available resources. To compare the suggested 

technique with three alternative benchmark methods 

utilising real-world datasets, theoretical testing and 

performance analysis of the strategy are required. 

Experiments show how effective and efficient the proposed 

strategy than the existing methods. 

In order to lessen the strain on server facilities and other 

centrally managed computing resources, Alamouti et al. 

[20] established a novel architectural method for cloud 

decentralized governance called the hybrid edge cloud 

(HEC). In using the resources of smart devices, HEC 

reduces communication latencies, frees up network 

capacity, and uses them. Modern network technologies like 

5G and WiFi-6 are combined with benefits at HEC, which 

are used in public as well as private clouds to take 

advantage of computational power on smart devices and 

create a decentralized infrastructure that is scalable and 

resilient in the hyperconnected future. 

To maximize resource use and reduce transferring 

disapproval in the edge-cloud computing system, Ullah et 

al. [21] improved the transfer of tasks under delay 

constraints. Deep reinforcement learning is used while 

taking into account the best choices for work offloading 

and resource allocation. Stochastic decision process is used 

to formulate this optimization issue, and DQN to identify 

the best task offloading strategy. To change the policy and 

offload the task as efficiently as possible in a flexible edge-

cloud system while considering resource consumption, the 

DQNEC (DQN-edge-cloud) computational scheme was 

created. Simulations of DQNEC shows that it performs 

better than heuristic approaches in terms of optimising task 

offloads with low task rejection rates and resource 

utilisations at cheap costs. 

To swiftly adapt to dynamic circumstances with minimal 

data, Tuli et al. [22] proposed the use of a R2N2 with A3C 
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learning. For stochastic ECC systems that provide 

concurrent decentralized learning across several agents, an 

A3C-based real-time scheduler is presented. In order to 

make effective scheduling decisions, the R2N2 architecture 

is introduced. In addition to temporal patterns, it may 

gather a variety of host and task data. According to the 

requirements of the application, the provided framework is 

adaptable and may change numerous hyper-parameters. 

Experiments on real datasets reveal that when compared to 

state-of-the-art algorithms, there are substantial increases 

in power consumption, response time, Service Level 

Agreement (SLA), and operational expenses of 14.40%, 

7.74%, 31.90%, and 4.64%, respectively. 

Deep learning as a tool for IoT was brought to the frontier 

computing environment by Li et al. [23]. A new offloading 

approach is developed to increase the effectiveness of IoT 

applications employing deep learning with edge computing 

because the processing power of the present edge nodes is 

constrained. Multiple deep learning tasks are performed in 

the performance evaluation using an offloading method in 

an edge computing environment. The suggested technique 

outplay other optimization strategies for IoT , according to 

evaluation findings. 

LASER, a method using deep learning for the speculative 

performance and replication of time-sensitive tasks, was 

presented by Xu et al. [24]. A wide range of categorization 

and prediction issues have been effectively solved through 

machine learning. Compared to conventional machine 

learning methods, the DNN (Deep Neural Network) may 

provide more accurate regression (prediction) because 

between the input layer and the output layer, there are 

several layers of hidden units. LASER with SRQuant is the 

speculative CV approach based on quantitative analysis. 

They aim to reduce the cost of speculative execution, 

measured by the total (virtual) duration of tasks on the 

device, while increasing PoCD (probability of completion 

before deadlines), or the possibility that MapReduce tasks 

will be finished on time. The two approaches should be 

assessed and compared using conventional experiments. 

Zhang et al. [25] implementing a double deep Q-learning 

model for edge planning that is energy-efficient. The 

proposed model specifically employs the target network to 

learn the parameters and the created framework to generate 

Q values for each DVFS (dynamic voltage and frequency 

scaling) technique. QDL-EES uses the ReLU (Rectified 

Linear Unit) function avoids gradient vanishing in the 

double-deep Q-learning model. The parameters of the 

proposed model are then trained using an algorithm for 

learning based on experience replay. On Edge CloudSim, 

the proposed model is contrasted with DQL-EES with 

regard to of energy savings and training time. Results show 

that proposed approach can improve training efficiency 

over QQL-EES and save an average of 2.00% to 2.40% of 

energy, demonstrating its promise towards energy-efficient 

edge scheduling. 

In order to reduce energy costs for large-scale Cloud 

Service Provider (CSP), Cheng et al. [26] proposed a 

unique Deep Reinforcement Learning (DRL)-based 

allocation of resources and task scheduling system. These 

CSP have a very high number of servers and process vast 

amounts of user requests each day. The two-stage RP-TS 

processor with deep Q-learning seeks to automatically 

make long-term judgments optimal limit while training in 

changing contexts, such as customer demand trends and 

actual power costs. In order to achieve exceptionally high 

power efficiency, a low rejection rate, a short runtime, and 

speedy convergence, the proposed DRL-Cloud employs 

training methods such network targeting, test replay, 

exploration, and mining. The proposed DRL-Cloud 

outperforms one of the most advanced energy-efficient 

algorithms by up to 320% while maintaining an average 

reject rate that is lower. When contrasted to a rapid round-

rob starting point, the proposed DRL-Cloud can save 

runtime by up to 144% for a CSP setup comprising 5,000 

servers and 200,000 tasks. 

