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Abstract:  This paper aims to enhance the accuracy of Alzheimer's Disease (AD) versus Mild Cognitive Impairment (MCI) 

versus Normal Controls (NC) classification through the implementation of feature reduction techniques and the fusion of 

multimodal features. Specifically, gray matter within specified regions of interest (ROI) in the brain is extracted from both 

MRI and FDG-PET images. The LASSO feature selection technique is employed to identify relevant features crucial for 

distinguishing AD from MCI and NC. The reduction in features results in a 92.27% accuracy, reflecting an 11% 

improvement compared to classification without feature selection in AD versus MCI. The classification of AD versus MCI 

and MCI versus NC proves challenging due to the high correlations among features. The analysis reveals that a maximum 

classification accuracy of 92.27% is achieved for AD versus MCI through the multi-modal combination of features using a 

linear Support Vector Machine (SVM) algorithm. Additionally, a 99% accuracy is attained for MCI versus NC using the 

linear SVM algorithm. The fusion of features across all modalities yields a 94.9% accuracy for AD versus MCI versus NC. 

This analysis underscores that the fusion of multimodal features consistently improves classification accuracy compared to 

relying on any single modality. The study utilizes the ADNI-1 database, and the corresponding subject IDs are detailed in 

Table 10. 

Keywords: Alzheimer Disease (AD), Mild Cognitive Impairment (MCI), Normal Controls (NC), Feature Selection.

1.Introduction 

Alzheimer's Disease (AD) is a prevalent neurodegenerative 

condition affecting the elderly, progressing over time and 

causing the deterioration of brain cells leading to dementia. 

The evaluation of AD progression involves categorizing 

data into three stages: Normal Controls (NC), Mild 

Cognitive Impairment (MCI), and Alzheimer's Disease. It 

is noteworthy that not all subjects diagnosed with MCI will 

transition to AD; only a subset will convert over time [1]. 

Early detection of AD is crucial for clinicians to enhance 

the quality of life for individuals affected by the disease. 

 

Various imaging modalities, including Magnetic 

Resonance Imaging (MRI), Fluorodeoxyglucose Positron 

Emission Tomography (FDG-PET), genetic analysis, and 

Cerebrospinal Fluid (CSF) examination, are available to 

diagnose the progression of AD. Structural MRI, widely 

used for its ability to differentiate between gray and white 

matter in dementia subjects [6] [35], leverages changes in 

gray matter volume in the hippocampus region as a 

biomarker for AD diagnosis. The measurement of gray 

matter in predefined 116 Regions of Interest (ROIs) in the 

hippocampus serves as a feature vector for classification. 

 

FDG-PET plays a significant role in the early diagnosis of 

AD, revealing reductions in glucose metabolic rates in 

various brain regions [23] [27]. Genetically, dementia is 

associated with permanent variations in the 

Apolipoprotein-E (APOE) gene, particularly the e2, e3, 

and e4 alleles. Individuals with the APOE e4 allele have a 

higher risk of developing AD at an early age [18] [32]. In 

CSF, biomarkers such as Aβ38, Aβ40, Aβ42, total tau, and 

phosphorylated tau are utilized for AD diagnosis. Notably, 

low levels of Aβ42 are validated in AD subjects, and the 

combination of Aβ40 and Aβ42 improves diagnostic 

accuracy [25]. 

 

Researchers have demonstrated the use of the Aβ42/Aβ40 

ratio for enhanced AD identification [13] [37]. 

Additionally, correlations between low levels of Aβ38 and 

elevated levels of phosphorylated tau (P-tau) [15] and total 

tau in CSF [4] in AD subjects have been investigated. 

Plaques and tangles, composed of amyloid beta fragments, 

obstruct neuron communication in dementia subjects [5], 
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and a correlation between P-tau and tangle count has been 

reported [11]. 

