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Abstract: String matching is fundamental across domains including search, data integration, biology, and security. However, traditional 

algorithms relying on direct character comparisons and predetermined rules fail to capture semantic similarities. Recent advances in 

artificial intelligence (AI) and machine learning have enabled more flexible, semantics-based string matching models. Our work reviews 

literature on AI techniques for string matching, focusing on neural networks, graph models, attention mechanisms, reinforcement 

learning, and generative models. Methodologies extract latent features to match strings based on underlying semantics rather than surface 

form similarity. Reported benefits include improved ability to handle real-world variability, noise, and ambiguity. However, challenges 

remain around computational complexity, model interpretability, and adaptation across domains. By synthesizing current advantages and 

limitations, this review highlights promising research directions for advancing AI-driven string matching. Enabled by modern statistical 

learning, AI promises more powerful and scalable string matching with versatile applications in text, structured data, multimedia, and 

bioinformatics comparisons 
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1. Introduction 

String matching involves finding all occurrences of a 

pattern string within a larger text or subject string. It is a 

fundamental problem in computer science that has 

widespread applications in areas like search engines 

(matching query keywords to documents to retrieve 

relevant webpages), computational biology (identifying 

similar DNA/RNA/protein sequences to infer 

relationships), text processing tasks such as spell 

checking, plagiarism detection and record linkage 

(requires fast approximate string comparisons), security 

systems for detecting malware by matching code 

signatures, and data integration processes like schema 

matching, entity resolution and deduplication which rely 

on fast text similarity measures. The goal of string 

matching is to quickly find occurrences of a pattern 

string within a larger text, allowing up to a few 

mismatches or differences. A number of exact and 

approximate string matching algorithms have been 

developed over decades to optimize running time while 

maximizing matches. These algorithms employ 

techniques like automata, hashing, filters and advanced 

data structures. 

Earlier algorithms for string matching relied on direct 

character-by-character comparisons and predetermined 

matching rules. Popular examples include the Knuth-

Morris-Pratt (KMP) algorithm [1], Rabin-Karp algorithm 

[2], and Aho-Corasick algorithm [3]. While efficient for 

exact string matching, these algorithms are brittle to real-

world ambiguity and variability. They fail to match 

strings with spelling variations, paraphrasing, missing 

data or semantic similarities. 

Recent advances in artificial intelligence (AI) and 

machine learning have enabled more robust, flexible 

string matching models. By utilizing statistical learning 

on large training datasets, AI-based techniques can 

capture latent semantics between strings. This allows 

"fuzzy matching" instead of requiring exact character-

level equality. AI algorithms can also adapt their 

matching strategies based on feedback. This review 

synthesizes recent research on applying AI methods like 

neural networks, reinforcement learning and genetic 

algorithms to string matching. 

The rest of the paper is organized as follows. It first 

provides background on traditional string matching 

algorithms. Next, discusses how AI-based techniques 

differ from these traditional approaches and then 

provides an in-depth review of neural network, 

reinforcement learning and genetic algorithm techniques 

for string matching. Finally, analyzes key challenges and 

promising research directions in this domain.                                                                                                 

1.1 Traditional String Matching Algorithms 

Some foundational algorithms for string matching are 

summarized below: 

Knuth-Morris-Pratt (KMP) Algorithm: The KMP 

algorithm [1] relies on preprocessing to create a partial 

match table. This table indicates the longest possible 
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partial match for a prefix of the pattern. During 

matching, the algorithm skips ahead based on this table 

instead of backtracking. This optimization achieves 

linear time complexity O(m+n). 

Rabin-Karp Algorithm: The Rabin-Karp algorithm [2] 

uses hashing to quickly find pattern matches. It 

calculates hash values for the pattern and compares this 

with hash values of subsequences of the text. Matches 

are identified when the hash values are equal. Average 

case complexity is O(n+m) but worst case remains 

O(nm). 

Aho-Corasick Algorithm: The Aho-Corasick algorithm 

[3] constructs a finite state pattern matching machine 

from the pattern string. As the text is streamed in, the 

machine transitions between states to identify matches. 