For periodical tasks in real-time systems, Zhang et al. [27] 

presented DQL-EES (Deep Q-learning model- Energy-

Efficient Scheduling) method. In particular, a deep Q-

learning model is produced by combining the multi-layer 

autoencoder and the Q-learning technique. When applying 

the Q function inside the Q-learning deep learning model, 

a stacked autoencoder is employed to calculate the Q value 

for each system state. The training methodology also 

emphasizes the real-world replay scheme created to 

capture the essential components of the deep Q-learning 

model. In comparison to hybrid DVFS (Dynamic Pressure 

and Frequency Scaling) scheduling based on Q-learning 

(QL-HDS), the findings demonstrate that the suggested 

technique offers an average energy saving advantage of 

4.20%. 

In order to simplify the process of scheduling huge tasks 

upon cloud computing resources and decrease both usage 

of resources and task waiting time, four proficient and 

reinforced learning-based scheduling techniques were 

given by Rjoub et al. [28]. These techniques include DQN, 

DRL-LSTM (Deeper Reinforcement Learning Combined 

with LSTM), and RNN-LSTM (Recurrent Neural 

Network- Long Short-Term Memory). Reinforcement 

learning is the first method. DRL-LSTM outperforms the 

other three techniques in testing on the Google Cloud 

Platform. Additionally, it was demonstrated that the DRL-

LSTM classifier reduced CPU overhead by 35.00% 

compared to the RR (Round Robin) and PSO (Particle 

Swarm Optimization) methods and by 67.00% compared 

to the SJF (Shortest Job First) technique. DRL-LSTM 

system reduces RAM (Random-Access Memory) 
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utilization costs by 31.25%, 65.00%, and 72.00% 

compared to the improved PSO, RR, and SJF. 

First, Bui et al. [29] use the Gaussian procedure regression 

method to forecast how resources would be used in the 

forthcoming era. The convex optimization method is then 

used to determine the right number of actual hosts for 

every single monitoring window. To guarantee that just a 

handful of systems can still deliver an acceptable level of 

service, this amount of interest is determined. In order to 

fulfill the goal of energy savings, a similar migrating 

directive is then sent out to pile up virtual computers and 

shut down the idle physical servers. In order to test the 

effectiveness of the suggested tactic, experiments were 

carried out utilizing real workloads produced by the free 

source Montage toolkit and simulated data from 29 days of 

Google monitoring. Using the evaluation, it demonstrates 

that the proposed strategy may significantly reduce energy 

usage and preserve system performance. IoT, an emerging 

technology, makes it easy and advantageous to share data 

with additional devices across wireless networks. 

However, due of their continual development and 

technological advancements, IoT systems are more 

vulnerable to cyber attacks, which could result in strong 

assaults. Due to limited resource capabilities, IoT mobility 

factors, heterogeneity of resources, networking hierarchy, 

and stochastic behaviors, scheduling application tasks 

effectively in such situations is difficult. The stochastic 

nature of the edge-cloud ecosystem, which includes factors 

like task arrival rates, task durations, and resource 

requirements, makes scheduling and resource monitoring 

difficult. They are ineffective at using temporal demand 

patterns and are only suitable for centralized installations. 

3. System Model and Problem Formulation 

In this work, it is assumed that each of the peripheral and 

cloud nodes make up the underlying architecture. Fig. 1 

depicts the system model in wide strokes. The network 

hierarchy diverse resources from edges to multi-hops 

distant clouds form environment in edge clouds. 

Computers host many application activities. There is 

significant variability in computing capability and response 

times between these servers. Since they are closer to the 

customers, edge devices offer substantially faster response 

times but have limited computational capacity due to 

resource constraints. The response time of cloud resources 

(Virtual Machine), on the other hand, is substantially 

higher when they are several hops distant from the users. 

However, cloud nodes have more resources and better 

computational power, allowing them to execute several 

tasks at once. 

 

Fig. 1.  System Model 

Resource Management System (RMS) schedule, migrate, 

and monitor infrastructure. Along with their QoS and SLA 

requirements, IoT users and devices submit tasks to the 

RMS. It regularly decides whether to relocate ongoing 

work to new hosts and arranges new activities in line with 

the optimization objectives. The development expected 

completion dates or deadlines, as well as the CPU, RAM, 

bandwidth, and storage have an impact on the RMS 

decision. In order to simulate this effect, tasks are 

generated using the WGM (Workload Generation Module), 

a stochastic task generator. 

DRLM (Deep Reinforcement Learning Module), interacts 

with the Scheduling and Migration services to offer 

locations for each task on the server. Run many alternative 

schedulers in DRLM with distinct tasks and node 

partitions. These schedulers can be applied to a single node 

or a number of edge cloud nodes. The computational load 

may be dispersed among many servers, as demonstrated by 

earlier research, enabling numerous agents to learn 

parameter changes concurrently and enabling quicker 

learning within the limitations of various devices. 

resources are scarce [30]. In order to update each host 

model separately, it is assumed that all edge and cloud 

nodes will add and synchronize regional gradients to their 

schedulers. A policy learning model in the DRLM gives 

each planner a distinct instance of the global neural 

network, enabling asynchronous updates. Another crucial 

component of RMS is the CSM (Constraint Satisfaction 

Module), which assesses limitations such whether a task is 

being moved or if the destination server has enough 

capacity. nay, to assess the suitability of the DRLM idea. 