 

While individual modalities provide limited information 

about dementia, the fusion of multi-modal features extracts 

diverse aspects of AD, offering complementary 

information. Integrating features from MRI, PET, CSF, 

APOE, and clinical features enhances the early detection of 

dementia [39]. Numerous researchers have developed 

computerized techniques for AD diagnosis, frequently 

utilizing MRI [8] [9] [14] [17] [26] and PET [10]. MRI 

provides detailed structural anatomy, while PET offers 

insight into metabolic brain function [24]. Consequently, 

the fusion of multimodal features holds promise for 

improving AD classification accuracy [12][16] [21]. 

  

This paper delves into the classification analysis of 

Alzheimer's Disease (AD) versus Mild Cognitive 

Impairment (MCI) versus Normal Controls (NC) subjects 

through the fusion of features from multiple modalities 

employing machine learning algorithms. Features from the 

Region of Interest (ROI) in both MRI and PET scans were 

extracted and utilized for the classification task. To 

streamline the process, the LASSO cross-validation 

technique was applied to identify relevant features and 

reduce their number. The investigation aimed to pinpoint 

optimal combinations of modalities for enhancing the 

accuracy of AD diagnosis. The reduced features from MRI 

and PET scans were amalgamated with data from the 

APOE gene, Cerebrospinal Fluid (CSF), and clinical 

information in various combinations to assess their impact 

on classification accuracy. The analysis underscores the 

consistent improvement in classification accuracy achieved 

through the fusion of multi-modality features, surpassing 

the efficacy of any single modality. Notably, the results 

highlight that while the APOE genotype, identified as a 

biomarker for AD, does not individually offer significant 

classification accuracy, its fusion with other modalities 

yields notable improvements in accuracy.  

2.Dataset and Feature Extraction 

The analysis presented in this paper utilized the ADNI 

LONI Image Data archives of the Alzheimer's Disease 

Neuroimaging Initiative (ADNI). The demographic details 

of the subjects selected for the analysis are provided in 

Table 1. To facilitate pre-processing and feature extraction 

from MRI and PET images, the SPM12 and CAT12 

software toolboxes [3] were employed. 

 

 

 

 

 

 

Table 1. Summary of Demographic characteristics of 

subjects 

Group/ 

Gender 

No. of 

Subjects 

Age 

(Mean 

± Std) 

MMSE 

score 

(Mean 

± Std) 

GDS 

(Mean 

± Std) 

CDR 

(Mean 

± Std) 

AD 

Male/ 

Female 

78 
75.87 

± 7.6 

23.50± 

2.07 

1.53 ± 

1.32 

1.00 ± 

1.06 

MCI 

Male/ 

Female 

100 
75.85 

± 6.81 

28.92 

± 1.08 

1.00 ± 

1.27 
0 ± 0 

NC 

Male/ 

Female 

 

96 

75.81 

± 4.8 

 

27.31 

± 2.27 

 

1.77 ± 

1.59 

 

0.51 ± 

0.09 

 

The values are denoted as mean ± standard deviation. 

MMSE=Mini Mental State Examination, 

CDR=Clinical Dementia Rating, GDS=Global 

Deterioration Scale 

To extract features from Magnetic Resonance Imaging 

(MRI) and Fluorodeoxyglucose Positron Emission 

Tomography (FDG-PET) images, a Region of Interest 

(ROI) Analysis [2] was executed utilizing an atlas 

specified by [22]. The FDG-PET images underwent pre-

processing in accordance with standard protocols, 

involving a Dynamic 3D scan of six 5-minute frames 

conducted 30-60 minutes post-injection, as outlined in 

detail at (http://adni.loni.usc.edu/methods/pet-analysis-

method/pet-analysis/). Following this pre-processing, the 

FDG-PET scans were co-registered with the corresponding 

pre-processed MRI scans 

(http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/) 

using a three-dimensional method. The genetic component 

linked to Alzheimer's Disease is governed by the 

Apolipoprotein E (APOE) gene, characterized by three 

alleles: e2, e3, and e4. Each subject's genetic feature is 

defined by one of six genetic combinations: (e2, e2), (e2, 

e3), (e2, e4), (e3, e3), (e3, e4), and (e4, e4). The specific 

APOE measures utilized in the current study are detailed in 

Table 2.  

