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Abstract: Drought is a natural disaster creating huge impacts in three areas of economy, environment and social. It becomes hard to predict 

drought, its onset and duration due to complex interaction of multiple factors. Though various scales and forecasting methods have been 

proposed, recent climatic variations caused by Global warming makes most of the scales and forecasting methods inaccurate. Most of 

existing solutions are based on seasonal behavior and correlation to other influencing factors like temperature and humidity. They are at 

larger coverage level and not specialized to cover smaller regions. Also with factors like global warming are affecting the baseline 

periodicity assumptions, there is a need to improvise meteorological factors based drought prediction methods.  This work proposes a 

solution to this problem by integrating indigenous knowledge (IK) with deep learning forecasting methods through attention mechanism 

referred as IK fused attention networks. The indigenous knowledge view over precipitation, temperature, wind speed and humidity are 

integrated with LSTM based forecasting through attention mechanism to improve the accuracy of drought prediction. The performance of 

the proposed solution was tested against meteorological data collected from Karnataka disaster monitoring center for Chitradurga district 

of Karnataka. The proposed IK fused attention network is able to provide at least 1.2% higher NSE and 33% lower MAE in prediction of 

SPI compared to existing works 
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I. Introduction 

Drought is a natural disaster characterized by intense and 

persistent precipitation shortage which can last for months 

or years [1]. Compared to other natural disasters, the 

hazardous footprint of drought is higher as it generally over 

lasts for longer duration. It impacts food production, reduces 

life expectancy and shrinks economy. Droughts are 

generally of three types: Meteorological, Hydrological and 

Agricultural. Prolonged precipitation, higher temperature, 

higher winds, lower relative humidity and greater sunshine 

results in meteorological drought [2]. The persistence of 

meteorological drought depletes the ground water levels and 

reduces soil water deficiency creating agricultural drought. 

The impact of agricultural drought reduces biomass and 

agricultural yield creating hydrological drought [3]. 

Drought creates impacts in all level of economic, 

environmental and social. It creates adverse effects on food 

production, increasing farmers’ suicide rate, excess heat, 

lower power generation, reduced industrial production, and 

human and animal health deterioration. The frequency and 

intensity of short span droughts has increased during last 

two decades [31]. These droughts have adverse effects on 

agricultural economy like India. In India agriculture is 

mostly dependent on monsoon rains. Agriculture 

contributes almost 14% of total gross domestic product and 

drought can cause huge financial and food security 

problems. The drought risk management process is heavily 

dependent on effective drought forecasting methods.       

There are more than hundred different drought indices and 

various machine learning techniques proposed for various 

purposes of drought severity prediction, start/end of drought 

and location of drought [4].Some of the well-known drought 

indicators are Palmer Drought Severity Index (PDSI)[32]. 

Standard Precipitation Index (SPI)[33], Standardized 

Nonstationary Precipitation Index (SnsPI)[34], Joint Deficit 

Index (JDI)[35] and Copula-based Joint Drought Index[36]. 

Metrics like PDSI, JDI and CJDI require multiple 

meteorological inputs. Compared to them SPI is simple 

metric which is based only on precipitation data. SPI is a 

more robust meteorological index and it is used in many 

recent works successfully [37]. Most of the methods are 

based on historical values of environmental observations. 

Global warming has created large temperature variations. 

The global temperature increase of 0.5 to 2 degree Celsius 

and large climatic variations makes most of scales & 

machine learning techniques inaccurate and needs 

adaptation. Many attempts have been made integrating 

multiple factors like climatic, oceanic, agricultural yield to 

increase the prediction accuracy. In recent years, there is 

resurgent interest in applying traditional indigenous 

knowledge in drought prediction. Many indigenous 

knowledge based systems have been proposed (discussed in 

section II). Though use of local knowledge has many 

advantages, it is not a valid system in its own right. The 

strength of Indigenous knowledge systems is its locality 

specific prediction. But meteorological forecasting methods 

predict for a larger area. Integrating indigenous knowledge 
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systems with meteorological forecasting methods can 

increase the prediction accuracy for the local regions and 

reduce the risks for farmers.  