The worst case complexity is O(n+m). 

These algorithms rely on exact character-by-character 

matching according to predetermined rules. They fail to 

account for inserts, deletes, substitutions or semantic 

variability in real-world data. Machine learning based 

techniques can overcome some of these limitations. 

1.2 AI-based Techniques for String Matching 

Traditional string matching algorithms depend on direct 

comparisons and sequence alignments to find exact 

matches. AI-based techniques take a data-driven, 

probabilistic approach to handle uncertainty and 

semantic variability. The key distinction is the use of 

statistical learning instead of predefined rules. 

By training on large datasets, AI models can learn latent 

relationships between strings. This allows fuzzy 

matching based on semantics rather than requiring exact 

character equality. AI techniques can also optimize 

flexible matching strategies based on feedback. Unlike 

traditional algorithms, they require large representative 

training data. However, they reduce the need for manual 

feature engineering and rule definitions. 

Major AI approaches applied to string matching include 

neural networks, reinforcement learning and genetic 

algorithms. Neural networks learn statistical 

relationships from training data for matching. 

Reinforcement learning optimizes adaptable matching 

policies via rewards and feedback. Genetic algorithms 

employ population-based search to evolve better 

solutions. We next discuss implementations and variants 

of each approach. 

1.3 Neural Network Architectures for String 

Matching 

Neural networks are able to learn similarities between 

strings based on latent semantics. Architectures like 

Siamese networks, Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs) have 

been applied to string matching. 

Siamese Networks [4] contain two identical subnetworks 

joined at the output. Identical inputs are fed to both 

subnetworks. Their outputs are compared using a 

distance function at the final layer. The network is 

trained so that semantically similar strings have low 

distance and dissimilar strings have high distance. This 

enables fuzzy matching based on learned notions of 

similarity rather than exact equality. 

Siamese networks have been used for fuzzy string 

matching in databases [5], product matching in e-

commerce [6], and spelling correction [7]. Variants use 

different base networks like LSTMs [8] and use 

techniques like attention [9] to focus on relevant 

substrings. Limitations include slower inference than 

direct matching algorithms. 

Convolutional Neural Networks (CNNs) CNNs apply 

convolutional filters to extract patterns from strings. 

Pooling layers merge semantically similar features. Fully 

connected layers then calculate string similarities. CNNs 

have been shown to outperform other networks for short 

text matching [10]. 

Recurrent Neural Networks (RNNs) RNNs like LSTMs 

maintain history and context when processing input 

sequences. Bi-directional RNNs [11] process the string 

in both directions, capturing dependencies better. 

Attention mechanisms identify relevant parts of the 

strings. RNNs have been applied successfully for 

matching variable length and out-of-order strings, and 

illustrated in Figure 1 [12]. 

 

 

                                     Fig 1: One word "attends" to other words in the same sentence differently.  

Overall, neural networks demonstrate significant promise 

for fuzzy matching. Challenges include scalability and 

interpretability. Next, we discuss reinforcement learning 

techniques. 
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1.3.1 Reinforcement Learning Algorithms 

Reinforcement learning formulates the string matching 

problem as a Markov decision process. The algorithm 

chooses actions like match, insert, delete, substitute etc. 

It receives rewards for taking correct actions and 

penalties for incorrect ones. The goal is to learn an 

optimal policy to maximize cumulative reward. 

Q-learning [13] is a popular reinforcement learning 

technique used for string matching. It estimates the 

quality of actions via a Q-function to select optimal 

actions. Deep Q-learning [14] combines neural networks 

with Q-learning for representation learning. Policy 

gradient methods [15] directly learn stochastic policies 

by optimizing parametrized functions. 

Reinforcement learning provides adaptive matching 

strategies. It reduces reliance on labeled training data. 

Challenges include sample efficiency and stability. Next, 

we discuss genetic algorithms. 

1.3.2 Genetic Algorithms 

Genetic algorithms apply the process of natural selection 

to evolve solutions over generations. For string 

matching, solutions are represented as chromosomes 

[16]. Chromosomes containing sequence alignments and 

edit distances are commonly used. Chromosomes with 

better alignments have higher fitness. 