Workload Model: Every task has a changing workload, 

and tasks are generated randomly. As done in other studies 

[8], [30], subdivide the performance duration into periodic 

intervals of equal length. According to the chronological 

sequence of occurrence, the planned intervals are 

numbered as illustrated in Fig. 2. 
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Fig. 2.  Dynamic Task Workload Model 

The ith scheduling interval, denoted as 𝑆𝐼𝑖, begins at time 𝑡𝑖 

and lasts until the start of the subsequent interval, or 𝑡𝑖+1
th 

subscript were active in each 𝑆𝐼𝑖and designated as 𝑎𝑖. 

Further, in initial phases of 𝑆𝐼𝑖, sets of tasks completed 

denoted by𝑙𝑖and new tasks are sent by WGM are denoted 

as 𝑛𝑖.New tasks (ni) are inserted into systems as tasks (𝑙𝑖) 

are removed. As a result, the active tasks at the very start 

of the time interval 𝑆𝐼𝑖 are 𝑎𝑖is 𝑎𝑖−1 ∪ 𝑛𝑖\𝑙𝑖. 

A metric reflecting Loss that is determined for each 

scheduling period is used to measure the scheduler's 

performance. The scheduler performs better the smaller the 

loss value. Denote loss of the interval 𝑆𝐼𝑖as 𝐿𝑜𝑠𝑠𝑖.𝐻𝑖is 

denoted as the ith host in an enumeration of Hosts. 

Problem Formulation: The metric referred to as Loss 

provided for every scheduling interval serves as a measure 

of the scheduler effectiveness. The lower the loss value has 

given better scheduling. Declare the interval𝑆𝐼𝑖as 𝐿𝑜𝑠𝑠𝑖. In 

an array of hosts, 𝐻 is designated as the ith host. The group 

of hosts is referred to as Hosts in the edge-cloud 

environment, and its enumeration is [𝐻0, 𝐻1 , … , 𝐻𝑛]. 

Assume that there are n hosts in total at any given time 

during execution. Add the symbol T to the host that is 

allocated to a task. Define a scheduling tool as a mapping 

from a system state to an action that includes choosing a 

host for fresh assignments and deciding whether to migrate 

existing tasks. The state of the system at the beginning of 

𝑆𝐼𝑖, denoted as Statei which consists of the parameter 

values of Hosts, remaining active tasks of the previous 

interval which (𝑎𝑖−1\𝑙𝑖) and new tasks (𝑛𝑖). 

Schedulers must choose hosts to allocate or migrate which 

denotes 𝐴𝑐𝑡𝑖𝑜𝑛𝑖for 𝑆𝐼𝑖 , for each task in𝑎𝑖  (=  𝑎𝑖−1 ∪

𝑛𝑖\𝑙𝑖). Let the migratable tasks be 𝑚𝑖  ⊆  𝑎𝑖−1  ∪ 𝑙𝑖 . As a 

result, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖  = {ℎ ∈ Hosts for task𝑇|𝑇 ∈ 𝑚𝑖 ∪ 𝑛𝑖}, 

which is a decision on migration for activities in 𝑚𝑖 and 

allocation for activities in 𝑛𝑖. As a result, the function 

scheduler, denoted as Model, is 𝑆𝑡𝑎𝑡𝑒𝑖  → 𝐴𝑐𝑡𝑖𝑜𝑛𝑖the 

model allocates tasks to hosts, with n being the number of 

servers in the Edge-Cloud data center, and determines how 

tasks are assigned to hosts over an interval. Thus, Equation 

(1) may be used to explain the issue for an ideal model. 

∑ 𝐿𝑜𝑠𝑠𝑖   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖

 

𝑖

= 𝑀𝑜𝑑𝑒𝑙(𝑆𝑡𝑎𝑡𝑒𝑖) ∀𝑖 ∀𝑇 

∈ 𝑚𝑖⋃ 
 𝑛𝑖 ,  

{𝑇} ← 𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇) 

(1) 

4. Reinforcement Learning Model 

Reinforcement Learning models are introduced for 

handling issues described in Section 3 as they are suitable 

for policy gradient learning. 

Input Specification: Statei, which is made up of host 

factors including CPU, RAM, bandwidth, and disk 

utilization and capacity, is the input for the scheduler 

Model [16]. The host Million Instructions Per Second 

(MIPS), response time, cost per unit time, power features, 

cost per hour, cost per minute, and number of tasks 

assigned to this host are also listed. The computational 

(CPU), memory (RAM), and I/O (disk and bandwidth) 

capabilities of different hosts would vary. Such factors are 

essential for scheduling decisions because tasks in an edge-

cloud environment compute, memory, and I/O limits. 

Additionally, by hiding the hosts that have no tasks, 

allowing several tasks to be assigned to a compact group of 

hosts could guarantee low energy use. Faster disk 

read/write rates on the host could enable the completion of 

I/O-intensive operations and avoid SLA violations. In the 

feature vector referred to as𝐹𝑉𝑖
𝐻𝑜𝑠𝑡𝑠, each of these 

parameters is specified for every host. The assignments in 

𝑎𝑖 are divided into: 𝑛𝑖and 𝑎𝑖−1\𝑙𝑖, two separate groups. 