This work proposes a drought prediction system integrating 

indigenous knowledge with meteorological forecasting 

methods referred as IK fused attention networks. Deep 

learning forecasting with meteorological factors is 

augmented with attention vectors generated from 

indigenous knowledge systems. By this way, the 

meteorological forecasting coverage can be brought to cover 

smaller regions with a improved accuracy. Following are the 

contributions of this work  

(i) Attention vector model for representing the indigenous 

knowledge (IK).  

(ii) A novel LSTM improved with attention vector of IK to 

provide forecasting for a smaller coverage area  

(iii) Validation of the proposed model for south Indian 

districts. 

The rest of the paper is organized as follows. Section II 

surveys the drought prediction systems and presents the case 

of integration of IK with meteorological forecasting 

systems. Section III details the proposed integration of IK 

with deep learning based meteorological forecasting. 

Section IV presents the results of the proposed integrated 

forecasting method. Section V presents the conclusion and 

future scope of work.  

II. Related Work 

The survey is conducted in two categories of meteorological 

parameter based and traditional parameter based. 

A. Meteorological parameters based prediction   

Jena et al [6] fitted a Coupled Model Intercomparison Phase 

5 (CMIP5) model over the historical monsoon rainfall data 

in Indian subcontinent to predict droughts. Assessment of 

flood or drought is made based only on monsoon rain fall 

distribution. Zhang et al [7] experimented with three models 

of multiple linear regression (MLR), long short term 

memory (LSTM) and random forest (RF) to predict flash 

drought. Eight meteorological variables: precipitation, air 

temperature (average, minimum & maximum), air pressure, 

relative humidity, wind speed, sunshine duration were 

collected from 1979 to 2016. A derived variable potential 

evapotranspiration is calculated from air temperature, 

humidity and wind speed. Three different models of MLR, 

LSTM and RF was fit with the nine variables as input and 

drought intensity as output. The output variable of drought 

intensity was constructed based on depletion rate of soil 

moisture. But the method is for larger area and drought 

intensity measurement based on soil moisture alone is not 

sufficient. Zhang et al [8] analyzed drought from 

perspective of crop production. The entire wheat growing 

season of October to April was considered for the study.  

The correlation between different stages of wheat growth to 

different types of droughts was analyzed. Four droughts of 

Meteorological, Hydrological, Soil Moisture and 

Vegetation were considered in this study. Time series data 

for every month from 1981 to 2013 were used in the study. 

The study provided influence of each drought type, their 

spatial temporal distribution and variation on wheat growth. 

But the method did not propose any prediction model. 

Zhang et al [15] used LSTM to predict soil moisture 

drought. LSTM model was trained with historical soil 

moisture data from 1980 to 2012. Prediction based on 

historical data alone cannot yield higher accuracy as the 

baselines are disturbed due to climate variability. Poornima 

et al [16]used LSTM to predict SPI and SPEI predictions in 

time scale of 1, 6 and 12 months. The dataset consisting of 

maximum temperature, maximum relative humidity, 

minimum relative humidity, precipitation, wind speed, 

sunshine and evaporation were collected from year 1958 to 

2014. LSTM is found to provide better compared to 

ARIMA. The study is at macro level and does not consider 

giving more weightage to certain variables depending on the 

geographic conditions. Sumin et al [17] developed a short 

term drought forecasting model based on temporal patterns 

of satellite based drought indexes and numerical model 

outputs. Two machine learning classifiers of convolutional 

LSTM and random forest (RF) were integrated. 

Convolutional LSTM predicts the temperature and 

precipitation based on historical drought conditions. This 

output along with static variables like elevation, land cover 

and climate zone is fed into RF to predict drought. The 

approach is suitable for only large area. Xu et al [18] 

proposed a hybrid model integrating ARIMA with LSTM 

model for short term drought forecasting. Hybrid ARIMA-

LSTM model was found to provide better accuracy 

compared to ARIMA, support vector regression and LSTM 

classifiers. Band et al [19] analyzed the drought index 

forecast accuracy of different time series models. Seasonal, 

non-seasonal and combined differencing models were 

experimented. The study found that combined differencing 

provides better forecasting accuracy. Rajib et al [20] used 

one dimensional convolutional neural network for drought 

assessment based on the complex association between 

rainfall variation and hydro meteorological parameters of air 

temperature, surface pressure, wind speed, relative 

humidity, evaporation, soil moisture and geo potential 

height.  CNN is able to learn the complex association 

between meteorological parameters to predict rainfall. From 

the rainfall predictions, SPAI drought index is calculated. 