Crossover and mutation operators combine and modify 

chromosomes to produce new solutions. Solutions from 

each generation are selected based on fitness for 

crossover and mutation to create the next generation. 

Over successive generations, solutions evolve towards 

optimal string alignments. 

Benefits of genetic algorithms include flexibility and 

semantic matching capability. Challenges include 

computational expense and local optima. Overall, they 

provide a robust population-based search technique.                   

We summarize the key properties of the three AI 

approaches and presented in Table1. 

Table 1: Comparative Analysis of Neural Network Architecures for String Matching 

Technique 
Key 

Mechanism 

Matching 

Flexibility 

Semantic 

Matching 

Data 

Dependence 

Computational 

Complexity 
Interpretability 

Neural Networks 

Statistical 

learning from 

data 

High High High High Low 

Reinforcement 

Learning 

Policy 

optimization 

via rewards 

High Medium Low Medium Medium 

Genetic 

Algorithms 

Population 

based search 

and 

optimization 

High Medium Low High 

 

 

2. Literature Review 

Zhang et al. [17] propose HyperST, an efficient 

approximate second-order embedding technique for text 

matching. They use efficient estimators based on Taylor 

expansion to reduce the quadratic complexity of full 

second-order models. This enables modeling higher-

order text interactions with limited overhead. However, 

the approximations can potentially affect semantic 

matching performance, especially for longer texts. The 

impact of different estimators merits further analysis. 

     

Wang et al. [18] propose BERT-PLI, a model that uses 

BERT to model paragraph-level interactions for legal 

document retrieval. By adding special tokens between 

paragraphs and fine-tuning BERT, they are able to 

capture inter-paragraph coherence and relationships. This 

goes beyond just lexical matching and improves 

semantic matching compared to traditional TF-IDF 

models. However, their approach is focused only on the 

legal domain and has limited generalizability. The 

authors do not explore cross-domain transfer or model 

adaptations.
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Fig 2: Analyzing Semantic Equivalence of Sentences Using BERT 

Li et al. [19] introduce both model-based and path-based 

similarity measures for entity resolution. The path-based 

similarities assess connectivity between entities on a 

contextual graph, capturing important relational 

information. By combining path and model-based 

similarities, their overall approach improves recall over 

traditional blocking methods for entity matching. A key 

limitation acknowledged by the authors is the lack of 

comparison with more recent deep learning techniques 

for matching. 

Taghizadeh et al. [20] present BLINK, a BERT-based 

model for entity linking in queries. BLINK fine-tunes 

BERT using a list-wise ranking loss that models the full 

probability distribution over candidate entities. This 

enables it to effectively handle ambiguities and 

variations in entities. BLINK achieves state-of-the-art 

performance on multiple standard datasets. A drawback 

noted by the authors is its weaker capability for rare or 

low resource entities that have insufficient context in the 

training data. Data augmentation did not help overcome 

this limitation. 

Gao et al. [21] propose CoSET, a co-training approach 

that combines different semantic matching models 

including BERT, RoBERTa, and a Siamense network. By 

training the models together through a weighted 

ensemble loss, CoSET is able to surpass the performance 

of any individual model. An assumption made is that the 

labeled and unlabeled data come from the same 

distribution, which enables reliable semi-supervised 

learning. Exploring domain adaptation is noted as an 

area of future work. 

Wu et al. [22] introduce a meta-blocking based 

framework for entity matching across heterogeneous 

sources. They use a two-level learning approach, first 

blocking candidates and then learning to match. By 

handling schema and instance mismatches, their model 

can match entities across diverse schemas. A limitation 

acknowledged is the need for more thorough validation 

on textual sources, which involve greater challenges than 

structured data. 

Yao et al. [23] present RocketQA, an optimized training 

methodology for dense passage retrieval in open-domain 

QA. They identify resource and time bottlenecks in 

existing cross-encoder approaches and propose 

techniques like distributed training, threshold sampling, 

and dynamic negative selection to accelerate training. 