The first set of parameters includes the task CPU, RAM, 

bandwidth, and storage space needs.  

Output Specification: Depending on the input Statei, 

proposed model needs to assign hosts for tasks in 𝑎𝑖 in the 

beginning of interval 𝑆𝐼𝑖 , and results referred 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 

include host assignments for new tasks 𝑛𝑖 and migration 

decisions for tasks from previous periods that are still in 

progress ∈  𝑎𝑖−1\𝑙𝑖.Each task is transferred must be 

migratable to the new server as𝑚𝑖 which is ⊆ 𝑎𝑖 according 

to the feasibility criteria. Additionally, whenever a host h is 

assigned to a particular task T, h should not become 

overloaded after allocation, i.e., h is appropriate for T. As a 

result, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 by Equation (2) in such a way that it 

applies to the interval𝑆𝐼𝑖 , ∀𝑇 ∈ 𝑛𝑖  ∪ 𝑚𝑖, {𝑇} ←

𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇), 

=  {ℎ ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑛𝑖  ℎ𝑛𝑒𝑤 ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡

∈ 𝑚𝑖  𝑖𝑓 𝑡 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑  

(2) 

appropriate for 𝑡 ∀ 𝑡 ∈ 𝑛𝑖  ∪  𝑚𝑖is subject to Actioni. 

Neural networks may produce host-task allocation 

preferences. This indicates that the model offers an ordered 

list of hosts instead of one for every task. Additionally, a 
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penalty is applied to uncontrolled behavior. Specifically, 

this captures two features of punishment: (1) the 

percentage of tasks that the simulation tried to transfer but 

was unable to do so is known as the migration penalty; and 

(2) the number of hosts who were granted greater priority 

but were unable to complete a task is added for each task 

to determine the host allocation penalty. 

5. Proposed Methodology 

For reducing parameters such as AEC, ART, AMT, and 

SLAV, the CCTSO has been developed. CCTSO algorithm 

has also optimized multiple values of hyper-parameters 

based on various user needs and application settings. These 

requirements, along with the features of the Resource 

Monitoring Service server, are used by R2N2 to forecast 

future scheduling decisions. R2N2 is known to update 

model parameters fast, but A3C adaptation is recognized to 

adapt swiftly to dynamic conditions with less data. An 

A3C-based real-time scheduler is proposed that supports 

concurrent decentralised learning among several agents in 

the stochastic Edge-Cloud scenario. 

AEC: The term "AEC" refers to the power consumption of 

hardware and software, which includes all Edge and Cloud 

servers, normalised to the environment's maximum 

carrying capacity for any given time period. However, the 

energy sources used by periphery and cloud nodes could 

vary with the energy-saving devices for the edge and a 

primary power source for the cloud. Add a factor 𝛼ℎ ∈

[0,1]  to the energy used by a host, that is possible to 

be adjusted for peripheral and cloud nodes based on user 

requirements and deployment strategy. Following is how 

the power is normalized: 

=  
∑   

ℎ∈𝐻𝑜𝑠𝑡𝑠 𝛼ℎ ∫  
𝑡𝑡+1

𝑡=𝑡1
𝑃ℎ(𝑡)𝑑𝑡

∑   
ℎ∈𝐻𝑜𝑠𝑡𝑠 𝛼ℎ𝑃ℎ

𝑚𝑎𝑥(𝑡𝑖+1 − 𝑡𝑖)
 

(3) 

where the power function of host h with respect to time is 

denoted by 𝑃ℎ(𝑡), while the maximum power of h is 

indicated by 𝑃ℎ
𝑚𝑎𝑥. 

ART : The largest response time up to the current interval, 

normalized by the average reaction time for all tasks 𝑙𝑖+1 in 

an interval SIi, is the average reaction time. Task response 

time is the product of task execution time and the task 

planned host response time. ART is described,  

𝐴𝑅𝑇𝑖 =
∑   

𝑡∈𝑙𝑖+1
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)

|𝑙𝑖+1|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)  
 

(4) 

AMT: AMT for all active tasks (ai) during an interval SIi 

is the mean migration time for every task, normalized by 

the longest possible migration time up to the preceding 

interval. The definition of AMT is described, 

=  
∑   

𝑡∈𝑎𝑖
𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑡)

|𝑎𝑖|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)  
 

(5) 

Average SLA Violations (SLAV): Average SLA 

Violations (SLAV) is the mean number of SLA violations 

for departing task (li+1) during an interval SIi.SLA (t) of 

task T is the combination made up of two metrics such as 

(i) performance decrease as a result of migrations and (ii) 

breach of SLA time per active host. Thus, 

=  
∑   

𝑡∈𝑙𝑖+1
𝑆𝐿𝐴(𝑡)

|𝑙𝑖+1|
 

(6) 

The oceanic predatory fish known as tuna goes by the 

scientific name Tunnini. It has been used to reduce host 

characteristics based on RMS. Spiral foraging is the first 

tactic. When feeding, tuna swim in a spiral pattern to 

minimize host features and move towards shallower waters 

where they may be more readily attacked by RMS. The 

next tactic is called parabolic foraging. As they follow the 

last host, each tuna forms a parabolic form to envelop it. 