The approach does not consider the temporal variations in 

the complex relationship modeling.Dikshit et al [21] used 

stacked LSTM architecture for predicting drought measure. 

Standard Precipitation Evaporation Index was predicted 

using hydro meteorological and climatic variables. LSTM 
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performance was enhanced by loss measurement and weight 

updating using gradient descent operator. Mokhtar  et al 

[22] experimented with four different machine learning 

models of RF, Extreme Gradient Boost (EGB) , CNN and 

LSTM. Classifiers were trained to predict Precipitation 

Evapotranspiration Index (SPEI) for two time scale of 3 

months (SPEI-3) and 6 months (SPEI-6). The classifiers 

were trained with precipitation, average temperature, 

minimum temperature, maximum temperature, wind speed 

and relative humidity.XGB was found to provide higher 

forecast accuracy for SPEI even higher than LSTM. XGB 

performed better without consideration for climatic 

variability, but in presence of it, the performance of XGB 

may drop. 

B. Traditional parameters based prediction  

Salite et al[5] explored the traditional indicators for drought 

prediction in Gaza. Author detailed the eleven traditional 

indicators based on moon appearance, cloud’s appearance, 

wind direction, stars pattern and plant behavior. Authors 

also inferred that most of the traditional indicator performed 

negatively due to large climate and temperature variations. 

They stressed that technical indicators alone were not 

sufficient for achieving higher prediction accuracy. 

Balehegn et al [9] documented the indigenous weather and 

climate forecasting knowledge among the Afar 

communities. These communities forecast climate and 

weather from bio physical variables in their environment. 

Bo physical variables are extracted from various cues of 

trees, animals, winds and celestial bodies. Lack of sufficient 

data make it difficult to prove the validity of traditional 

knowledge systems statistically. Owen et al [10] identified 

multiple indigenous indicators used in farming communities 

of Africa. These indicators provide short time and long time 

seasonal information necessary for crop planning decisions. 

Author stressed the need for integrating IK with modern 

forecasting to improve the reliability of forecasting but no 

integration models were proposed. Pareek et al [11] 

explored the IK prevalent in tribal communities of 

Rajasthan. IK relating to cloud formation, lightning, wind 

direction, rains, drought, disaster prediction, response, 

mitigation, and effects of weather on crops were collected 

and analyzed. It was an exploratory study, it collected the 

tribal IK on drought but authors did not construct any model 

based on it. Ngenga et al [12] assessed the IK used by 

farmers in Kenya on climate forecasting, their perceptions 

of climate variability and adaptation strategies, and their 

correlation with conventional approaches. Kenyan farmer’s 

IK were based on behavior of trees, animals, the sky, moon, 

and wind similar to rest of African countries. The 

correlation between the IK and conventional is measured 

using Chi Square statistical tests.  The test found that the 

farmer observations were in agreement with historical 

observation of rain fall and drought. The author evaluated 

the observations but did not propose any model or tool to 

forecast based on the observations. Johnston et al [13] 

analyzed the IK forecasting practices prevalent among 

Zimbabwe farmers. The study found that IK practices are in 

threat due to climate variability and need to be adapted by 

integrating to modern forecasting methods. Islam [14] 

documented the IK practices among rural communities in 

Barind. Most of the practices were based on birds and 

inspect behavior patterns. Though the study documented the 

practices, the relevance was not tested and no prediction 

models were constructed based on the observations. 

From the survey, many IK based observations with high 

correlation to drought were found. But they were not 

quantitative in terms of drought scales like SPI. Multi-

variate LSTM trained with meteorological variable of 

precipitation, temperature (average/minimum/maximum), 

relative humidity and wind speed was found to perform 

better among all classifier in predicting drought. The LSTM 

provided quantitative results in form SPI scales. Due to 

higher climatic variability, the baselines data on LSTM 

based forecasting models built have wide shifts introducing 

large prediction error. Also some of IK observation does fail 

due to climatic variations. In the survey, many works have 

recommended integration of IK with meteorological 

forecasting methods but to our knowledge no working 

models have been proposed. The prediction error due to 

climatic variations can be minimized with integration of IK 

with meteorological forecasting methods.  Integration of IK 

with LSTM models brings another advantage to extend the 

LSTM model trained on larger coverage areas to forecast for 

local spatial area. In the local spatial area, the importance of 

the meteorological variable varies from that of global 

coverage level and this creates prediction error.  

