

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 160

Residual Recurrent Neural Network (R2N2) and Intelligent Resource

Optimization based Dynamic Scheduling for Edge-Cloud Computing

Environments

S. Supriya*1, K. Dhanalakshmi2

Submitted: 09/10/2023 Revised: 28/11/2023 Accepted: 09/12/2023

Abstract: Internet-of-Things (IoT) based applications has resulted use of Fog computing paradigm, which permit effortlessly exploiting

both mobile-edge and cloud resources. Applications are hard to schedule due to restricted resource capabilities, IoT mobility factors,

heterogeneity of resources, networking hierarchy, stochastic behaviors. Task arrival rates, task durations, resource needs are

unpredictable in the edge-cloud ecosystem, making scheduling and resource monitoring problematic. In order to reduce parameters like

Average Energy Consumption (AEC), Average Response Time (ART), Average Migration Time (AMT), Service Level Agreement

Violations (SLAV), Chaotic Crossover Tuna Swarm Optimizer (CCTSO) presented in this work. CCTSO algorithm has also optimized

application settings of hyper-parameters based on various user requirements. These requirements, together with information from the

Resource Monitoring Service about the computer characteristics, are used by Residual Recurrent Neural Network (R2N2) model to

predict the next scheduling options. R2N2 is known to update model parameters fast, whereas Asynchronous-Advantage-Actor-Critic

(A3C) adaptation is recognized to dynamic conditions swiftly with less input. For stochastic Edge-Cloud contexts, A3C learning-based

real-time scheduler that enables concurrent decentralized learning among many agents. When compared to other existing approaches,

trials done on real-world data sets indicate substantial gains in terms of energy usage, reaction time, SLA, operation cost.

Index Terms: Asynchronous-Advantage-Actor-Critic (A3C), Cloud Technology, Chaotic Crossover Tuna Swarm Optimizer (CCTSO),

Deep Reinforcement Learning, Edge Computing, Residual Recurrent Neural Network (R2N2) and Task Scheduling.

1. Introduction

The Internet of Things (IoT) has made strides, which has

led to a tremendous quantity of data being generated at an

enormous velocity. Applications that use this data

to analyze and take actions in accordance with defined

goals need a sufficient computational infrastructure to meet

user needs [1]. Many time-critical applications, like those

used in healthcare, emergency response, and traffic

monitoring, find it challenging to implement cloud-centric

IoT apps because of rising network latency. Traditional

cloud computing has been created to assist IoT (Internet of

Things) successfully offload its responsibilities since

consumer resources like storage capacity and signal

resolution are limited [2-3]. On the other side, outsourcing

localized tasks to a distant cloud center can result in

significant delays, especially if a lot of task data needs to

be exchanged across local computers and cloud centers.

Almost all programs and scenarios that depend on latency

find this sort of delay intolerable. Additionally, sending a

lot of data through a network connected to a central server

might seriously congest the network. To meet growing

resource demands and increasing QoS (Quality of Service)

requirements, new technologies are needed [4].

ECC (Edge Cloud Computing) paradigm is promising

paradigm which gives lower latency response for IoT

applications [5-7]. Since network edges have limitations in

their processing capabilities and do not respond

immediately in time-sensitive applications, ECC has been

proposed [8]. ECC is an innovative component that is

implemented among the on-premises level and the

computing environment cloud layer in order to enhance

service quality [9]. Unlike cloud computing, which

requires data to be transferred across the core network,

ECC places server hardware closest to the local side. ECC

has an opportunity to prevent the undesirable delay caused

by networks while offering high downstream bandwidth,

which can lower the system latency [10]. As a result, ECC

has garnered growing academic and industrial research

attention [11]. The past several years have seen a lot of

research on outsourcing computation in an ECC

environment [12].

However, due to various circumstances, it is quite

challenging to plan the computational paradigm of the

Edge program. Computer servers adjust to the

heterogeneity between faraway clouds and nearby edge

nodes in terms of capacity, speed, reaction time, and

energy usage. In addition, many types of computers may

be present between the cloud and peripheral levels.

Furthermore, the mobility element of the Edge paradigm

1 Research Scholar, Department of Computer Science, Kongunadu Arts

and Science College, Coimbatore.
2 HOD, Department of Information Technology, Kongunadu Arts and

Science College, Coimbatore. Email: kdhanalakshmimca@gmail.com

* Corresponding Author Email: supriyasundaram@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 161

causes the bandwidth to fluctuate continually between data

sources and processing nodes, demanding ongoing

dynamic tweaking to meet application requirements. The

scheduling problem is made more complex by the ECC

unpredictable task arrival rate, work duration, and resource

needs. By efficiently leveraging multi-layer resources,

dynamic task scheduling becomes necessary to reduce

energy consumption while simultaneously raising

application’s quality of service under uncertain

circumstances.

Heuristic computations, meta-heuristic techniques that

employ biological motivation and swarm intellect, and

hybrid task-scheduling algorithms are the several types of

task-scheduling methods used in cloud centers [13].

Several performance metrics such as system utilization,

execution time, load balancing, network communication

cost, and delay have been used in the scheduling process

[14]. The optimum answer can be found using the heuristic

work scheduling technique. However, it cannot always be

relied upon to produce the optimum outcomes and is prone

to partial selection. The meta-heuristic approach is an

enhanced version of a heuristic algorithm, which combines

local search and random algorithms [15–16]. It manages a

lot of search space knowledge and allows for the

investigation and expansion of the search space.

Additionally, it has the ability to find approximations of

optimal solutions by using learning procedures to learn and

master new information.

Heuristics models are failed to include the ever changing

conditions resulting from the requirements and the

emergence of Edge-Cloud computing paradigm. In

addition, they have a hard time adjusting to continuous

system changes, which are common in Edge-Cloud

environments. To do this, dynamic optimization of the

system may benefit from a scheduling approach based on

Reinforcement Learning (RL) [17]. Since the models are

created using actual data, they are more precise and can

recognize complex interactions between several

interdependent components. Resource Management

Systems (RMS) in remote systems has recently been

optimized using a variety of value-based RL approaches

[18]. The states of ECC environments which represent

predicted cumulative rewards in RL setup, these solutions

either employ neural networks or store Q-value functions

in tables. Furthermore, no prior study has utilised temporal

patterns in workload, network, or node activity to enhance

scheduling decisions. These works also employ a centrally

administered scheduling policy which is inappropriate for

hierarchical or decentralized systems. The scheduling issue

in stochastic edge-cloud systems are mapped and

addressed using asynchronous policy gradient approaches.

These methods may continually adjust to the dynamics of

the system to provide better outcomes by employing

recurrent neural networks to recognize behavioural

patterns.

In order to reduce indicators like AEC, ART, AMT, Cost

(C), and SLAV, the CCTSO (Chaotic Crossover Tuna

Swarm Optimizer) has been presented in this paper.

Contrary to traditional DQN (Deep Q-Network) systems,

the suggested solution may swiftly modify the allocation

strategy in accordance with dynamic workloads, host

behaviour, and QoS requirements. This research also

shows how to plan in a hybrid Edge-Cloud scenario using

an R2N2-based approach that takes temporal trends into

account.