Table 2. Each diagnostic group possessing each of the Six 

APOE allele pairs. 

Genetic  

biomarkers  AD MCI NC 

(e3, e3) 22 48 54 

(e3, e4) 37 36 21 

(e4, e4) 12 11 2 

(e2, e3) 3 2 16 

(e2, e4) 4 3 1 

(e2, e2)     2 

Total 

Subjects 78 100 96 
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  The CSF biomarkers such as Aβ42, Aβ40, Aβ38, Aβ, t-

tau and p-tau were ac-quired using the notable fully 

automated Roche Elecsys and cobas e 601 immunoassay 

analyzer system from ADNI. The CSF biomarkers were 

not available for all the subjects, the missing data were 

compensated using mean value imputation technique. The 

measure of CSF biomarkers used in the classification of 

AD is depicted in Table 3.   

 Table 3. CSF measures and biomarkers used in 

classification of AD 

CSF 

Biomarkers 

AD MCI NC 

A38,𝑝𝑔 𝑚𝑙⁄  1718.20± 

499.99 

1747.11± 

584.04 

1754.81± 

566.55 

A40, 𝑝𝑔 𝑚𝑙⁄  7398± 

2098.97 

7319.08± 

2306.10 

7573.32± 

2260.77 

A 

42, 𝑝𝑔 𝑚𝑙⁄  

651.17 ± 

258.75 

868.63± 

456.40 

1096.05± 

404.72 

A 624.58± 

267.26 

943.39± 

616.30 

1174.17± 

507.89 

t-tau 363.06± 264.27± 227.23± 

141.00 90.67 77.59 

p-tau 37.47897± 

17.30 

25.74± 

9.87 

21.165± 

7.96 
pg ⁄ ml=Picograms/milliliter 

  

3. Feature Selection using LASSO Technique 

The Least Absolute Shrinkage and Selection Operator 

(LASSO) feature selection selects the relevant features 

among the available features. The LASSO performs L1 

regularization and was developed by Tibshirani [30], it 

identifies the most relevant features by performing cross 

validation of features against its class labels. This intern 

reduces the number of features, result in improving 

accuracy of the classifier. The authors have explored the 

LASSO based features selection on volumetric features 

and cortical thickness features to accomplish the 

improvement of classification Ac-curacy [28]. In the 

proposed analysis the relevant features of MRI and FDG-

PET identified using LASSO technique are provided in 

Table 4. 

 

 

Table 4. List of ROI biomarkers selected from MRI and PET images using LASSO Model 

Sl. no 
 

ROI biomarkers 

 

MRI 

 

PET Sl. no 

 

Volumetric Features 

 

 

MRI 

 

PET 

1 Precentral_L   59 Parietal_Sup_L √  

2 Precentral_R √  60 Parietal_Sup_R √  

3 Frontal_Sup_L   61 Parietal_Inf_L   

4 Frontal_Sup_R √  62 Parietal_Inf_R   

5 Frontal_Sup_Orb_L √  63 SupraMarginal_L   

6 Frontal_Sup_Orb_R   64 SupraMarginal_R   

7 Frontal_Mid_L   65 Angular_L   

8 Frontal_Mid_R   66 Angular_R   

9 Frontal_Mid_Orb_L   67 Precuneus_L   

10 Frontal_Mid_Orb_R   68 Precuneus_R   

11 Frontal_Inf_Oper_L   69 Paracentral_Lobule_L √ √ 

12 Frontal_Inf_Oper_R   70 Paracentral_Lobule_R   

13 Frontal_Inf_Tri_L  √ 71 Caudate_L √  

14 Frontal_Inf_Tri_R √  72 Caudate_R  √ 

15 Frontal_Inf_Orb_L   73 Putamen_L √  

16 Frontal_Inf_Orb_R  √ 74 Putamen_R √ √ 

17 Rolandic_Oper_L   75 Pallidum_L √ √ 

18 Rolandic_Oper_R  √ 76 Pallidum_R  √ 

19 Supp_Motor_Area_L   77 Thalamus_L √  

20 Supp_Motor_Area_R  √ 78 Thalamus_R √  

21 Olfactory_L   79 Heschl_L   

22 Olfactory_R  √ 80 Heschl_R   

23 Frontal_Sup_Medial_L   81 Temporal_Sup_L   

24 Frontal_Sup_Medial_R   82 Temporal_Sup_R √  

25 Frontal_Mid_Orb_L   83 Temporal_Pole_Sup_L √  
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26 Frontal_Mid_Orb_R   84 Temporal_Pole_Sup_R √  