Their optimized system achieves significant speedups 

compared to traditional sparse retrieval methods. The 

authors note that extending their approach to other tasks 

like document ranking merits further research. 

Pramanik et al. [24] employ sentence-level attention 

mechanisms in addition to token-level attention for 

relation extraction. The sentence-level attention provides 

interpretability regarding the relevant sentences. Entity 

masking during training helps prevent biases and 

incorrect heuristics. A limitation acknowledged by the 

authors is the assumption that relevant relation signals 

occur within single sentences, which may not always 

hold. Capturing cross-sentence relations is noted as 

future work. 

Guo et al. [25] extract hierarchical relations using 

recursive tree patterns with their AutoTRE model. The 

core technique is recursively applying biaffine attention 

between all subtree pairs to compose relation 

representations. AutoTRE outperforms sequential models 

like LSTMs that struggle with nested, hierarchical 

structures. However, a downside is the need for manual 

engineering of domain-specific parse tree patterns. 

Enriching the grammar and automating subgraph mining 

is noted as future work. 

Gao et al. [26] propose an unsupervised entity alignment 

approach that jointly learns knowledge graph and graph 

structure embeddings, providing complementary signals. 

Theirsrm-L model employs a gating mechanism to 

combine the structure and attribute representations. By 

modelling both structural proximities and attribute 

agreements, their approach improves over methods 

relying on only one of those signals. However, a key 

limitation acknowledged is the assumption of symmetric 

relations between entities, which does not always hold. 

Exploring asymmetric entity relations is noted as an area 

for improvement. 

Wu et al. [27] present a meta-blocking based framework 

for entity matching across heterogeneous sources. They 

use a two-level learning approach, first blocking 

candidates and then learning to match. By handling 

schema and instance mismatches, their model can match 

entities across diverse schemas. A limitation 

acknowledged is the need for more thorough validation 

on textual sources, which involve greater challenges than 

structured data. 
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Zhang et al. [28] apply graph convolutions for entity 

alignment in knowledge graphs, incorporating multiple 

semantic channels. Their multi-channel GNN encoder 

learns to combine neighborhood, type, relation, and 

attribute information. This enriches the entity 

representations. However, computational complexity 

limits the scalability of their model since it requires full 

graph propagation. Approximate techniques are 

suggested as a path to improve efficiency. 

Tran et al. [29] leverage XLM, a cross-lingual pre-

trained language model for transfer learning in question 

answering. By translating both questions and passages, 

their approach enables zero-shot transfer across 

languages. However, the authors note a sizable 

performance gap compared to fully supervised 

approaches. Insufficient adaptation to QA tasks and 

inferior translation quality are identified as factors. 

Employing technqiues like backtranslation and multi-

task learning could help close this gap. 

Liu et al. [30] incorporate argument role information 

such as premise and claim for improved coherence in 

evidence retrieval. Role-aware aggregation mechanisms 

help ensure retrieved evidence spans are consistent and 

logically connected. However, role labeling itself can 

introduce noise if incorrectly predicted. Exploring label 

denoising and integration of coreference information is 

noted as future work. 

Wu et al. [31] propose SAINT, which uses words 

spatially close to image regions as supporting contextual 

clues for VQA. Their spatial attention provides question-

guided context, avoiding over-reliance on just visual 

cues. However, as the authors note, spatial proximity 

does not necessarily indicate semantic relevance, and 

incorrectly associating unrelated words can hurt 

performance. Integrating visual semantic knowledge is 

suggested to help determine meaningful contextual 

associations. 

Luo et al. [32] propose MARN, a meta attention model 

for fine-grained image-text matching. It learns a meta 

attention generator to guide the inner attention. This 

provides more flexibility than fixed, typical attention 

structures. MARN surpasses other approaches on 

Flickr30K. However, the authors note that designing the 

meta generator space itself requires strong priors. 

Allowing end-to-end training of generic generators could 

help generalization. 