2. Literature Review

Liu et al. [19], a QoS-guaranteed edge user data

deployment strategy is introduced to increase the reduction

in service latency and reduces the overall system cost (SC)

with available resources. To compare the suggested

technique with three alternative benchmark methods

utilising real-world datasets, theoretical testing and

performance analysis of the strategy are required.

Experiments show how effective and efficient the proposed

strategy than the existing methods.

In order to lessen the strain on server facilities and other

centrally managed computing resources, Alamouti et al.

[20] established a novel architectural method for cloud

decentralized governance called the hybrid edge cloud

(HEC). In using the resources of smart devices, HEC

reduces communication latencies, frees up network

capacity, and uses them. Modern network technologies like

5G and WiFi-6 are combined with benefits at HEC, which

are used in public as well as private clouds to take

advantage of computational power on smart devices and

create a decentralized infrastructure that is scalable and

resilient in the hyperconnected future.

To maximize resource use and reduce transferring

disapproval in the edge-cloud computing system, Ullah et

al. [21] improved the transfer of tasks under delay

constraints. Deep reinforcement learning is used while

taking into account the best choices for work offloading

and resource allocation. Stochastic decision process is used

to formulate this optimization issue, and DQN to identify

the best task offloading strategy. To change the policy and

offload the task as efficiently as possible in a flexible edge-

cloud system while considering resource consumption, the

DQNEC (DQN-edge-cloud) computational scheme was

created. Simulations of DQNEC shows that it performs

better than heuristic approaches in terms of optimising task

offloads with low task rejection rates and resource

utilisations at cheap costs.

To swiftly adapt to dynamic circumstances with minimal

data, Tuli et al. [22] proposed the use of a R2N2 with A3C

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 162

learning. For stochastic ECC systems that provide

concurrent decentralized learning across several agents, an

A3C-based real-time scheduler is presented. In order to

make effective scheduling decisions, the R2N2 architecture

is introduced. In addition to temporal patterns, it may

gather a variety of host and task data. According to the

requirements of the application, the provided framework is

adaptable and may change numerous hyper-parameters.

Experiments on real datasets reveal that when compared to

state-of-the-art algorithms, there are substantial increases

in power consumption, response time, Service Level

Agreement (SLA), and operational expenses of 14.40%,

7.74%, 31.90%, and 4.64%, respectively.

Deep learning as a tool for IoT was brought to the frontier

computing environment by Li et al. [23]. A new offloading

approach is developed to increase the effectiveness of IoT

applications employing deep learning with edge computing

because the processing power of the present edge nodes is

constrained. Multiple deep learning tasks are performed in

the performance evaluation using an offloading method in

an edge computing environment. The suggested technique

outplay other optimization strategies for IoT , according to

evaluation findings.

LASER, a method using deep learning for the speculative

performance and replication of time-sensitive tasks, was

presented by Xu et al. [24]. A wide range of categorization

and prediction issues have been effectively solved through

machine learning. Compared to conventional machine

learning methods, the DNN (Deep Neural Network) may

provide more accurate regression (prediction) because

between the input layer and the output layer, there are

several layers of hidden units. LASER with SRQuant is the

speculative CV approach based on quantitative analysis.

They aim to reduce the cost of speculative execution,

measured by the total (virtual) duration of tasks on the

device, while increasing PoCD (probability of completion

before deadlines), or the possibility that MapReduce tasks

will be finished on time. The two approaches should be

assessed and compared using conventional experiments.

Zhang et al. [25] implementing a double deep Q-learning

model for edge planning that is energy-efficient. The

proposed model specifically employs the target network to

learn the parameters and the created framework to generate

Q values for each DVFS (dynamic voltage and frequency

scaling) technique. QDL-EES uses the ReLU (Rectified

Linear Unit) function avoids gradient vanishing in the

double-deep Q-learning model. The parameters of the

proposed model are then trained using an algorithm for

learning based on experience replay. On Edge CloudSim,

the proposed model is contrasted with DQL-EES with

regard to of energy savings and training time. Results show

that proposed approach can improve training efficiency

over QQL-EES and save an average of 2.00% to 2.40% of

energy, demonstrating its promise towards energy-efficient

edge scheduling.

In order to reduce energy costs for large-scale Cloud

Service Provider (CSP), Cheng et al. [26] proposed a

unique Deep Reinforcement Learning (DRL)-based

allocation of resources and task scheduling system. These

CSP have a very high number of servers and process vast

amounts of user requests each day. The two-stage RP-TS

processor with deep Q-learning seeks to automatically

make long-term judgments optimal limit while training in

changing contexts, such as customer demand trends and

actual power costs. In order to achieve exceptionally high

power efficiency, a low rejection rate, a short runtime, and

speedy convergence, the proposed DRL-Cloud employs

training methods such network targeting, test replay,

exploration, and mining. The proposed DRL-Cloud

outperforms one of the most advanced energy-efficient

algorithms by up to 320% while maintaining an average

reject rate that is lower. When contrasted to a rapid round-

rob starting point, the proposed DRL-Cloud can save

runtime by up to 144% for a CSP setup comprising 5,000

servers and 200,000 tasks.

For periodical tasks in real-time systems, Zhang et al. [27]

presented DQL-EES (Deep Q-learning model- Energy-

Efficient Scheduling) method. In particular, a deep Q-

learning model is produced by combining the multi-layer

autoencoder and the Q-learning technique. When applying

the Q function inside the Q-learning deep learning model,

a stacked autoencoder is employed to calculate the Q value

for each system state. The training methodology also

emphasizes the real-world replay scheme created to

capture the essential components of the deep Q-learning

model. In comparison to hybrid DVFS (Dynamic Pressure

and Frequency Scaling) scheduling based on Q-learning

(QL-HDS), the findings demonstrate that the suggested

technique offers an average energy saving advantage of

4.20%.

In order to simplify the process of scheduling huge tasks

upon cloud computing resources and decrease both usage

of resources and task waiting time, four proficient and

reinforced learning-based scheduling techniques were

given by Rjoub et al. [28]. These techniques include DQN,

DRL-LSTM (Deeper Reinforcement Learning Combined

with LSTM), and RNN-LSTM (Recurrent Neural

Network- Long Short-Term Memory). Reinforcement

learning is the first method. DRL-LSTM outperforms the

other three techniques in testing on the Google Cloud

Platform. Additionally, it was demonstrated that the DRL-

LSTM classifier reduced CPU overhead by 35.00%

compared to the RR (Round Robin) and PSO (Particle

Swarm Optimization) methods and by 67.00% compared

to the SJF (Shortest Job First) technique. DRL-LSTM

system reduces RAM (Random-Access Memory)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 163

utilization costs by 31.25%, 65.00%, and 72.00%

compared to the improved PSO, RR, and SJF.