27 Rectus_L   85 Temporal_Mid_L   

28 Rectus_R   86 Temporal_Mid_R   

29 Insula_L   87 Temporal_Pole_Mid_L √ √ 

30 Insula_R   88 Temporal_Pole_Mid_R √ √ 

31 Cingulum_Ant_L   89 Temporal_Inf_L   

32 Cingulum_Ant_R   90 Temporal_Inf_R   

33 Cingulum_Mid_L   91 Cerebelum_Crus1_L   

34 Cingulum_Mid_R   92 Cerebelum_Crus1_R √  

35 Cingulum_Post_L   93 Cerebelum_Crus2_L   

36 Cingulum_Post_R √  94 Cerebelum_Crus2_R √ √ 

37 Hippocampus_L √  95 Cerebelum_3_L   

38 Hippocampus_R √  96 Cerebelum_3_R √  

39 ParaHippocampal_L  √ 97 Cerebelum_4_5_L   

40 ParaHippocampal_R √  98 Cerebelum_4_5_R √     

41 Amygdala_L   99 Cerebelum_6_L √  

42 Amygdala_R √  100 Cerebelum_6_R √ √ 

43 Calcarine   101 Cerebelum_7b_L   

44 Calcarine  √ 102 Cerebelum_7b_R   

45 Cuneus   103 Cerebelum_8_L √ √ 

46 Cuneus  √ 104 Cerebelum_8_R   

47 Lingual   105 Cerebelum_9_L √  

48 Lingual_R   106 Cerebelum_9_R √  

49 Occipital_Sup_L   107 Cerebelum_10_L √  

50 Occipital_Sup_R √  108 Cerebelum_10_R √  

51 Occipital_Mid_L   109 Vermis_1_2   

52 Occipital_Mid_R  √ 110 Vermis_3   

53 Occipital_Inf_L   111 Vermis_4_5   

54 Occipital_Inf_R  √ 112 Vermis_6   

55 Fusiform_L   113 Vermis_7 √  

56 Fusiform_R   114 Vermis_8 √  

57 Postcentral_L √  115 Vermis_9 √  

58 Postcentral_R √  116 Vermis_10 √ √ 

 

4. Classification Performance Analysis 

The comprehensive workflow integrated into the analysis 

is illustrated in Figure 1. This method encompasses four 

pivotal steps: Image pre-processing and Feature Extraction, 

Feature Selection employing the LASSO algorithm, 

Fusion, and Classification. All subjects included in the 

current analysis had complete MRI, PET, and APOE 

genotype data available. In instances where Cerebrospinal 

Fluid (CSF) data were lacking for specific subjects, the 

missing values were replaced with the mean value within 

each subgroup (AD, MCI, and NC group) [7]. The 

extracted features underwent normalization through the 

min-max normalization technique. Subsequently, the 

LASSO feature selection technique was applied to identify 

relevant features for subsequent classification utilizing a 

Support Vector Machine (SVM) classifier. The 

classification accuracy was computed by averaging over 

100 iterations using 5-fold cross-validation. To evaluate  

 

 

the performance of the classification model, Accuracy 

(ACC) and F1 score were computed in each iteration. The  

classification results derived from the proposed method are 

systematically tabulated in Table 6. 