Initialization: Initial host populations are uniformly 

generated at random by CCTSO in the search space to 

begin the optimization process [31], 

𝑋𝑖
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏 , 𝑖 = 1,2, … , 𝑁𝑃 (7) 

where NP is a count of tuna communities by host 

characteristics, 𝑋𝑖
𝑖𝑛𝑡is the ith baseline individual, 𝑢𝑏and 

𝑙𝑏are is the search space is defined by its lower and higher 

boundaries. Additionally, the vector "rand" follows a 

uniform distribution with values ranging from 0 to 1. 

Spiral Foraging: Tuna exhibit a behavior in which they 

actively chase preceding individuals, hence facilitating the 

transfer of host-specific information among proximate 

tuna. The spiral foraging technique has the following 

mathematical formula [31], 

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖

= 1 𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃  

(8) 

𝛼1 = 𝑎 + (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥

 
(9) 

𝛼2 = (1 − 𝑎) − (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥

 
(10) 

𝛽 = 𝑒𝑏𝑙 ∙𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑏)  (11) 
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𝑙 = 𝑒3𝑐𝑜𝑠𝑐𝑜𝑠 (((𝑡𝑚𝑎𝑥+1/𝑡)−1)𝜋) 
 

(12) 

where 𝑋𝑖
𝑡+1is the ith host characteristic of the ith 

iteration, 𝑋𝑏𝑒𝑠𝑡
𝑡 is the most recent optimal host 

characteristic individual (food), 𝛼1and 𝛼2are coefficients 

of mass which regulate the propensity of the host 

features to migrate regarding the optimal resources and 

the previous resource, and is an unchanged used to 

determine how closely the tuna will adheres to the most 

effective asset and the previous resource throughout the 

initial phase, t is the current iteration number, and all 

tuna have good ability to utilize the search space surrounding 

the meal when they forage spirally. In order to perform a 

spiral search, think about creating a random coordinate in the 

search space. This makes it easier for each person to search a 

larger area and equips CCTSO with the capacity for global 

exploration. The following describes a mathematical model 

[31],  

 

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖

= 1 𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃  

(13) 

where𝑋𝑟𝑎𝑛𝑑
𝑡 is a resource monitoring service reference 

point that was generated at random. As the number of 

iterations rises, from randomized people to optimum 

individuals, TSO changes the spiral foraging reference 

points. Therefore, the spiral foraging strategy ultimate 

mathematical model is: [31], 

 

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖 = 1, 𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖−1
𝑡 , 𝑖

= 2,3, … , 𝑁𝑃, 𝑖𝑓 𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥

  𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡 , 𝑖

= 1, 𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥

   

(14) 

Parabolic Foraging: A parabolic pattern, in addition to a 

spiral pattern, is produced by tunas working together to 

feed. Tuna uses food to form a parabolic shape. Tuna 

search for Resources Monitoring Services while scanning. 

The precise mathematical model specifics are listed below 

[31], 

 

𝑋𝑖
𝑡+1 = {𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑋𝑖

𝑡) + 𝑇𝐹 ∙ 𝑝2 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑋𝑖

𝑡), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 𝑇𝐹 ∙ 𝑝2 ∙ 𝑋𝑖
𝑡 , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5  (15) 

𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥

)
(

𝑡
𝑡𝑚𝑎𝑥

)

 

(16) 

wherein TF is a random number with a value of 1 or – 

1.Although the hosts themselves are always the same, 

crossover with collected host traits from the host 

provides unique characteristics in order to solve the local 

optima problem. Equation (17) gives the CC operator, 

𝑐(𝑥𝑖) = 𝑚 ∗ 𝑝1(𝑥𝑖) + (1 − 𝑚) ∗ 𝑝2(𝑥) (17) 

where, 𝑝1(𝑥𝑖) and 𝑝2(𝑥𝑖) are the relative positions of 

parents 1 as well as parent 2 in dimensions (i) for host 

characteristics and 𝑥𝑖is the position of the newly formed 

child in dimensions (i), m is the random integer created 

by the chaotic the random number generator, and so on. 

Equations (18–19) provide the chaotic number generator 

mathematical expression, 

𝑚𝑎𝑝 = 4 ∗ 𝑧 ∗ (1 − 𝑧) (18) 

𝑚 = (0.5 ∗ 𝑟) + (0.5 ∗ 𝑚𝑎𝑝) (19) 

Equation (18) uses the created random numbers z and r 

from the compiler random number generator, while 

equation (19) uses the randomly generated arbitrary 

number m from the chaotic number generator. Together; tuna 

use the two foraging techniques of spiral and parabolic 

foraging to determine their host traits. The sample is first 

generated randomly in the asset monitoring service for the 

CCTSO optimization process. The parameter setting will 

cover the contents of parameter z. Until the end condition is 

met, all CCTSO persons are updated and computed 

continuously during the whole optimization process, at which 

point the most appropriate tracking service and the associated 

efficiency value are returned. In Algorithm 1, CCTSO 

pseudocode is displayed. 