First, Bui et al. [29] use the Gaussian procedure regression

method to forecast how resources would be used in the

forthcoming era. The convex optimization method is then

used to determine the right number of actual hosts for

every single monitoring window. To guarantee that just a

handful of systems can still deliver an acceptable level of

service, this amount of interest is determined. In order to

fulfill the goal of energy savings, a similar migrating

directive is then sent out to pile up virtual computers and

shut down the idle physical servers. In order to test the

effectiveness of the suggested tactic, experiments were

carried out utilizing real workloads produced by the free

source Montage toolkit and simulated data from 29 days of

Google monitoring. Using the evaluation, it demonstrates

that the proposed strategy may significantly reduce energy

usage and preserve system performance. IoT, an emerging

technology, makes it easy and advantageous to share data

with additional devices across wireless networks.

However, due of their continual development and

technological advancements, IoT systems are more

vulnerable to cyber attacks, which could result in strong

assaults. Due to limited resource capabilities, IoT mobility

factors, heterogeneity of resources, networking hierarchy,

and stochastic behaviors, scheduling application tasks

effectively in such situations is difficult. The stochastic

nature of the edge-cloud ecosystem, which includes factors

like task arrival rates, task durations, and resource

requirements, makes scheduling and resource monitoring

difficult. They are ineffective at using temporal demand

patterns and are only suitable for centralized installations.

3. System Model and Problem Formulation

In this work, it is assumed that each of the peripheral and

cloud nodes make up the underlying architecture. Fig. 1

depicts the system model in wide strokes. The network

hierarchy diverse resources from edges to multi-hops

distant clouds form environment in edge clouds.

Computers host many application activities. There is

significant variability in computing capability and response

times between these servers. Since they are closer to the

customers, edge devices offer substantially faster response

times but have limited computational capacity due to

resource constraints. The response time of cloud resources

(Virtual Machine), on the other hand, is substantially

higher when they are several hops distant from the users.

However, cloud nodes have more resources and better

computational power, allowing them to execute several

tasks at once.

Fig. 1. System Model

Resource Management System (RMS) schedule, migrate,

and monitor infrastructure. Along with their QoS and SLA

requirements, IoT users and devices submit tasks to the

RMS. It regularly decides whether to relocate ongoing

work to new hosts and arranges new activities in line with

the optimization objectives. The development expected

completion dates or deadlines, as well as the CPU, RAM,

bandwidth, and storage have an impact on the RMS

decision. In order to simulate this effect, tasks are

generated using the WGM (Workload Generation Module),

a stochastic task generator.

DRLM (Deep Reinforcement Learning Module), interacts

with the Scheduling and Migration services to offer

locations for each task on the server. Run many alternative

schedulers in DRLM with distinct tasks and node

partitions. These schedulers can be applied to a single node

or a number of edge cloud nodes. The computational load

may be dispersed among many servers, as demonstrated by

earlier research, enabling numerous agents to learn

parameter changes concurrently and enabling quicker

learning within the limitations of various devices.

resources are scarce [30]. In order to update each host

model separately, it is assumed that all edge and cloud

nodes will add and synchronize regional gradients to their

schedulers. A policy learning model in the DRLM gives

each planner a distinct instance of the global neural

network, enabling asynchronous updates. Another crucial

component of RMS is the CSM (Constraint Satisfaction

Module), which assesses limitations such whether a task is

being moved or if the destination server has enough

capacity. nay, to assess the suitability of the DRLM idea.

Workload Model: Every task has a changing workload,

and tasks are generated randomly. As done in other studies

[8], [30], subdivide the performance duration into periodic

intervals of equal length. According to the chronological

sequence of occurrence, the planned intervals are

numbered as illustrated in Fig. 2.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 164

Fig. 2. Dynamic Task Workload Model

The ith scheduling interval, denoted as 𝑆𝐼𝑖, begins at time 𝑡𝑖

and lasts until the start of the subsequent interval, or 𝑡𝑖+1
th

subscript were active in each 𝑆𝐼𝑖and designated as 𝑎𝑖.

Further, in initial phases of 𝑆𝐼𝑖, sets of tasks completed

denoted by𝑙𝑖and new tasks are sent by WGM are denoted

as 𝑛𝑖.New tasks (ni) are inserted into systems as tasks (𝑙𝑖)

are removed. As a result, the active tasks at the very start

of the time interval 𝑆𝐼𝑖 are 𝑎𝑖is 𝑎𝑖−1 ∪ 𝑛𝑖\𝑙𝑖.

A metric reflecting Loss that is determined for each

scheduling period is used to measure the scheduler's

performance. The scheduler performs better the smaller the

loss value. Denote loss of the interval 𝑆𝐼𝑖as 𝐿𝑜𝑠𝑠𝑖.𝐻𝑖is

denoted as the ith host in an enumeration of Hosts.

Problem Formulation: The metric referred to as Loss

provided for every scheduling interval serves as a measure

of the scheduler effectiveness. The lower the loss value has

given better scheduling. Declare the interval𝑆𝐼𝑖as 𝐿𝑜𝑠𝑠𝑖. In

an array of hosts, 𝐻 is designated as the ith host. The group

of hosts is referred to as Hosts in the edge-cloud

environment, and its enumeration is [𝐻0, 𝐻1 , … , 𝐻𝑛].

Assume that there are n hosts in total at any given time

during execution. Add the symbol T to the host that is

allocated to a task. Define a scheduling tool as a mapping

from a system state to an action that includes choosing a

host for fresh assignments and deciding whether to migrate

existing tasks. The state of the system at the beginning of

𝑆𝐼𝑖, denoted as Statei which consists of the parameter

values of Hosts, remaining active tasks of the previous

interval which (𝑎𝑖−1\𝑙𝑖) and new tasks (𝑛𝑖).

Schedulers must choose hosts to allocate or migrate which

denotes 𝐴𝑐𝑡𝑖𝑜𝑛𝑖for 𝑆𝐼𝑖 , for each task in𝑎𝑖 (= 𝑎𝑖−1 ∪

𝑛𝑖\𝑙𝑖). Let the migratable tasks be 𝑚𝑖 ⊆ 𝑎𝑖−1 ∪ 𝑙𝑖 . As a

result, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 = {ℎ ∈ Hosts for task𝑇|𝑇 ∈ 𝑚𝑖 ∪ 𝑛𝑖},

which is a decision on migration for activities in 𝑚𝑖 and

allocation for activities in 𝑛𝑖. As a result, the function

scheduler, denoted as Model, is 𝑆𝑡𝑎𝑡𝑒𝑖 → 𝐴𝑐𝑡𝑖𝑜𝑛𝑖the

model allocates tasks to hosts, with n being the number of

servers in the Edge-Cloud data center, and determines how

tasks are assigned to hosts over an interval. Thus, Equation

(1) may be used to explain the issue for an ideal model.

∑ 𝐿𝑜𝑠𝑠𝑖 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖

𝑖

= 𝑀𝑜𝑑𝑒𝑙(𝑆𝑡𝑎𝑡𝑒𝑖) ∀𝑖 ∀𝑇

∈ 𝑚𝑖⋃
 𝑛𝑖 ,

{𝑇} ← 𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇)

(1)

4. Reinforcement Learning Model

Reinforcement Learning models are introduced for

handling issues described in Section 3 as they are suitable

for policy gradient learning.