 
Fig. 1. The workflow of AD vs MCI vs NC identification 

using LASSO feature selection 
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Table 6. Classification results obtained using Linear SVM with Feature selection 

Sl. no 
Modality AD Vs NC AD Vs MCI MCI vs NC 

AD Vs MCI 

Vs NC 

  ACC F1 ACC F1 ACC F1 ACC 

1 

MRI 

99.49±0.37 99.43±0.41 80.13±1.75 75.8±2.18 96.35±1.99 96.54±1.83 

85.09 

± 

1.22 

2 
PET 

89.45±4.38 89.63±3.95 76.82±1.98 78.6±1.46 87.89±0.74 87.86±0.73 

84.81 

±0.81 

3 MRI + 

PET 98.49±0.6 98.3±0.68 78.47±1.99 79.0±1.77 98.57±0.87 98.61±0.83 

88.08 

±1.16 

4 MRI + 

CSF 98.35±0.45 98.17±0.49 84.87±1.36 83.2±1.64 96.58±1.09 96.66±1.05 

87.82 

±0.98 

5 
MRI + 

Genetic 99.28±0.44 99.19±0.5 79.26±1.72 74.7±2.28 96.68±1.07 96.81±1.01 

84.34 

±1.14 

6 MRI + 

Clinical 

100± 

0 

100± 

0 89.11±1.41 87.1±1.71 99.49±0 

99.5± 

0 

92.57 

±0.85 

7 PET + 

CSF 95.94±0.6 95.55±0.65 81.71±2.07 82.0±1.71 84.95±0.8 84.93±0.77 

83.81 

±0.79 

8 PET + 

Genetic 90.65±4.3 90.62±3.94 76.17±1.9 78.0±1.45 80.59±1.53 80.57±1.55 

78.59 

±1.47 

9 PET + 

Clinical 99.99±0.08 99.99±0.09 86.11±2.98 86.2±2.56 99.49±0 

99.5± 

0 

97.26 

±0.5 

10 MRI + 

PET + 

CSF 99.32±0.23 99.24±0.26 86.94±1.42 86.5±1.41 97.51±0.76 97.55±0.74 

90.9 

± 

0.9 

11 MRI + 

PET + 

Genetic 98.22±0.63 97.99±0.72 79.41±2.05 79.9±1.79 98.06±0.63 98.11±0.6 

87.75 

± 

1.17 

12 MRI + 

PET + 

Clinical 99.95±0.15 99.95±0.17 88.93±1.9 87.9±1.99 

99.49± 

00 

99.5± 

0.0 

94.8 

4± 

0.85 

13 MRI + 

CSF + 

Clinical 99.79±0.28 99.76±0.31 88.78±1.23 87.3±1.44 99.49±0 

99.5± 

0 

92.22 

± 

0.93 

14 MRI + 

Genetic+ 

Clinical 

100± 

0 

100± 

0 88.18±1.33 85.9±1.65 99.49±0 

99.5± 

0 

92.14 

± 

0.84 

15 PET + 

CSF + 

Genetic 95.48±0.57 95.06±0.62 82.49±2.15 82.6±1.79 85.15±0.82 85.15±0.8 

83.78 

±0.71 

16 PET + 

CSF + 

Clinical 98.81±0.41 98.68±0.45 92.87±0.8 92.2±0.82 99.49±0 

99.5± 

0 

95.99 

±0.43 

17 MRI + 

PET+ 

CSF+ 

Genetic 99.11±0.3 99.01±0.34 87.98±1.31 87.5±1.32 96.79±0.82 96.86±0.79 

90.68 

±0.89 

18 MRI + 

PET + 

CSF + 

Clinical 

100± 

0 

100± 

0 92.15±1.2 91.3±1.32 99.53±0.14 99.54±0.14 

95± 

0.56 

19 MRI + 99.98±0.11 99.97±0.13 89.37±1.74 88.4±1.83 99.4±0 99.5± 94.71 
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PET+ 

Genetic + 

Clinical 

0 ±1.01 

20 MRI + 

CSF + 

Genetic+ 

Clinical 99.74±0.3 99.71±0.33 88.6±1.31 87.1±1.56 99.49±0 

99.5± 

0 

92.55 

±0.89 

21 PET + 

CSF+ 

Genetic+ 

Clinical 98.65±0.44 98.5±0.49 92.74±0.86 92.1±0.88 99.49±0 

99.5± 

0 

96.0 

± 

0.39 

22 MRI + 

PET + 

CSF + 

Genetic + 

Clinical 99.99±0.08 99.99±0.09 92.27±1.29 91.6±1.38 99.49±0 

99.5± 

ss0 

94.99 

±0.8 

 