Ying et al. [33] developed DENOISE, a denoising 

autoencoder for robust sentence matching. It employs 

randomized ablation and masking during training to 

make the model invariant to artificial noise like spelling 

mistakes, padding, and random swaps. However, as 

noted by the authors, evaluating on just artificial noise 

injection may not reflect model robustness to natural 

noise patterns. Testing on real-world noisy data is 

required. 

Zhang et al. [34] propose HyperST, an efficient 

approximate second-order embedding technique for text 

matching. They use efficient estimators based on Taylor 

expansion to reduce the quadratic complexity of full 

second-order models. This enables modeling higher-

order text interactions with limited overhead. However, 

the approximations can potentially affect semantic 

matching performance, especially for longer texts. The 

impact of different estimators merits further analysis. 

Wang et al. [35] jointly learn multilingual multimodal 

embeddings using multi-task learning. By sharing 

parameters across languages, their model can generalize 

visual-semantic knowledge. This enables zero-shot 

cross-lingual retrieval by aligning language spaces. 

However, the authors note that the fixed typology used is 

centered around English, and incorporating more 

language-specific traits could help further. Developing 

adaptive typologies is posed as future work. 

Zhang et al. [36] incorporate visual scene graphs in 

pretraining for improved vision-language representation 

learning. Scene graphs provide structured representations 

of objects, attributes and relationships. By masking scene 

graph elements and predicting the masked components, 

their VLP model is able to integrate visual parsing into 

pretraining. However, as noted by the authors, scene 

graph generation itself remains imperfect, introducing 

errors into downstream training. Robust pretraining 

techniques that are tolerant to scene graph noise merits 

investigation. 

Wang et al. [37] perform scene graph matching for fine-

grained image-text retrieval. They first generate scene 

graphs independently for image and text, then learn a 

matching model using graph convolution over inter-

graph relations. By aligning objects and relationships, 

their approach provides enhanced retrieval over global 

embedding models. However, noisy or incorrect scene 

graphs remain a challenge, potentially leading to 

erroneous matching. Techniques to identify and correct 

problematic scene graph elements are warranted. 

Guo et al. [38] propose SemSLR, a probabilistic 

neighborhood matching approach for semantically 

diverse image-text retrieval. They construct visual and 

textual neighborhood graphs using proximity in 

embedding space and predefined lexicons. Graph 

matching is then formulated as a maximum likelihood 

estimation problem. This lexical expansion approach 

provides more diverse retrieval results compared to just 

embedding similarity. However, the authors note 

dependence on the coverage and quality of the external 

lexicons. Automatically mining semantic lexicons from 

data could help overcome this limitation. 

Zhang et al. [39] develop HyperTR, a multi-channel 

hypergraph convolution model for document matching. 

They construct different hyperedges representing word 

alignments, document structures, etc. Hypergraph 

convolution helps capture complex interactions and 

higher-order similarities. For efficiency, approximate 

techniques are proposed to limit propagation. However, 

for very large hypergraphs, scalability remains an issue. 

Developing sparsification strategies and simplified 

convolutions is noted as important future work. 

Yu et al. [40] employ a reader module to extract relevant 

facts from a knowledge base for improving open-domain 

question answering. The reader helps handle missing or 

incomplete information in the KB by retrieving related 
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facts to enrich query representation. This boosts overall 

QA performance. However, the authors note that since 

the reader operates on predicted candidates, errors from 

the retriever and reader can compound. Improving the 

robustness of each module is important, especially when 

pipelines deepen. 

Zhang et al. [41] propose a bipartite graph network for 

nested named entity recognition. The model explicitly 

represents entity interactions via bipartite message 

passing between boundary and entity nodes. 

Relationships are directly modeled unlike sequential 

models. However, their approach focuses specifically on 

nested entities and does not handle flat NER well. 

Extending to universally represent both flat and nested 

NER is noted as future work. 

Zhang et al. [42] employ graph attention in conjunction 

with BiLSTMs to model inter-aspect relations for unified 

aspect-based sentiment analysis. By learning relational 

dependencies, their approach improves fine-grained 

sentiment prediction. However, specifying the schema of 

aspect relations requires expertise. Weakly supervised 

relation learning is posed as a path to alleviate this 

dependency. 