Input Specification: Statei, which is made up of host

factors including CPU, RAM, bandwidth, and disk

utilization and capacity, is the input for the scheduler

Model [16]. The host Million Instructions Per Second

(MIPS), response time, cost per unit time, power features,

cost per hour, cost per minute, and number of tasks

assigned to this host are also listed. The computational

(CPU), memory (RAM), and I/O (disk and bandwidth)

capabilities of different hosts would vary. Such factors are

essential for scheduling decisions because tasks in an edge-

cloud environment compute, memory, and I/O limits.

Additionally, by hiding the hosts that have no tasks,

allowing several tasks to be assigned to a compact group of

hosts could guarantee low energy use. Faster disk

read/write rates on the host could enable the completion of

I/O-intensive operations and avoid SLA violations. In the

feature vector referred to as𝐹𝑉𝑖
𝐻𝑜𝑠𝑡𝑠, each of these

parameters is specified for every host. The assignments in

𝑎𝑖 are divided into: 𝑛𝑖and 𝑎𝑖−1\𝑙𝑖, two separate groups.

The first set of parameters includes the task CPU, RAM,

bandwidth, and storage space needs.

Output Specification: Depending on the input Statei,

proposed model needs to assign hosts for tasks in 𝑎𝑖 in the

beginning of interval 𝑆𝐼𝑖 , and results referred 𝐴𝑐𝑡𝑖𝑜𝑛𝑖

include host assignments for new tasks 𝑛𝑖 and migration

decisions for tasks from previous periods that are still in

progress ∈ 𝑎𝑖−1\𝑙𝑖.Each task is transferred must be

migratable to the new server as𝑚𝑖 which is ⊆ 𝑎𝑖 according

to the feasibility criteria. Additionally, whenever a host h is

assigned to a particular task T, h should not become

overloaded after allocation, i.e., h is appropriate for T. As a

result, 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 by Equation (2) in such a way that it

applies to the interval𝑆𝐼𝑖 , ∀𝑇 ∈ 𝑛𝑖 ∪ 𝑚𝑖, {𝑇} ←

𝐴𝑐𝑡𝑖𝑜𝑛𝑖(𝑇),

= {ℎ ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑛𝑖 ℎ𝑛𝑒𝑤 ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡

∈ 𝑚𝑖 𝑖𝑓 𝑡 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑

(2)

appropriate for 𝑡 ∀ 𝑡 ∈ 𝑛𝑖 ∪ 𝑚𝑖is subject to Actioni.

Neural networks may produce host-task allocation

preferences. This indicates that the model offers an ordered

list of hosts instead of one for every task. Additionally, a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 165

penalty is applied to uncontrolled behavior. Specifically,

this captures two features of punishment: (1) the

percentage of tasks that the simulation tried to transfer but

was unable to do so is known as the migration penalty; and

(2) the number of hosts who were granted greater priority

but were unable to complete a task is added for each task

to determine the host allocation penalty.

5. Proposed Methodology

For reducing parameters such as AEC, ART, AMT, and

SLAV, the CCTSO has been developed. CCTSO algorithm

has also optimized multiple values of hyper-parameters

based on various user needs and application settings. These

requirements, along with the features of the Resource

Monitoring Service server, are used by R2N2 to forecast

future scheduling decisions. R2N2 is known to update

model parameters fast, but A3C adaptation is recognized to

adapt swiftly to dynamic conditions with less data. An

A3C-based real-time scheduler is proposed that supports

concurrent decentralised learning among several agents in

the stochastic Edge-Cloud scenario.

AEC: The term "AEC" refers to the power consumption of

hardware and software, which includes all Edge and Cloud

servers, normalised to the environment's maximum

carrying capacity for any given time period. However, the

energy sources used by periphery and cloud nodes could

vary with the energy-saving devices for the edge and a

primary power source for the cloud. Add a factor 𝛼ℎ ∈

[0,1] to the energy used by a host, that is possible to

be adjusted for peripheral and cloud nodes based on user

requirements and deployment strategy. Following is how

the power is normalized:

=
∑

ℎ∈𝐻𝑜𝑠𝑡𝑠 𝛼ℎ ∫
𝑡𝑡+1

𝑡=𝑡1
𝑃ℎ(𝑡)𝑑𝑡

∑
ℎ∈𝐻𝑜𝑠𝑡𝑠 𝛼ℎ𝑃ℎ

𝑚𝑎𝑥(𝑡𝑖+1 − 𝑡𝑖)

(3)

where the power function of host h with respect to time is

denoted by 𝑃ℎ(𝑡), while the maximum power of h is

indicated by 𝑃ℎ
𝑚𝑎𝑥.

ART : The largest response time up to the current interval,

normalized by the average reaction time for all tasks 𝑙𝑖+1 in

an interval SIi, is the average reaction time. Task response

time is the product of task execution time and the task

planned host response time. ART is described,

𝐴𝑅𝑇𝑖 =
∑

𝑡∈𝑙𝑖+1
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)

|𝑙𝑖+1|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)

(4)

AMT: AMT for all active tasks (ai) during an interval SIi

is the mean migration time for every task, normalized by

the longest possible migration time up to the preceding

interval. The definition of AMT is described,

=
∑

𝑡∈𝑎𝑖
𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑡)

|𝑎𝑖|𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)

(5)

Average SLA Violations (SLAV): Average SLA

Violations (SLAV) is the mean number of SLA violations

for departing task (li+1) during an interval SIi.SLA (t) of

task T is the combination made up of two metrics such as

(i) performance decrease as a result of migrations and (ii)

breach of SLA time per active host. Thus,

=
∑

𝑡∈𝑙𝑖+1
𝑆𝐿𝐴(𝑡)

|𝑙𝑖+1|

(6)

The oceanic predatory fish known as tuna goes by the

scientific name Tunnini. It has been used to reduce host

characteristics based on RMS. Spiral foraging is the first

tactic. When feeding, tuna swim in a spiral pattern to

minimize host features and move towards shallower waters

where they may be more readily attacked by RMS. The

next tactic is called parabolic foraging. As they follow the

last host, each tuna forms a parabolic form to envelop it.

Initialization: Initial host populations are uniformly

generated at random by CCTSO in the search space to

begin the optimization process [31],

𝑋𝑖
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑 ∙ (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏 , 𝑖 = 1,2, … , 𝑁𝑃 (7)

where NP is a count of tuna communities by host

characteristics, 𝑋𝑖
𝑖𝑛𝑡is the ith baseline individual, 𝑢𝑏and

𝑙𝑏are is the search space is defined by its lower and higher

boundaries. Additionally, the vector "rand" follows a

uniform distribution with values ranging from 0 to 1.