III. IK fused Attention Networks  

The architecture of the proposed solution is given in Figure 

1.  IK rules based on hydro meteorological parameters are 

tested for reliability by matching against historical dataset. 

The rules whose score is more than a threshold are selected 

and the hydro meteorological parameters covered by the 

rules are decided as dominating variables. Conditional 

attention vector is generated based on the dominating 

variable and value ranges for inputs. This conditional 

attention vector is provided to the LSTM attention model. 

LSTM attention model is a multivariate time series model 

which takes the hydro meteorological parameters as input 

and provides the drought index value as output.
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Fig 1 Integrated IK-LSTM Model 

This work experiments with SPI drought index. The 

experiments are conducted for two scales of three and six 

months.  

The proposed solution has three important stages: IK rule 

evaluation, Attention vector generation and LSTM-

Attention network model training and forecast. Each of the 

stages is detailed in below subsections.  

A. IK Rule evaluation  
The architecture of the IK rule evaluation is given in Figure 

2.  
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Hydro 

meteorological 

value for variable 
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Fig 2 Architecture of IK Rule evaluation  

The IK rules are evaluated using fuzzy logic system across 

the historical data and each rule is scored. The IK rules are 

fuzzy. They are based on categorical values. Say the rule is 

“if wind speed is high in June then low rainfall”, the values 

for wind speed (high) and rainfall (lower) are categorical 

instead of numerical.  
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To evaluate the validity of the rules, meteorological 

variables in historic dataset must be used. But the values in 

the dataset are numeric. Thus transformation must be done 

as the first step. The transformation function mapping each 

of the meteorological variables to fuzzy categorical 

variables must be defined. A sample of the transformation 

function mapping wind speed is designed depending on the 

spatial location over a period of year. For the wind speed in 

Chennai given in Figure 3, the maximum value is 5.9 m/s 

and minimum value is 5.1 m/s.  The transformation function 

constructed with three categorical variables of low, medium 

and high is shown in Figure 4.  

Fuzzy function is used for transformation as the views are 

not concrete in IK. The transfer function is constructed for 

SPI with two categorical variables with chance of drought 

as HIGH or LOW.  

For each IK rule, a fuzzy system [28] is constructed with 

meteorological variables as input and SPI as the output. The 

fuzzy system is tested for each of the historical values, and 

ratio of number of historic values rows classified correctly 

to the total number of historic values is given as validity 

score.  

𝑠𝑐𝑜𝑟𝑒(𝑟𝑢𝑙𝑒) =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐 𝑣𝑙𝑎𝑢𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑐𝑡𝑙𝑦 𝑤𝑖𝑡ℎ 𝑟𝑢𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐 𝑣𝑎𝑙𝑢𝑒𝑠
 

The rules whose score is greater than threshold are decided 

as valid IF rules. The variables covered in the valid rules are 

the dominating variables.      

 

 

      

Fig 3 Wind speed in Chennai 

 

     

Fig 4 Fuzzy transfer function for wind speed 
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Fig 5 Sample positional encoding 

B. Conditional Attention vector generation  

The drought will be predicted based on multiple hydro 

meteorological variables using LSTM in this work. But 

typical LSTM gives equal importance to all the variables. 

But for localized prediction, certain variables may have 

higher importance in prediction. To enforce prediction with 

higher weights to certain features based on IK, attention 

model is used in this work. The attention mechanism selects 

the most influencing input features and provides higher 

weights to corresponding original sequence. The output of 

attention model is provided as input to the LSTM model to 

predict drought in terms of SPI. The attention model maps 

a query(𝑄) and set of key value pairs (< 𝐾, 𝑉 >) to output 

(𝑂).  With 𝑄, 𝐾, 𝑉 represented as vectors, the output is 

calculated as a weighted sum of the values, where the 

weight assigned to each value is computed by a 

compatibility function of the 𝑄 with the corresponding key 

(𝐾).  