5 Results and Discussion  

In the dataset encompassing individuals with Alzheimer's 

Disease (AD) and Normal Controls (NC), insights gleaned 

from relevant literature [19] [20] [29] [31] [33] [36] [38] 

highlight the achievement of a notable classification  

 

accuracy exceeding 90%. This success is primarily 

attributed to the lower correlation of features between AD 

and NC. Conversely, in the case of Mild Cognitive 

Impairment (MCI) versus NC, the discernible features are 

comparatively fewer, resulting in reported accuracies 

predominantly below the 90% threshold [19] [20] [29] [31] 

[33] [36] [38]. Importantly, there is a noticeable gap in 

reported literature concerning the classification of AD 

versus MCI. The application of the LASSO feature 

reduction technique to MRI and PET features yielded a 

substantial reduction of 65% and 82%, respectively. 

Specifically, the original set of 116 features from MRI was 

streamlined to 41 features, while for PET, the reduction 

was from 116 features to a more concise 21 features. These 

reductions were derived from the list of Region of Interest 

(ROI) features. A comparative analysis of the Support 

Vector Machine (SVM) classifier performance, utilizing 

the original set of ROI features versus the reduced sets 

from MRI and PET, is visually presented in Figure 2. The 

classification performance of the original set of features 

and the reduced set of features for MRI and PET was 

compared against the fusion of MRI and PET features with 

modalities including CSF, Genetic, and Clinical data. The 

results indicate a notable improvement of 4 to 5% in 

classification accuracy with the feature reduction of MRI. 

However, in the case of PET, only a marginal 2% 

improvement is observed for AD versus NC, which is a 

relatively modest enhancement for classification. 

Moreover, the feature reduction is less effective for MCI 

versus NC and AD versus MCI versus NC. 

 
Fig. 2. Comparison of classification accuracy with all 116 

ROI features and Selected (41 features of MRI and 21 

features of PET) ROI features 

 

This paper underscores the importance of feature selection 

with LASSO to enhance classification accuracy, reporting 

the accuracy using the linear SVM technique with 5-fold 

cross-validation. With the proposed technique, using MRI 

as a single modality achieves an accuracy of 99.49% for 

AD versus NC and 96.35% for MCI versus NC. In 

comparison, literature utilizing Hierarchical classifier 

learning [29] reports an accuracy of 92.38% for AD versus 

NC and 84.24% for MCI versus NC, which is notably 

lower than the proposed technique. Similar comparisons 

were made for PET and other modalities against the 

classification accuracy reported in the literature. Detailed 

comparisons of accuracy for single and multi-modality 

fusion of features are provided in Tables 7, 8, and 9 for AD 

versus NC, MCI versus NC, and AD versus MCI versus 

NC, respectively. The results from Table 6 indicate that, 

for both single and multi-modality fusion of features, the 

proposed LASSO feature selection demonstrates improved 

classification accuracy compared to other methods 

reported in the literature. The proposed LASSO-based 

feature selection technique is also compared for multiclass 

classification of AD versus MCI versus NC against 

methods reported in the literature, showing a significant 

improvement in classification accuracy, as illustrated in 

Table 9. 

 

The analysis also sought to compare the impact of the 
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proposed LASSO-based feature selection technique for 

both single and multi-modality fusion of features. The 

feature selection was applied to MRI and PET modalities 

and compared with the fusion of CSF, Genetic, and 

Clinical features for the classification accuracy of AD 

versus MCI versus NC. The results presented in Table 5 

depict the accuracy and F1 score for all 116 ROI features 

of MRI and PET, while Table 6 describes the accuracy and 

F1 score for the selected 41 ROI features of MRI and 21 

ROI features of PET, chosen using LASSO. Fusion of MRI 

and PET with other modalities was also compared, and the 

results in Table 6 validate the proposed feature selection 

technique. Notably, an improvement of 2% to 6% is 

achieved with the proposed LASSO feature selection in 

both single and multi-modality fusion of features. 