Spiral Foraging: Tuna exhibit a behavior in which they

actively chase preceding individuals, hence facilitating the

transfer of host-specific information among proximate

tuna. The spiral foraging technique has the following

mathematical formula [31],

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖

= 1 𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃

(8)

𝛼1 = 𝑎 + (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥

(9)

𝛼2 = (1 − 𝑎) − (1 − 𝑎) ∙
𝑡

𝑡𝑚𝑎𝑥

(10)

𝛽 = 𝑒𝑏𝑙 ∙𝑐𝑜𝑠 𝑐𝑜𝑠 (2𝜋𝑏) (11)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 166

𝑙 = 𝑒3𝑐𝑜𝑠𝑐𝑜𝑠 (((𝑡𝑚𝑎𝑥+1/𝑡)−1)𝜋)

(12)

where 𝑋𝑖
𝑡+1is the ith host characteristic of the ith

iteration, 𝑋𝑏𝑒𝑠𝑡
𝑡 is the most recent optimal host

characteristic individual (food), 𝛼1and 𝛼2are coefficients

of mass which regulate the propensity of the host

features to migrate regarding the optimal resources and

the previous resource, and is an unchanged used to

determine how closely the tuna will adheres to the most

effective asset and the previous resource throughout the

initial phase, t is the current iteration number, and all

tuna have good ability to utilize the search space surrounding

the meal when they forage spirally. In order to perform a

spiral search, think about creating a random coordinate in the

search space. This makes it easier for each person to search a

larger area and equips CCTSO with the capacity for global

exploration. The following describes a mathematical model

[31],

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖

= 1 𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑
𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃

(13)

where𝑋𝑟𝑎𝑛𝑑
𝑡 is a resource monitoring service reference

point that was generated at random. As the number of

iterations rises, from randomized people to optimum

individuals, TSO changes the spiral foraging reference

points. Therefore, the spiral foraging strategy ultimate

mathematical model is: [31],

𝑋𝑖
𝑡+1 = {𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖
𝑡 , 𝑖 = 1, 𝛼1 ∙ (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝛽 ∙ |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡|) + 𝛼2 ∙ 𝑋𝑖−1
𝑡 , 𝑖

= 2,3, … , 𝑁𝑃, 𝑖𝑓 𝑟𝑎𝑛𝑑 <
𝑡

𝑡𝑚𝑎𝑥

 𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖

𝑡 , 𝑖

= 1, 𝛼1 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 ∙ |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡|) + 𝛼2 ∙ 𝑋𝑖−1

𝑡 , 𝑖 = 2,3, … , 𝑁𝑃, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥
𝑡

𝑡𝑚𝑎𝑥

(14)

Parabolic Foraging: A parabolic pattern, in addition to a

spiral pattern, is produced by tunas working together to

feed. Tuna uses food to form a parabolic shape. Tuna

search for Resources Monitoring Services while scanning.

The precise mathematical model specifics are listed below

[31],

𝑋𝑖
𝑡+1 = {𝑋𝑏𝑒𝑠𝑡

𝑡 + 𝑟𝑎𝑛𝑑 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑋𝑖

𝑡) + 𝑇𝐹 ∙ 𝑝2 ∙ (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑋𝑖

𝑡), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5 𝑇𝐹 ∙ 𝑝2 ∙ 𝑋𝑖
𝑡 , 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5 (15)

𝑝 = (1 −
𝑡

𝑡𝑚𝑎𝑥

)
(

𝑡
𝑡𝑚𝑎𝑥

)

(16)

wherein TF is a random number with a value of 1 or –

1.Although the hosts themselves are always the same,

crossover with collected host traits from the host

provides unique characteristics in order to solve the local

optima problem. Equation (17) gives the CC operator,

𝑐(𝑥𝑖) = 𝑚 ∗ 𝑝1(𝑥𝑖) + (1 − 𝑚) ∗ 𝑝2(𝑥) (17)

where, 𝑝1(𝑥𝑖) and 𝑝2(𝑥𝑖) are the relative positions of

parents 1 as well as parent 2 in dimensions (i) for host

characteristics and 𝑥𝑖is the position of the newly formed

child in dimensions (i), m is the random integer created

by the chaotic the random number generator, and so on.

Equations (18–19) provide the chaotic number generator

mathematical expression,

𝑚𝑎𝑝 = 4 ∗ 𝑧 ∗ (1 − 𝑧) (18)

𝑚 = (0.5 ∗ 𝑟) + (0.5 ∗ 𝑚𝑎𝑝) (19)

Equation (18) uses the created random numbers z and r

from the compiler random number generator, while

equation (19) uses the randomly generated arbitrary

number m from the chaotic number generator. Together; tuna

use the two foraging techniques of spiral and parabolic

foraging to determine their host traits. The sample is first

generated randomly in the asset monitoring service for the

CCTSO optimization process. The parameter setting will

cover the contents of parameter z. Until the end condition is

met, all CCTSO persons are updated and computed

continuously during the whole optimization process, at which

point the most appropriate tracking service and the associated

efficiency value are returned. In Algorithm 1, CCTSO

pseudocode is displayed.

Algorithm 1: Pseudocode for CCTSO

Input: Population size (𝑁) and highest iteration (𝑡𝑚𝑎𝑥)

Result: The best person in the prey position and its range of

fitness

Begin

Initialize the arbitrary inhabitant of tuna swarms 𝑋𝑖
𝑖𝑛𝑡(𝑖 =

1, … , 𝑁)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 167

Set variables 𝑎 = 0.7and 𝑧 = 0.05;

while(𝑡 < 𝑡𝑚𝑎𝑥)

Determine the fitness values (AEC, ART, AMT, C, and

SLAV) of tuna swarms (which includes all edge and

cloud hosts);

 Update 𝑋𝑏𝑒𝑠𝑡
𝑡 ;

 for(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎 𝑠𝑤𝑎𝑟𝑚𝑠)

 Update 𝛼1, 𝛼2and 𝑝;

 if(𝑟𝑎𝑛𝑑 < 𝑧)

 Update the location 𝑋𝑖
𝑡+1by equation (8);

 else if (𝑟𝑎𝑛𝑑 ≥ 𝑧)

 if(𝑟𝑎𝑛𝑑 <
1

2
)

 if(
𝑡

𝑡𝑚𝑎𝑥
< 𝑟𝑎𝑛𝑑)

 Update the location 𝑋𝑖
𝑡+1by equation (13)

else if (
𝑡

𝑡𝑚𝑎𝑥
≥ 𝑟𝑎𝑛𝑑)

 Update the location 𝑋𝑖
𝑡+1by equation (8)

else if (𝑟𝑎𝑛𝑑 ≥
1

2
)

 Update the location 𝑋𝑖
𝑡+1by equation (15)

 Update the new CC operator by equation (17)

 end if

 end if

 end if

 end for

 𝑡 = 𝑡 + 1;

end while

Return the best individual 𝑋𝑏𝑒𝑠𝑡 (AEC, ART, AMT, C,

and SLAV) and the best fitness value 𝐹(𝑋𝑏𝑒𝑠𝑡)

End

6. Stochastic Dynamic Scheduling using Policy

Gradient Learning

The entire system operates as follows: (1) As each

scheduling period begins, the RMS gets task requests and

task criterion like computations, bandwidths, and SLAs.

(2) To predict the next scheduling options, the DRL

model makes use of these requirements as well as the

host features from Resources Monitoring Service. (3)

The output of the DRL model is used by the constraint

fulfillment module to identify probable migration and

scheduling options. (4) RMS will notify users or IoT

devices to transmit their inquiries straight to the task device

or cloud device for newly generated tasks. (5) The DRL

model's parameters and loss function are changed at the same

time. Modelling this function with Q-tables or neural

networks leads to a strict deterministic approach in stochastic

conditions. However, this method modifies the network and

optimizes the policy gradient to approximation the policy by

using 𝐿𝑜𝑠𝑠𝑖
𝑃𝐺 as input signal. Use the R2N2 network to

approximation the parameters of the function from Statei to

𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺for each interval SIi. The R2N2 network's capacity

to detect intricate temporal correlations between inputs and

outputs is one benefit. After this certain amount of time, a

single network can forecast both the strategy (agent leader)

and the total loss. Use an R2N2 model with stage states,

losses, and penalties to iteratively preprocess data and choose

the best schedule for each planning. Because of this, the

model can quickly adjust to the requirements of the user, the

environment, and the specific application.