Attention vector is created from the IK rules. The query is 

represented in form of positional encoding information of 

IK rule. Say for the IK ““if wind speed is high in June then 

low rainfall”, June is the positional information. The 

positional information is represented in form of binary 

vector. A sample positional encoding information is given 

in Figure 5. They key is binary vector with each position 

representing a hydro meteorological variable and the 

position is set as 1, when the corresponding meteorological 

variable is covered in the IK rule else it is marked as 0. The 

value is a binary vector with each position representing a 

hydro meteorological variable. The value at the position is 

score of IK rule when the variable is covered in the IK rule. 

The query, key and value represent the attention vector.  

C. LSTM Attention Network 

Multivariate LSTM [25] with attention is proposed in this 

work for drought index prediction. LSTM has been selected 

as it is proved to provide higher accuracy of drought 

prediction compared to seasonal models like ARIMA 

[26].Attention modeling with LSTM [27] allows for 

providing different weights to features depending on 

positional information of time sequence data and its 

coverage in IK rules. 

Given a sequence of meteorological observations 𝑋 =

(𝑋1, 𝑋2, … 𝑋𝑇) where each 𝑋𝑖 is the set of meteorological 

variables and its corresponding drought prediction. It is 

represented as 𝑋𝑡 = {𝑥𝑡
1, 𝑥𝑡

2, … 𝑥𝑡
𝑁,𝑦𝑡} where 𝑁 is the 

number of meteorological variables ,𝑥𝑡
𝑖 is the 

meteorological  variable and 𝑦𝑡  is the drought index. This 

work uses following variables: precipitation, temperature, 

relative humidity and wind speed as input. SPI is used as 

drought index in separate models.  The objective is to 

predict the drought index value based on inputsequence 𝑋 

with weight importance to features given by attention 

vector.  The  LSTM -Attention architecture is given in 

Figure 6. 
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Fig 6 LSTM Attention architecture 

 

For each input sequence𝑋 = (𝑋1, 𝑋2, … 𝑋𝑇), the positional 

encoding is constructed by creating the time domain 

specific encoding (as given in Figure 5) for each of the 𝑋𝑡. 

With positional encoding a query to the Attention 

modeling, the attention weight values providing differential 

importance to each of the features of 𝑋𝑖 is obtained as 

mentioned by attention vector generation procedure given 

in Section B as {𝛽1, 𝛽2, … 𝛽𝑁} The input 𝑋𝑡 = {𝑥𝑡
1, 𝑥𝑡

2, … 𝑥𝑡
𝑁 

}  is transformed to 𝑍𝑖  where  

𝑍𝑖 = {𝛽1𝑥𝑡
1, 𝛽2𝑥𝑡

2, … . 𝛽𝑁𝑥𝑡
𝑁} 

The transformed input is passed to input embedding. In 

typical NLP architecture, words in sentence are mapped to 

high dimensional vector to capture dependencies across 

different words without considering temporal information. 

In the same way, the dependencies across the variables in 𝑍𝑖 

are learnt using input embedding. The embedding is done 

by passing 𝑍𝑖 to a 1D convolutional neural network to get a 

𝑑 dimensional embedding for 𝑍𝑖.  

The sequence of input embedding are provided as input to 

the multivariate LSTM model to predict the drought index.  

LSTM is an extension of RNN (Recurrent Neural 

Networks).  It has gating mechanism and a cell activation 

state, in addition to the existing hidden state, since the 

network learns when to forget long-term information and 

when to incorporate new information. Separating the hidden 

state with the cell activation state also allows for the network 

to learn controlling how much of the cell activation it 

outputs. The structure of LSTM is given below 
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Fig 7 LSTM structure 

A combination of an input vector x and the previous hidden 

state is taken as input by an LSTM node. 

A new candidate cell activation ˜c is calculated by the 

LSTM. It is calculated as the weighted sum of the inputs and 

bias b.   

The result is then passed to a hyperbolic tangent activation 

function as given below 

𝑐𝑡 =  ∅𝑡(𝑊𝑐𝑥𝑡 +  𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑐𝑡 is the candidate cell activation. 𝑥𝑡 is the input vector. W 

and U are the weight matrices.ℎ𝑡−1 is the hidden state vector 

at the previous time step and 𝑏𝑐 is the bias. the gates control 

how much of activation must be retained and how much 

must be forgot. Input gate control how must activation to 

retain and forget gate decided how much cell activation 

must be forgot. The final gate is incorporated to calculate 

the hidden state.  