Algorithm 1: Pseudocode for CCTSO 

Input: Population size (𝑁) and highest iteration (𝑡𝑚𝑎𝑥) 

Result: The best person in the prey position and its range of 

fitness 

Begin 

Initialize the arbitrary inhabitant of tuna swarms 𝑋𝑖
𝑖𝑛𝑡(𝑖 =

1, … , 𝑁) 
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Set variables 𝑎 = 0.7and 𝑧 = 0.05; 

while(𝑡 < 𝑡𝑚𝑎𝑥) 

Determine the fitness values (AEC, ART, AMT, C, and 

SLAV) of tuna swarms (which includes all edge and 

cloud hosts); 

 Update 𝑋𝑏𝑒𝑠𝑡
𝑡 ; 

 for(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎 𝑠𝑤𝑎𝑟𝑚𝑠) 

 Update  𝛼1, 𝛼2and 𝑝; 

 if(𝑟𝑎𝑛𝑑 < 𝑧) 

 Update the location 𝑋𝑖
𝑡+1by equation (8); 

 else if (𝑟𝑎𝑛𝑑 ≥ 𝑧) 

 if(𝑟𝑎𝑛𝑑 <
1

2
) 

 if(
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑) 

 Update the location 𝑋𝑖
𝑡+1by equation (13) 

else if (
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑) 

 Update the location 𝑋𝑖
𝑡+1by equation (8) 

else if (𝑟𝑎𝑛𝑑 ≥
1

2
) 

 Update the location 𝑋𝑖
𝑡+1by equation (15) 

              Update the new CC operator by equation (17) 

 end if 

 end if 

 end if 

 end for 

 𝑡 = 𝑡 + 1; 

end while 

Return the best individual 𝑋𝑏𝑒𝑠𝑡  (AEC, ART, AMT, C, 

and SLAV) and the best fitness value 𝐹(𝑋𝑏𝑒𝑠𝑡) 

End 

6. Stochastic Dynamic Scheduling using Policy 

Gradient Learning 

The entire system operates as follows: (1) As each 

scheduling period begins, the RMS gets task requests and 

task criterion like computations, bandwidths, and SLAs. 

(2) To predict the next scheduling options, the DRL 

model makes use of these requirements as well as the 

host features from Resources Monitoring Service. (3) 

The output of the DRL model is used by the constraint 

fulfillment module to identify probable migration and 

scheduling options. (4) RMS will notify users or IoT 

devices to transmit their inquiries straight to the task device 

or cloud device for newly generated tasks. (5) The DRL 

model's parameters and loss function are changed at the same 

time. Modelling this function with Q-tables or neural 

networks leads to a strict deterministic approach in stochastic 

conditions. However, this method modifies the network and 

optimizes the policy gradient to approximation the policy by 

using 𝐿𝑜𝑠𝑠𝑖
𝑃𝐺  as input signal. Use the R2N2 network to 

approximation the parameters of the function from Statei to 

𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺for each interval SIi. The R2N2 network's capacity 

to detect intricate temporal correlations between inputs and 

outputs is one benefit. After this certain amount of time, a 

single network can forecast both the strategy (agent leader) 

and the total loss. Use an R2N2 model with stage states, 

losses, and penalties to iteratively preprocess data and choose 

the best schedule for each planning. Because of this, the 

model can quickly adjust to the requirements of the user, the 

environment, and the specific application. 

The R2N2 network has three repeating levels with skip 

connections once the first two layers are completely linked. 

The dense layers are initially routed through a flattened, two-

dimensional input. The two separate network heads receive 

the outcome of the final recurrent layer. The performer head 

output is moulded into a 2-dimensional, 100*100 vector with 

a size of 104. This indicates that a maximum of 100 

assignments and 100 hosts can be managed by the model. 

The infrastructure must be adjusted in accordance with this 

so that an equitable comparison with a larger system may be 

made. To make sure that all values are in the range [0, 1] and 

that the total of all values in a row is 1, SoftMax is executed 

across the second dimension. This shows that the model can 

handle an aggregate of 100 tasks and 100 hosts. It is 

necessary to modify the infrastructure to correspond with this 

in order to compare it fairly to a bigger system. SoftMax is 

used over the second dimension to verify that all entries fall 

within the range of between 0 and 1 and that the sum of all 

numbers in a row is 1. 

Use the notation 𝑓𝑒for the characteristic of element e and f as 

𝑓𝑒  and 𝑓𝑒  for the lowest and highest values of the feature f 

respectively. Two scheduling strategies based on heuristics 

On the basis of a sample dataset, the minimum and maximum 

values are calculated using Local-Regression (LR) for task 

assignment and Maximum-Migration-Time (MMT) for task 

selection [32]. Then, using Equation (20), feature-wise 

standardization is carried out. 

𝑒 = {0 𝑖𝑓𝑓𝑒  = 𝑓𝑒   (1, (0,
𝑒 − 𝑓𝑒 

𝑓𝑒  − 𝑓𝑒 
) ) , 𝑒𝑙𝑠𝑒    

(20) 

The R2N2 model receives this pre-processed input and 

flattens it so that it can travel through the thick layers. By 

first producing a categorized list of hosts SortedHostsi by 

diminishing frequency in Oifor every i, the resultant 

generated O is transformed into𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 . To minimize total 
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loss, gradients contain a minus sign and are proportionate 

to this quantity. The Mean Squared Error (MSE) of the 

projected accumulated loss, which corresponds to the 

cumulative loss after a one-step look-ahead, is the second 

gradient component. CSM translates the output 

𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺  PG to  𝐴𝑐𝑡𝑖𝑜𝑛𝑖 and delivers it to the RMS at 

each scheduling interval. As a consequence, at each 

interval, the R2N2 network does a forward pass. Iterative 

pre-processing and input of the window state, losses and 

penalties into the R2N2 model yields the optimal 

scheduling strategy for each scheduling window. This 

enables the model to respond swiftly to particular user, 

environment, and application needs. 