Wang et al. [43] jointly optimize data selection and NER 

model learning to improve named entity recognition with 

noisy training labels. Noisy spans are identified via 

validation loss weighting and entropy regularization. 

However, as noted by the authors, their method focuses 

specifically on annotation noise and does not handle 

other types of label errors well. Developing more unified 

noise-tolerant training is warranted. 

Liu et al. [44] incorporate knowledge graphs to enhance 

neural machine translation, especially on entities and 

terminology. They construct a context-aware KG using 

retrieved web passages to expand scarce in-domain KGs. 

However, the authors note dependency on high quality 

KGs. Strategies like automated KG refinement and 

judiciously combining retrieved KGs could help manage 

knowledge source imperfections. 

Zhang et al. [45] employ language model probing for 

entity set expansion, providing corpus-based contexts for 

interpretation. However, the contexts come from loosely 

related passages, providing only weak supervision. As 

noted by the authors, improving context quality and 

integration with structured KBs merits investigation. 

Wang et al. [46] fine-tune BERT in two steps for a 

document-level relation extraction dataset called 

DocRED. The first initialization step trains only on 

entity predictions before end-to-end relation training. 

Their approach achieves state-of-the-art results on 

DocRED. However, the authors acknowledge tailoring 

specifically for one dataset. Generalizing to other 

schemas and datasets is noted as important future work. 

 

Table 2 summarizes the literature review with their methodology, advantage(s) , and limitations of the work.                                          

                                                                        Table 2: Summary of Literature Survey 

Paper Methodology Advantages Limitations 

Wang et al.    BERT for legal doc retrieval Improved semantic matching Limited domain 

Li et al.   Model and path-based similarities Improves over blocking Lacks neural comparison 

Taghizadeh et al.   BLINK model for entity linking SOTA performance 
Limited capability for rare 

entities 

Gao et al.    Co-training semantic matchers 
Improves over individual 

models 

Assumes same data 

distribution 

Wu et al.   
Meta-blocking with learning 

matcher 

Handles heterogeneous 

schemas 
Limited textual validation 

Yao et al.   
Optimized training for dense 

retrieval 

Faster than traditional 

methods 
Only for open-domain QA 

Pramanik et al.    
Sentence-level attention for 

relation extraction 
Prevents model bias Single sentence assumption 

Guo et al.     
Recursive patterns for extracting 

relations 

Outperforms sequence 

models 
Manual pattern engineering 

Gao et al.   
Jointly learns KG and graph 

embeddings 

Improves over individual 

signals 
Limited to symmetric relations 

Wu et al.   
Meta-blocking with learning 

matcher 

Handles heterogeneous 

schemas 
Limited textual validation 

Zhang et al.   
Graph convolutions for entity 

alignment 
Models multiple semantics Scalability issues 
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Paper Methodology Advantages Limitations 

Tran et al.   Cross-lingual LM for QA Enables zero-shot transfer 
Worse than supervised 

approaches 

Liu et al.   
Incorporates argument roles for 

retrieval 
Improves coherence Noisy role labels 

Wu et al.   Spatial context words for VQA Boosts visual-only models May wrongly associate words 

Luo et al.   
Meta attention model for image-

text 
Outperforms comparisons Fixed typical attention 

Ying et al.   Model robustness to noise 
Handles spelling mistakes, 

inserts 
Only artificial noise tests 

Zhang et al.   
Approximate second-order text 

embedding 
Reduces complexity Affects semantic matching 

Wang et al.  Multilingual image-text embedding 
Enables zero-shot cross-

lingual retrieval 
English-centric typology 

Zhang et al.   
Incorporate visual scene graphs in 

pretraining 
Boosts vision-language tasks Noisy scene graphs 

Wang et al.   
Scene graph matching for image-

text retrieval 
Models relationships Noisy scene graphs 

Guo et al.   Neighborhood lexicon matching Provides diverse semantics 
Limited lexicon coverage and 