𝑓𝑡 =  ∅𝑠(𝑊𝑓𝑥𝑡 +  𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 =  ∅𝑠(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝑜𝑡 =  ∅𝑠(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

𝑓𝑡 is the forgot gate vector. 𝑖𝑡 is the input gate vector.𝑜𝑡 is the output gate vector. 

The architecture of drought prediction LSTM is given in Figure 7. 

 

Fig 8 LSTM architecture 

It takes the 𝑍 = (𝑍1, 𝑍2, … 𝑍𝑇),  where T observation are used to predict the drought index at time T+1 and each 𝑍𝑖 is 
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the input embedding of the transformed original sequence 

𝑋 = (𝑋1, 𝑋2, … 𝑋𝑇). The final LSTM layer output is passed 

to a Softmax classifier in regression setting [29]. In 

regression setting, softmax classifier the LSTM output to 

one of possible value of drought indicator. Say there are K 

drought indicator values {1,2, … 𝐾}, the softmax classifier 

must estimate the probability for each of the K values. The 

output of the softmax classifier is the K dimensional vector 

providing the K estimated probabilities.  The loss function 

for training the softmax regression classifier is given as 

𝐿 = −[∑ ∑ 1{𝑦(𝑖) = 𝑘} log 𝑃(𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃)]

1

𝑘=0

𝑚

𝑖=1

 

Where  

𝑃(𝑦(𝑖) = 𝑘|𝑧(𝑖); 𝜃) =
exp(𝜃(𝑘)𝑧(𝑖))

∑ exp (𝐾
𝑗=1 𝜃(𝑘)𝑧(𝑖))

 

Where 𝜃(1),𝜃(2),…𝜃(𝑘) are the parameters of the model and 

exp(𝜃(𝑘)𝑧(𝑖)) is the normalization of parameter with the 

input feature values. The proposed solution has two 

important process- training and prediction. The process flow 

of training and prediction is given as flowchart in Figure 9 

and Figure 10. 

Training dataset sequence of 

<temperate, 

windspeed,humidity,month> 

vs <SPI>

For each IK rule

Cß Calculate no of training dataset rows satisfying the 

IK rule

Score = C/ |Number of training dataset instances|

Score > 0.70 Add to valid rule listY

N

Convert Valid rules to vectors as in Section B

Multiply training dataset sequence with vector 

of matching valid rule

Train LSTM with processed training dataset

 

     Fig 9 Training process flow 

In the training process, the training dataset instances is 

processed by multiplying with the conditional vectors 

generated for matching IK rules and a LSTM regressor is 

trained with the processed dataset.  
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Test set sequence of 

<temperate, 

windspeed,humidity,month> 

Mtß Multiply test set sequence with conditional 

vector of MK

SPIß  Invoke on trained LSTM with Mt

MRß Get matching IK rule in valid set for 

test set sequence

 

Fig 10 Prediction process flow 

The prediction process takes the test set sequence of 

meteorological variables. It then multiples the test set 

sequence with the conditional vector of matching IK rule. 

The processed test set sequence is passed to LSTM regressor 

to predict the SPI value.  

IV. Results 

The performance of the proposed solution was tested by 

implementing in Python. Keras and Tensor flow modules 

are used to realize the attention vector mechanism and 

integration with LSTM. The performance is tested by 

collecting the meteorological variables temperature, 

humidity, wind speed and precipitation over a period of 

years in interval of every month for certain location. For 

every month SPI value is calculated. The sequence of input 

(temperature, humidity and wind speed) is arranged in 

window interval (3, 6, 12 months) and for each sequence 

SPI value is associated as output. This dataset is split into 

80:20 ratio with 80% for training the classifier and 20% is 

used for testing the classifier. The SPI value predicted by 

the classifier is compared against the actual SPI value to 

measure the effectiveness of the proposed solution. The 

performance of the proposed solution is measured in terms 

of : Nash–Sutcliffe model efficiency coefficient (NSE) [30], 

the mean square error (MSE), the mean absolute error 

(MAE) , mean bias error (MBE) and correlation coefficient 

(R). The metrics are calculated as below 

𝑁𝑆𝐸 = 1 −
∑(𝑃𝑖 − 𝐴𝑖)