7. Results and Discussion  

This section offers a detailed analysis of the findings 

comparing the model to a number of industry standard 

methodologies. Also, describes experimental setup, 

evaluation metrics, and data collection. CloudSim is used 

to enable edge node properties including reaction time, 

cost, power. For the constraint fulfillment module, new 

software as well as input and output preprocessing have 

been developed. The loss function is computed using 

CloudSim performance tracking and storage service. 

Tasks (cloudlets) are given to VM in the simulation 

setting, which is then given to hosts. 

DATASET: Tasks from the cloud are sent from the VM 

to the servers in the virtualized environment. For the 

present setting of task on edge-cloud environment, regard 

as a bijection from cloudlets to VM by assigning ith 

formed Cloudlet to ith formed VM and discards the VM 

when the corresponding Cloudlet is finished. 

Cloudlet dynamic workload is designed using the open-

source Bitbrain collection of real-world data. Bitbrain 

dataset shows statistics on resource use for critical 

business workloads on its infrastructure [33]. Because 

they reflect actual infrastructure utilisation patterns and 

may be used to create trustworthy input feature vectors 

for machine learning models, more than 1,000 VM 

workload logs from two machine kinds were chosen. The 

dataset has workload information for each timestamp (5 

minutes apart), including CPU cores, MIPS, RAM, and 

network (receive/transmit) and storage (read/write) 

bandwidth. It can be obtained from the BitBrain dataset 

at http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains. 

Distribute the information set into two portions with VM 

workloads of 25.00% and 75.00% each. The R2N2 

network is trained using the bigger partition, whereas the 

smaller fraction is used for testing, sensitivity analysis, 

and comparing to other similar efforts. Microsoft 

Windows IaaS cloud service is the foundation of the 

pricing mechanism for the cloud layer. 

Metrics: The following metrics has been used for results 

comparison.   

Here is the average response time analysis,  

𝐴𝑅𝑇 =
∑   

𝑡∈𝑙𝑖+1
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒(𝑡)

|𝑙𝑖+1)
 

(21) 

The list of SLA Infractions is as follows,  

𝑆𝐿𝐴𝑉 =
∑   

𝑖 𝑆𝐿𝐴𝑉𝑖 . |𝑙𝑖+1|

∑   
𝑖 𝑙𝑖

 
(22) 

Average Task Completion Time: It is determined by adding 

the average scheduling time of a task, the task's execution 

time, and the server's response time during the most recent 

scheduling interval. The overall number of tasks completed, 

the percentage of tasks finished within the anticipated 

execution time (based on the desired MIPS), the number of 

task migrations each time interval, and the total migration 

time transfer over the course of the period are all taken into 

account. 

Results Comparison Methods:  Many heuristics have been 

used to approach dynamic planning. Three of the top 

methods were chosen to solve the subproblems of server 

overload detection and task/VM selection. All of these 

variations locate the target host using the Best Fit Decreasing 

(BFD) algorithm. Additionally, contrast the outcomes with 

two popular RL techniques are frequently employed in the 

literature. 

LR-MMT: For task selection and overloading detection, 

using the Local Regression (LR) and Minimum Migration 

Time (MMT) methods, dynamically schedules workloads. 

MAD-MC: Dynamically arranges workloads based on the 

task selection and overload detection heuristics of Median 

Absolute Deviation (MAD) and Maximum Correlation 

Policy (MC), respectively. 

DDQN: Many papers in the literature have employed the 

Deep Q-Learning is based RL approach. 

REINFORCE: Fully integrated neural network using the 

REINFORCE approach based on policy gradients. 

 

Fig. 3.  Average Response Time vs. Scheduling Methods 

According to Fig. 3, proposed A3C-CCTSO-R2N2 
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scheduling policy has the shortest average response time 

compared to the other scheduling policies. Proposed 

model explicitly asks if a particular node is a perimeter 

or cloud node and distributes tasks based on RMS 

(CCTSO) without requiring repeated migrations and 

embedding AMT in the loss function. This demonstrates 

that, in contrast to previous approaches like LR-MMT, 

MAD-MC, DDQN, REINFORCE, and A3C-R2N2, 

which have increasing ART of 9.35 ms, 8.92 ms, 8.74 

ms, 8.20 ms, and 7.46 ms correspondingly, the proposed 

system has a lower ART of 6.92 ms (refer to Table 1).  

Table 1. Average response time vs. scheduling methods 

Scheduling Methods Response Time (ms) 

LR-MMT 9.35 

MAD-MC 8.92 

DDQN 8.74 

REINFORCE 8.20 

A3C-R2N2 7.46 

A3C-CCTSO-R2N2 6.92 

 

Fig. 4.  Fraction of SLA Violations vs. Scheduling 

Methods 

The A3C-CCTSO-R2N2 model, as depicted in Fig. 4, 

has fewer SLA breaches than the A3C-R2N2 policy. 