The R2N2 network has three repeating levels with skip

connections once the first two layers are completely linked.

The dense layers are initially routed through a flattened, two-

dimensional input. The two separate network heads receive

the outcome of the final recurrent layer. The performer head

output is moulded into a 2-dimensional, 100*100 vector with

a size of 104. This indicates that a maximum of 100

assignments and 100 hosts can be managed by the model.

The infrastructure must be adjusted in accordance with this

so that an equitable comparison with a larger system may be

made. To make sure that all values are in the range [0, 1] and

that the total of all values in a row is 1, SoftMax is executed

across the second dimension. This shows that the model can

handle an aggregate of 100 tasks and 100 hosts. It is

necessary to modify the infrastructure to correspond with this

in order to compare it fairly to a bigger system. SoftMax is

used over the second dimension to verify that all entries fall

within the range of between 0 and 1 and that the sum of all

numbers in a row is 1.

Use the notation 𝑓𝑒for the characteristic of element e and f as

𝑓𝑒 and 𝑓𝑒 for the lowest and highest values of the feature f

respectively. Two scheduling strategies based on heuristics

On the basis of a sample dataset, the minimum and maximum

values are calculated using Local-Regression (LR) for task

assignment and Maximum-Migration-Time (MMT) for task

selection [32]. Then, using Equation (20), feature-wise

standardization is carried out.

𝑒 = {0 𝑖𝑓𝑓𝑒 = 𝑓𝑒 (1, (0,
𝑒 − 𝑓𝑒

𝑓𝑒 − 𝑓𝑒
)) , 𝑒𝑙𝑠𝑒

(20)

The R2N2 model receives this pre-processed input and

flattens it so that it can travel through the thick layers. By

first producing a categorized list of hosts SortedHostsi by

diminishing frequency in Oifor every i, the resultant

generated O is transformed into𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 . To minimize total

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 168

loss, gradients contain a minus sign and are proportionate

to this quantity. The Mean Squared Error (MSE) of the

projected accumulated loss, which corresponds to the

cumulative loss after a one-step look-ahead, is the second

gradient component. CSM translates the output

𝐴𝑐𝑡𝑖𝑜𝑛𝑖
𝑃𝐺 PG to 𝐴𝑐𝑡𝑖𝑜𝑛𝑖 and delivers it to the RMS at

each scheduling interval. As a consequence, at each

interval, the R2N2 network does a forward pass. Iterative

pre-processing and input of the window state, losses and

penalties into the R2N2 model yields the optimal

scheduling strategy for each scheduling window. This

enables the model to respond swiftly to particular user,

environment, and application needs.

7. Results and Discussion

This section offers a detailed analysis of the findings

comparing the model to a number of industry standard

methodologies. Also, describes experimental setup,

evaluation metrics, and data collection. CloudSim is used

to enable edge node properties including reaction time,

cost, power. For the constraint fulfillment module, new

software as well as input and output preprocessing have

been developed. The loss function is computed using

CloudSim performance tracking and storage service.

Tasks (cloudlets) are given to VM in the simulation

setting, which is then given to hosts.

DATASET: Tasks from the cloud are sent from the VM

to the servers in the virtualized environment. For the

present setting of task on edge-cloud environment, regard

as a bijection from cloudlets to VM by assigning ith

formed Cloudlet to ith formed VM and discards the VM

when the corresponding Cloudlet is finished.

Cloudlet dynamic workload is designed using the open-

source Bitbrain collection of real-world data. Bitbrain

dataset shows statistics on resource use for critical

business workloads on its infrastructure [33]. Because

they reflect actual infrastructure utilisation patterns and

may be used to create trustworthy input feature vectors

for machine learning models, more than 1,000 VM

workload logs from two machine kinds were chosen. The

dataset has workload information for each timestamp (5

minutes apart), including CPU cores, MIPS, RAM, and

network (receive/transmit) and storage (read/write)

bandwidth. It can be obtained from the BitBrain dataset

at http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains.

Distribute the information set into two portions with VM

workloads of 25.00% and 75.00% each. The R2N2

network is trained using the bigger partition, whereas the

smaller fraction is used for testing, sensitivity analysis,

and comparing to other similar efforts. Microsoft

Windows IaaS cloud service is the foundation of the

pricing mechanism for the cloud layer.

Metrics: The following metrics has been used for results

comparison.

Here is the average response time analysis,

𝐴𝑅𝑇 =
∑

𝑡∈𝑙𝑖+1
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒(𝑡)

|𝑙𝑖+1)

(21)

The list of SLA Infractions is as follows,

𝑆𝐿𝐴𝑉 =
∑

𝑖 𝑆𝐿𝐴𝑉𝑖 . |𝑙𝑖+1|

∑
𝑖 𝑙𝑖

(22)

Average Task Completion Time: It is determined by adding

the average scheduling time of a task, the task's execution

time, and the server's response time during the most recent

scheduling interval. The overall number of tasks completed,

the percentage of tasks finished within the anticipated

execution time (based on the desired MIPS), the number of

task migrations each time interval, and the total migration

time transfer over the course of the period are all taken into

account.

Results Comparison Methods: Many heuristics have been

used to approach dynamic planning. Three of the top

methods were chosen to solve the subproblems of server

overload detection and task/VM selection. All of these

variations locate the target host using the Best Fit Decreasing

(BFD) algorithm. Additionally, contrast the outcomes with

two popular RL techniques are frequently employed in the

literature.

LR-MMT: For task selection and overloading detection,

using the Local Regression (LR) and Minimum Migration

Time (MMT) methods, dynamically schedules workloads.

MAD-MC: Dynamically arranges workloads based on the

task selection and overload detection heuristics of Median

Absolute Deviation (MAD) and Maximum Correlation

Policy (MC), respectively.

DDQN: Many papers in the literature have employed the

Deep Q-Learning is based RL approach.

REINFORCE: Fully integrated neural network using the

REINFORCE approach based on policy gradients.

Fig. 3. Average Response Time vs. Scheduling Methods

According to Fig. 3, proposed A3C-CCTSO-R2N2

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 169

scheduling policy has the shortest average response time

compared to the other scheduling policies. Proposed

model explicitly asks if a particular node is a perimeter

or cloud node and distributes tasks based on RMS

(CCTSO) without requiring repeated migrations and

embedding AMT in the loss function. This demonstrates

that, in contrast to previous approaches like LR-MMT,

MAD-MC, DDQN, REINFORCE, and A3C-R2N2,

which have increasing ART of 9.35 ms, 8.92 ms, 8.74

ms, 8.20 ms, and 7.46 ms correspondingly, the proposed

system has a lower ART of 6.92 ms (refer to Table 1).