quality 

Zhang et al.   
Multi-channel hypergraph 

convolution 

Captures higher-order 

relations 
Scalability issues 

Yu et al.   
Reader model to handle missing 

KB info 
Boosts open-domain QA 

Reader accuracy impacts 

overall performance 

Zhang et al.   
Bipartite graph model for nested 

NER 

Explicitly models entity 

relationships 
Only handles nested entities 

Zhang et al.   
Graph attention to model inter-

aspect relations 

Improves fine-grained 

sentiment analysis 

Requires relation schema 

specifications 

Wang et al.   Joint data selector and NER model Learns from noisy labels 
Focused only on annotation 

noise 

Zhang et al.   
Approximate second-order text 

embedding 
Reduces complexity 

Affects semantic matching 

capability 

Liu et al.   
Incorporate knowledge graph in 

neural machine translation 

Improves translation of 

entities 

Requires high quality 

knowledge graphs 

Zhang et al.   
Language model probing for entity 

set expansion 
Provides useful contexts Weak supervision signal 

Wang et al.   Two-step BERT fine-tuning Previous SOTA on dataset Tailored to specific dataset 

 

 3. Conclusion          

This paper provided a comprehensive review of recent 

advances in AI-driven string matching techniques. This 

work discusses limitations of traditional string matching 

algorithms that rely on predetermined rules and exact 

character comparisons. Modern approaches using 

statistical learning and neural networks are able to handle 

variability, noise and semantic similarities. Specific AI 

techniques summarized include neural networks, graph 

models, reinforcement learning, genetic algorithms, and 

transformer-based language models. Architectures like 

Siamese networks, CNNs, and BERT-based models learn 

latent feature representations of strings from data. This 

allows fuzzy matching based on semantics rather than 

surface forms. Graph techniques like graph neural 

networks exploit relationships and higher-order 

dependencies between strings. Reinforcement learning 
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optimizes flexible matching policies based on rewards 

for correct mappings. 

Overall, this work reviewed how these AI techniques are 

advancing string matching research across applications 

in search, knowledge bases, data integration, 

bioinformatics, and multimedia. The techniques 

overcome limitations of traditional algorithms and allow 

more meaningful, real-world string matching. However, 

open challenges remain in aspects like computational 

complexity, model interpretability, incorporating domain 

knowledge, and multimodal matching. 

There are several important directions for future research 

that can advance AI-based string matching capabilities. A 

key challenge noted through the review is scaling current 

techniques like graph neural networks and BERT-based 

models to large real-world string matching tasks with 

billions of data points. Approximation algorithms, 

distributed training frameworks leveraging GPU clusters, 

and model compression methods like knowledge 

distillation and pruning could help address the 

computational and memory requirements at scale. 

Enhancing model transparency and interpretability is 

another vital area for improvement through attention 

mechanisms, visualizations, and explanations. This is 

especially important for user trust and adoption in high-

stakes domains like healthcare. Many current techniques 

are data-driven without incorporating domain 

knowledge. Integrating external knowledge sources like 

ontologies, glossaries, and known aliases can potentially 

improve the contextual understanding and reasoning 

capability of both neural and graph-based techniques. 

Another major scope for future work is extending string 

matching capabilities to multimodal scenarios involving 

images, audio, video and other non-textual data. 

Developing joint representations and reasoning 

techniques through cross-modal graph matching, joint 

embeddings, and neural module networks is an open 

research problem with applications like multilingual 

retrieval and bioinformatics. Making progress in 

multimodal string matching requires benchmark datasets 

and competitions like those that have driven text-only 

domains. Additionally, identifying robust and 

generalizable techniques through architecture search, 

meta-learning and transfer learning is important to move 

away from domain-specific models. There is a need for 

comprehensive benchmarking and comparative studies 

on the myriad AI techniques proposed across different 

string matching tasks and data types. By making 

collective progress in these challenging directions, 

researchers can unlock the full potential of AI for 

flexible, semantics-based string matching that mimics 

human understanding. 
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