2

∑(𝐴̅ − 𝐴𝑖)
2

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐴𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝐴𝑖)

2

𝑛

𝑖=1

 

𝑀𝐵𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝐴𝑖)

𝑛

𝑖=1

 

𝑅 =
∑ (𝐴̅ − 𝐴𝑖)((𝑃̅ − 𝑃𝑖)𝑛

𝑖=1

√∑ (𝐴̅ − 𝐴𝑖)
2𝑛

𝑖=1 ∑ (𝑃̅ − 𝑃𝑖)2𝑛
𝑖=1

 

In the above equations, n is the number of test observations, 

𝐴 is the actual value and 𝑃 is the predicted value.The 

performance of the proposed solution is compared against 

XGBoost, random forest (RF) and LSTM which are trained 

only using meteorological variables without consideration 

for IK attention vectors.   

The drought is measured in terms of SPI in time scales of 3, 

6, 9 and 12 months. SPI (McKee et al 1993) is metric to 
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quantize the precipitation scarcity on different time scales. 

SPI is calculated in terms of current precipitation (𝑌), 

average precipitation (𝑌̅), standard deviation of 

precipitation (𝜎) over the period of time as  

𝑆𝑃𝐼 =
𝑌 − 𝑌̅

𝜎
× 100 

Based on the SPI values, drought is classified to five classes as shown in Table 1.  

Table 1 SPI values to Drought class mapping 

Drought class SPI Values 

Wet >1.5 

Slightly wet 1.0 to 1.49 

Normal -0.99 to +0.99 

Slightly Dry -1 to -1.49 

Dry <1.5 

 

The multivariate time series is arranges in 3 month interval 

and 6 month interval to predict. SPI value at end of the 

interval is converted to Drought class and the sequence of 

training set is prepared. Chitradurga district of Karnataka 

(Figure 9) was selected for testing the drought prediction 

accuracy of proposed solution. This region is situated in 

Agro climatic region-10 with average rainfall of 592.5mm 

and average humidity of 58-76%. The region has 32 rainy 

days with usual showers in June to September. South west 

monsoon is the major contributor to the rainfall in this 

region. The temperature ranges from 21°C to 31.8°C. 

Meteorological data for Chitradurga district were collected 

from year 1987 to 2017 from Karnataka state natural 

disaster monitoring center.      

 

Fig 11 Chitradurga district 

The IK knowledge for drought were extracted from [24] and translated for this work. The translated IK are given in Table 2. 
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IK Translated  IK 

Wind flow on continuous 

interval over months reduces 

rain.  

If wind flow is high, then slightly dry 

A higher heat in may month 

may cause high monsoon   

If temperature is high in in May then Wet  

Higher rain follows Holi rain. It rain in March, then Wet  

 

The translated IK is used for attention vector generation and 

improving the LSTM attention model.  The comparison of 

proposed LSTM with attention model (trained with fused IK 

attention vector and meteorological variables) with machine 

learning models (trained only with meteorological 

variables) are presented below.   

Table 2 Comparison of MSE 

                                                         MSE 

 Proposed LSTM 

with attention  

XGBoost RF LSTM  

SPI-3 0.11 0.17 0.18 0.14 

SPI-6 0.09 0.15 0.14 0.13 

SPI-9 0.08 0.11 0.12 0.11 

SPI-12 0.07 0.10 0.11 0.10 

Average  0.08 0.13 0.13 0.12 

 

The MSE is compared across the solutions for all SPI scales 

and the result is given in Table 2. Lower the value of MSE, 

better is the prediction accuracy. The proposed solution has 

62% lower MSE compared to XGBoost & RF and 50% 

lower MSE compared to LSTM.   