Table 1. Average response time vs. scheduling methods

Scheduling Methods Response Time (ms)

LR-MMT 9.35

MAD-MC 8.92

DDQN 8.74

REINFORCE 8.20

A3C-R2N2 7.46

A3C-CCTSO-R2N2 6.92

Fig. 4. Fraction of SLA Violations vs. Scheduling

Methods

The A3C-CCTSO-R2N2 model, as depicted in Fig. 4,

has fewer SLA breaches than the A3C-R2N2 policy.

Again, this is attributable to fewer migrations and clever

work scheduling to avoid the huge loss of value brought

on by SLA violations. While other approaches like LR-

MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2 have resulted in higher ART of 0.093, 0.084,

0.072, 0.064, and 0.052 correspondingly (see Table 2),

the proposed system has fewer SLA breaches of 0.040.

Table 2. Fraction of SLA violations vs. scheduling

methods

Scheduling Methods Fraction of SLA Violations

LR-MMT 0.093

MAD-MC 0.084

DDQN 0.072

REINFORCE 0.068

A3C-R2N2 0.052

A3C-CCTSO-R2N2 0.040

Fig. 5. Number of Completed Tasks vs. Scheduling Methods

The A3C-CCTSO-R2N2 model has a higher percentage of

completed tasks, as shown in Fig. 5, and it can guarantee that

tasks can be distributed to as few cloud VMs as feasible to

minimize cost. The number of tasks completed by the

proposed system is greater at 1150, compared to the numbers

of tasks finished by the LR-MMT, MAD-MC, DDQN,

REINFORCE, and A3C-R2N2 techniques, which are 790,

820, 895, 978, and 1127, respectively (see Table 3).

Table 3. Number of completed tasks vs. scheduling methods

Scheduling Methods Fraction of SLA Violations

LR-MMT 790

MAD-MC 820

DDQN 895

REINFORCE 978

A3C-R2N2 1127

A3C-CCTSO-R2N2 1150

Fig. 6. Number of Task Migration in Each Interval vs.

Scheduling Methods

The results of the total amount of assignment migrations with

regard to simulation time are displayed in Fig. 6. Several

techniques, including A3C-CCTSO-R2N2, LR-MMT, MAD-

MC, DDQN, REINFORCE, and A3C-R2N2, are used to

evaluate the outcomes. According to the results, the proposed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 170

system only requires 18 task migrations, compared to 42,

33, 30, 25, and 20 for other approaches like LR-MMT,

MAD-MC, DDQN, REINFORCE, and A3C-R2N2

during a 20-hour simulation (see Table 4).

Table 4. Number of task migration vs. scheduling

methods

Scheduling Methods Simulation time (Hours)

0 5 10 15 20

LR-MMT 28 34 45 36 42

MAD-Mc 25 30 35 28 33

DDQN 22 28 32 25 30

REINFORCE 17 22 30 19 25

A3C-R2N2 15 18 25 17 20

A3C-CCTSO-R2N2 11 15 20 14 18

Fig. 7. Total Migration Time in Each Interval vs.

Scheduling Methods

The findings of the task interval migration time series

with regard to the simulation time are displayed in Figure

7. Several techniques, including A3C-CCTSO-R2N2,

LR-MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2, are used to evaluate the outcomes. It demonstrates

that the proposed system has a shorter overall migration

time of 5.0 seconds, while other approaches like LR-

MMT, MAD-MC, DDQN, REINFORCE, and A3C-

R2N2 have migration times of 12.00 minutes, ten

seconds, 9.50 seconds, 7.80 seconds, and 7.50 seconds

for simulated times of 20 hours, respectively (refer to

Table 5). In Fig. 6 and 7, an A3C-CCTSO-R2N2 model

may achieve optimum metric outcomes by limiting task

migrations since migration length and quantity affect

task response.

Table 5. Total migration time in each interval vs. scheduling

methods

Scheduling Methods Simulation time (Hours)

0 5 10 15 20

LR-MMT 12 15 20 17 12

MAD-Mc 11 13 15 12 10

DDQN 10 11.5 12 13 9.5

REINFORCE 7 8.5 10 11 7.8

A3C-R2N2 6.2 7.7 8 9 7.5

A3C-CCTSO-R2N2 5.5 6 7.2 7.8 5

8. Conclusion and Future Work

It is complex to effectively use edge and cloud resources in

uncertain situations with changing workloads to enhance

service quality and response times. This study introduces on-

the-fly end-to-end task scheduling for hybrid devices and

cloud computing platforms. For reducing metrics like AEC,

ART, AMT, SLAV, CCTSO have been developed. CCTSO

algorithm has also optimized multiple values of hyper-

parameters based on various user needs and application

settings. Together, tuna use the two foraging techniques of

spiral and parabolic foraging to determine their host traits.

Policy gradient based Reinforcement learning method (A3C)

has been introduced for stochastic dynamic scheduling

method. An A3C-R2N2-based scheduling algorithm

considers all-important task and host factors to improve

performance. The results of the experiment utilizing an

iFogSim Toolkit upgraded to CloudSim 5.0 demonstrate the

model superiority over other approaches and previously

proposed RL models. The proposed method can reduce

response time by 5.49% and SLA violation by 15.55% as

compared to A3C-R2N2, according to extensive simulation

studies utilizing iFogSim and CloudSim on practical Bitbrain

dataset. Furthermore, the A3C clients in the edge-cloud

configuration would need to have their CPU, RAM, storage,

and bandwidth utilization tracked and synced. In addition of

the scalability analysis, tests to determine the scalability of

the proposed framework with regards to the quantity of hosts

and tasks are also planned. The existing architecture has a

limited capacity for scheduling nodes at the edges and tasks.

References

[1] R. Mahmud, S. N. Srirama, K. Ramamohanarao and R.

Buyya, “Quality of Experience (QoE)-aware placement

of applications in Fog computing environments,”

Journal of Parallel and Distributed Computing, vol.

132, pp. 190-203, 2019.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 171

[2] T. Wang, Y. Mei, W. Jia, X. Zheng, G. Wang and

M. Xie, “Edge-based differential privacy computing

for sensor–cloud systems,” Journal of Parallel and

Distributed computing, vol. 136, pp. 75-85, 2020.

[3] J. Feng, L. Zhao, J. Du, X. Chu and F. R. Yu,

“Energy-efficient resource allocation in fog

computing supported IoT with min-max fairness

guarantees,” IEEE International Conference on

Communications (ICC), 2018, pp. 1-6.

[4] R. Bi, Q. Liu, J. Ren and G. Tan, “Utility aware

offloading for mobile-edge computing,” Tsinghua

Science and Technology, vol. 26, no. 2, pp. 239-

250, 2020.

[5] J. Diechmann, K. Heineke, T. Reinbacher and D.

Wee, “The Internet of Things: How to capture the

value of IoT,” Technical Report, 2018, pp. 1-124.

[6] S. Tuli, R. Mahmud, S. Tuli and R. Buyya,

“FogBus: A Blockchain based Lightweight

Framework for Edge and Fog Computing,” Journal

of Systems and Software, vol. 154, pp. 22 – 36,

2019.