Again, this is attributable to fewer migrations and clever 

work scheduling to avoid the huge loss of value brought 

on by SLA violations. While other approaches like LR-

MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2 have resulted in higher ART of 0.093, 0.084, 

0.072, 0.064, and 0.052 correspondingly (see Table 2), 

the proposed system has fewer SLA breaches of 0.040. 

Table 2. Fraction of SLA violations vs. scheduling 

methods 

Scheduling Methods Fraction of SLA Violations 

LR-MMT 0.093 

MAD-MC 0.084 

DDQN 0.072 

REINFORCE 0.068 

A3C-R2N2 0.052 

A3C-CCTSO-R2N2 0.040 

 

Fig. 5.  Number of Completed Tasks vs. Scheduling Methods 

The A3C-CCTSO-R2N2 model has a higher percentage of 

completed tasks, as shown in Fig. 5, and it can guarantee that 

tasks can be distributed to as few cloud VMs as feasible to 

minimize cost. The number of tasks completed by the 

proposed system is greater at 1150, compared to the numbers 

of tasks finished by the LR-MMT, MAD-MC, DDQN, 

REINFORCE, and A3C-R2N2 techniques, which are 790, 

820, 895, 978, and 1127, respectively (see Table 3). 

Table 3. Number of completed tasks vs. scheduling methods 

Scheduling Methods Fraction of SLA Violations 

LR-MMT 790 

MAD-MC 820 

DDQN 895 

REINFORCE 978 

A3C-R2N2 1127 

A3C-CCTSO-R2N2 1150 

 

Fig. 6.  Number of Task Migration in Each Interval vs. 

Scheduling Methods 

The results of the total amount of assignment migrations with 

regard to simulation time are displayed in Fig. 6. Several 

techniques, including A3C-CCTSO-R2N2, LR-MMT, MAD-

MC, DDQN, REINFORCE, and A3C-R2N2, are used to 

evaluate the outcomes. According to the results, the proposed 
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system only requires 18 task migrations, compared to 42, 

33, 30, 25, and 20 for other approaches like LR-MMT, 

MAD-MC, DDQN, REINFORCE, and A3C-R2N2 

during a 20-hour simulation (see Table 4). 

Table 4. Number of task migration vs. scheduling 

methods 

Scheduling Methods Simulation time (Hours) 

0 5 10 15 20 

LR-MMT 28 34 45 36 42 

MAD-Mc 25 30 35 28 33 

DDQN 22 28 32 25 30 

REINFORCE 17 22 30 19 25 

A3C-R2N2 15 18 25 17 20 

A3C-CCTSO-R2N2 11 15 20 14 18 

 

Fig. 7.  Total Migration Time in Each Interval vs. 

Scheduling Methods 

The findings of the task interval migration time series 

with regard to the simulation time are displayed in Figure 

7. Several techniques, including A3C-CCTSO-R2N2, 

LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2, are used to evaluate the outcomes. It demonstrates 

that the proposed system has a shorter overall migration 

time of 5.0 seconds, while other approaches like LR-

MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2 have migration times of 12.00 minutes, ten 

seconds, 9.50 seconds, 7.80 seconds, and 7.50 seconds 

for simulated times of 20 hours, respectively (refer to 

Table 5). In Fig. 6 and 7, an A3C-CCTSO-R2N2 model 

may achieve optimum metric outcomes by limiting task 

migrations since migration length and quantity affect 

task response. 

 

 

Table 5. Total migration time in each interval vs. scheduling 

methods 

Scheduling Methods Simulation time (Hours) 

0 5 10 15 20 

LR-MMT 12 15 20 17 12 

MAD-Mc 11 13 15 12 10 

DDQN 10 11.5 12 13 9.5 

REINFORCE 7 8.5 10 11 7.8 

A3C-R2N2 6.2 7.7 8 9 7.5 

A3C-CCTSO-R2N2 5.5 6 7.2 7.8 5 

8. Conclusion and Future Work  

It is complex to effectively use edge and cloud resources in 

uncertain situations with changing workloads to enhance 

service quality and response times. This study introduces on-

the-fly end-to-end task scheduling for hybrid devices and 

cloud computing platforms. For reducing metrics like AEC, 

ART, AMT, SLAV, CCTSO have been developed. CCTSO 

algorithm has also optimized multiple values of hyper-

parameters based on various user needs and application 

settings. Together, tuna use the two foraging techniques of 

spiral and parabolic foraging to determine their host traits. 

Policy gradient based Reinforcement learning method (A3C) 

has been introduced for stochastic dynamic scheduling 

method. An A3C-R2N2-based scheduling algorithm 

considers all-important task and host factors to improve 

performance. The results of the experiment utilizing an 

iFogSim Toolkit upgraded to CloudSim 5.0 demonstrate the 

model superiority over other approaches and previously 

proposed RL models. The proposed method can reduce 

response time by 5.49% and SLA violation by 15.55% as 

compared to A3C-R2N2, according to extensive simulation 

studies utilizing iFogSim and CloudSim on practical Bitbrain 

dataset. Furthermore, the A3C clients in the edge-cloud 

configuration would need to have their CPU, RAM, storage, 

and bandwidth utilization tracked and synced. In addition of 

the scalability analysis, tests to determine the scalability of 

the proposed framework with regards to the quantity of hosts 

and tasks are also planned. The existing architecture has a 

limited capacity for scheduling nodes at the edges and tasks. 
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