Table 3 Comparison of NSE 

                                                         NSE 

 Proposed LSTM 

with attention  

XGBoost RF LSTM  

SPI-3 0.80 0.73 0.73 0.79 

SPI-6 0.81 0.75 0.75 0.80 

SPI-9 0.82 0.77 0.79 0.81 

SPI-12 0.85 0.79 0.80 0.83 

Average  0.82 0.76 0.77 0.81 

 

The NSE is compared across the solutions for all SPI scales 

and the result is given in Table 3. Higher the value of NSE 

better is the prediction accuracy. The proposed solution has 

7% higher NSE compared to XGBoost, 6% higher NSE 

compared to RF and 1.2 % higher NSE compared to LSTM.  
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Table 4 comparison of MAE 

                                                         MAE 

 Proposed LSTM 

with attention  

XGBoost RF LSTM  

SPI-3 0.29 0.35 0.36 0.31 

SPI-6 0.26 0.34 0.35 0.27 

SPI-9 0.23 0.31 0.32 0.24 

SPI-12 0.21 0.29 0.29 0.22 

Average  0.24 0.32 0.33 0.26 

 

The MAE is compared across the solutions for all SPI scales 

and the result is given in Table 4.Lower the value of MAE, 

better in the prediction accuracy. The proposed solution has 

33% lower MAE compared to XGBoost, 37% lower MAE 

compared to RF and 8% lower MAE compared to LSTM.  

 

Table 5 Comparison of MBE 

                                                         MBE 

 Proposed LSTM 

with attention  

XGBoost RF LSTM  

SPI-3 -0.16 0.04 0.05 -0.12 

SPI-6 -0.023 -0.01 0.03 -0.08 

SPI-9 -0.02 -0.02 -0.06 -0.03 

SPI-12 -0.01 -0.05 -0.08 -0.04 

Average  -0.05 -0.01 -0.015 -0.0675 

 

The MBE is compared across the solutions for all SPI scales 

and the result is given in Table 5. The proposed solution has 

35% lower MBE compared to LSTM.  

     Table 6 Comparison of R 

                                                        R 

 Proposed LSTM 

with attention  

XGBoost RF LSTM  

SPI-3 0.88 0.83 0.82 0.86 

SPI-6 0.89 0.84 0.84 0.87 

SPI-9 0.90 0.86 0.86 0.89 

SPI-12 0.92 0.87 0.87 0.90 

Average  0.897 0.85 0.847 0.88 

 

The R is compared across the solutions for all SPI scales and 

the result is given in Table 6. Higher the R value, better is 

prediction accuracy. The R value in proposed solution is 

5.2% higher compared to XGBoost, 5.5% higher compared 

to RF and 1.8% higher compared to LSTM.  

Integrating IK with LSTM has improved the prediction 

accuracy in the proposed solution as seen from the metrics 
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results. Machine learning models trained only with 

meteorological variables had higher prediction error 

compared to the proposed model which is trained with fused 

meteorological variables with IK based condition vectors.  

Compared to traditional parameter for drought prediction 

methods discussed in the literature, the proposed solution 

provides quantitative results and it is more scientific as 

results are backed with support of meteorological variables. 

The proposed solution is easily extensible for any number 

of IK rules. This work has proposed a mechanism to convert 

IK rules expressed in linguistics term to quantitative vector 

using fuzzy logic. To the best of our knowledge, there has 

no earlier work on translation of linguistic IK rules to 

quantitative feature vector and fusion of modern 

meteorological variables with IK quantitative feature vector.  

 

V. Conclusion  

This work proposed a LSTM attention model integrating 

indigenous knowledge for meteorological drought 

prediction. As part of the work, IK rules in fuzzy domain 

are evaluated against historical meteorological data. The 

IK rules with higher significance are used for attention 

vector generation.   

Attention vector generated from IK rules is merged into 

LSTM for providing differential weights to the features. 

The differential weighted features are classified by the 

multivariate LSTM to SPI drought prediction index. The 

performance of the proposed solution is tested for 

meteorological data of Chitradurga district of Karnataka. 

SPI prediction accuracy was higher in proposed solution 

with NSE value greater atleast by 1.2% and MAE lower 

atleast by 33% compared to existing works. The proposed 

solution is able to provide better prediction accuracy 

compared to multivariate LSTM without attention. 

Integration of IK with LSTM has been demonstrated in 

this work and results looks promising. But the IK rules 

considered in this work are limited. Testing against large 

number of IK rules and creating attention vector from IK 

rules with more named entities is in scope of future work.  
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