[7] J. Wang, K. Liu, B. Li, T. Liu, R. Li and Z. Han,

“Delay-sensitive multi-period computation

offloading with reliability guarantees in fog

networks,” IEEE Transactions on Mobile

Computing, vol. 19, no. 9, pp.2062-2075, 2019.

[8] D. Kim, J. Son, D. Seo, Y. Kim, H. Kim and J. T.

Seo, “A novel transparent and auditable fog-

assisted cloud storage with compensation

mechanism,” Tsinghua Sci. Technol., vol. 25, no. 1,

pp. 28–43, 2019.

[9] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge

computing: Vision and challenges,” IEEE Internet

Things J., vol. 3, no. 5, pp. 637–646, 2016.

[10] A. Al-Shuwaili and O. Simeone, “Energy-efficient

resource allocation for mobile edge computing-

based augmented reality applications,” IEEE Wirel.

Commun. Lett., vol. 6, no. 3, pp. 398–401, 2017.

[11] L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T.

N. Dang and C. S. Hong, “Edge-computing-enabled

smart cities: A comprehensive survey,” IEEE

Internet of Things Journal, vol. 7, no. 10, pp.

10200-10232, 2020.

[12] M. Merluzzi, P. Di Lorenzo, S. Barbarossa and V.

Frascolla, “Dynamic computation offloading in

multi-access edge computing via ultra-reliable and

low-latency communications,” IEEE Trans. Signal

Inf. Process. Netw., vol. 6, pp. 342–356, 2020.

[13] T. Jena and J. R. Mohanty, “Disaster recovery services

in intercloud using genetic algorithm load

balancer,” International Journal of Electrical and

Computer Engineering, vol. 6, no. 4, pp. 1828-1838,

2016.

[14] M. A. Elaziz, S. Xiong, K. P. N. Jayasena and L. Li,

“Task scheduling in cloud computing based on hybrid

moth search algorithm and differential

evolution,” Knowledge-Based Systems, vol. 169, pp.

39–52, 2019.

[15] Y. Xiong, S. Huang, M. Wu, J. She and K. Jiang, “A

johnson’-rule- based genetic algorithm for two-stage-

task scheduling problem in data-centers of cloud

computing,” IEEE Transactions on Cloud Computing,

vol. 7, no. 3, pp. 597–610, 2017.

[16] M. Akbari, R. Hassan, and S. H. Alizadeh, “An

enhanced genetic algorithm with new operators for task

scheduling in heterogeneous computing

systems,” Engineering Applications of Artificial

Intelligence, vol. 61, pp. 35–46, 2017.

[17] G. Fox, J. A. Glazier, J. C. S. Kadupitiya, V. Jadhao, M.

Kim, J. Qiu, J. P. Sluka, E. Somogyi, M. Marathe, A.

Adiga and J. Chen, “Learning everywhere: Pervasive

machine learning for effective high-performance

computation,” IEEE International Parallel and

Distributed Processing Symposium Workshops

(IPDPSW), 2019, pp. 422-429.

[18] D. Basu, X. Wang, Y. Hong, H. Chen and S. Bressan,

“Learn-asyou-go with MEGH: Efficient live migration

of virtual machines,” IEEE Transactions on Parallel

and Distributed Systems, vol. 30, no. 8, pp. 1786–1801,

2019.

[19] B. Liu, S. Meng, X. Jiang, X. Xu, L. Qi and W. Dou, “A

QoS-guaranteed online user data deployment method in

edge cloud computing environment,” Journal of

Systems Architecture, vol. 118, pp. 1-11, 2021.

[20] S. M. Alamouti, F. Arjomandi and M. Burger, “Hybrid

edge cloud: A pragmatic approach for decentralized

cloud computing,” IEEE Communications

Magazine, vol. 60, no. 9, pp. 16-29, 2022.

[21] I. Ullah, H. K. Lim, Y. J. Seok and Y. H. Han, “Optimal

Task Offloading with Deep Q-Network for Edge-Cloud

Computing Environment,” 13th International

Conference on Information and Communication

Technology Convergence (ICTC), 2022, pp. 406-411.

[22] S. Tuli, S. Ilager, K. Ramamohanarao and R. Buyya,

“Dynamic scheduling for stochastic edge-cloud

computing environments using a3c learning and

residual recurrent neural networks,” IEEE transactions

on mobile computing, vol. 21, no. 3, pp. 940-954, 2020.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 160–172 | 172

[23] H. Li, K. Ota and M. Dong, “Learning IoT in edge:

Deep learning for the Internet of Things with edge

computing,” IEEE Network, vol. 32, no. 1, pp. 96–

101, 2018.

[24] M. Xu, S. Alamro, T. Lan and S. Subramaniam,

“Laser: A deep learning approach for speculative

execution and replication of deadline-critical jobs in

cloud,” Proceedings of the 26th International

Conference on Computer Communication and

Networks (ICCCN), 2017, pp. 1–8.

[25] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan

and P. Li, “A double deep Q-learning model for

energy-efficient edge scheduling,” IEEE

Transactions on Services Computing, vol. 12, no. 5,

pp.739-749, 2018.

[26] M. Cheng, J. Li and S. Nazarian, “DRL-cloud:Deep

reinforcement learning-based resource provisioning

and task scheduling for cloud service providers,”

Proceedings of the 23rd Asia and South Pacific

Design Automation Conference. IEEE Press, 2018,

pp. 129–134.

[27] Q. Zhang, M. Lin, L. T. Yang, Z. Chen and P. Li,

“Energy efficient scheduling for real-time systems

based on deep qlearning model,” IEEE

Transactions on Sustainable Computing, vol. 4, no.

1, pp. 132–141, 2017.

[28] G. Rjoub, J. Bentahar, O. Abdel Wahab and A.

Saleh Bataineh, “Deep and reinforcement learning

for automated task scheduling in large-scale cloud

computing systems,” Concurrency and

Computation: Practice and Experience, vol. 33, no.

23, pp. 1-13, 2021.

[29] D. M. Bui, Y. Yoon, E. N. Huh, S. Jun and S. Lee,

“Energy efficiency for cloud computing system

based on predictive optimization,” Journal of

Parallel and Distributed Computing, vol. 102, pp.

103–114, 2017.

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T.

Lillicrap, T. Harley, D. Silver and K. Kavukcuoglu,

“Asynchronous methods for deep reinforcement

learning,” Proceedings of the International

conference on machine learning, 2016, pp. 1928–

1937.

[31] L. Xie, T. Han, H. Zhou, Z. R. Zhang, B. Han and

A. Tang, “Tuna swarm optimization: a novel

swarm-based metaheuristic algorithm for global

optimization,” Computational intelligence and

Neuroscience, 2021, pp.1-22.

[32] A. Beloglazov and R. Buyya, “Optimal online

deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation

of virtual machines in cloud data centers,” Concurrency

and Computation: Practice and Experience, vol. 24, no.

13, pp. 1397–1420, 2012.

[33] S. Shen, V. van Beek and A. Iosup, “Statistical

characterization of business-critical workloads hosted in

cloud datacenters,” 15th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing,

2015, pp. 465–474.