 

The results also highlight that genetic and clinical features 

as single modalities are not optimal for the classification of 

AD versus MCI versus NC. The analysis reveals that the 

fusion of MRI+PET+CSF combination yields the best 

accuracy for all three categories of classification. However, 

it is noteworthy that higher accuracy can be achieved by 

fusing clinical or genetic features. The analysis was 

conducted on the ADNI-1 dataset, and the selected patient 

IDs are provided in Table 10. The results presented in 

Table 5 and 6 are computed as an average accuracy of 100 

iterations.

 

Table 7. Comparison of accuracy in classification of Alzheimer’s disease (AD) and cognitively normal (NC) subjects 

 

Sl. 

no 

Author Data AD/NC 

(count) 

Algorithm Validation 

method 

ACC 

(%) 

1. Westman, E., et. 

al. 2012[36] 

CSF 96/111 Orthogonal 

partial 

least squares to 

latent structures 

(OPLS) 

7-Fold 81.6 

MRI 87.0 

MRI + CSF 91.8 

2. 
Zhang, D 

et.al.2012 [38] 

MRI 45/50 SVM 10-Fold 84.80±2.6 

PET 84.5±3.5 

 

CSF 80.5±2.2 

MRI+PET +CSF 92.0±3.3 

MRI+PET +CSF Multi-modal 

multi-task 

learning 

 93.3±2.2 

3. 
Suk, H. I.,2014 

[29] 

MRI 93/101 Hierarchical 

learning 

Scheme 

 

10-Fold 92.38±5.32  

PET 92.20±6.70 

MRI+PET 95.35±5.23 

4. 
Lei, B et.al.,2016 

[19] 

MRI 93/101 

 

Simple 

modality fusion 

and SVM  

10-Fold 91.76± 6.14 

PET 90.89±5.81 

MRI + PET 94.4± 5.65  

MRI + PET Hybrid level 

fusion 

96.93±2.65 

5. 
Lei, B. et. al. 2017 

[20] 

MRI + PET + CSF 226/186 Support Vector 

Classification 

(SVC) by 

sigmoid kernel 

10-fold 94.68 

6. 
Tong, T. 

et.al.,2017 [31] 

MRI 37/35 Nonlinear 

Graph Fusion, 

Random Forest 

classifier 

- 82.6 

PET - 88.6 

MRI + PET - 89.5 

MRI+ PET + 

CSF+ Genetic 

- 91.8 

MRI + PET + 

CSF+ Genetic 

SVM - 91.4 

7. 
Wang, Z, et. al., 

2017 [33] 

MRI 93/101 Progressive 

Graph-based 

transductive 

learning 

(pGTL) 

10-fold 88.6± 1.69  

PET 87.3± 1.47  

MRI + PET 92.6± 0.65  
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8. 
Proposed method MRI 78/96 

 

LASSO feature 

selection, 

feature 

normalization 

and SVM 

classifier 

5-fold 99.49± 0.37 

PET 89.45± 4.38 

MRI + PET 98.49± 0.6 

MRI + CSF 98.35± 0.45 

MRI + PET + CSF 99.32± 0.23 

MRI + PET + 

CSF+ Genetic  

99.11± 0.3 

MRI + PET + CSF 

+Genetic + 

Cognitive 

99.99± 0.08 

 

 

Table 8. Comparison of accuracy in classification of Mild cognitive impairment (MCI) and cognitively normal (NC) 

subjects 

 

Sl. no Author Data 
MCI/NC 

(count) 
Algorithm 

Validation 

method 

ACC 

(%) 

1. 
Westman, E et. 

al.,2012 [36] 

CSF 

162/111 

orthogonal 

partial least 

squares to 

latent 

structures 

(OPLS) 

7-Fold 

70.3    

MRI 71.8 

MRI+CSF 77.6 

2. 
Zhang, D 

et.al.2012 [38] 

MRI 

91/50 

SVM 

10-Fold 

73.9±2.8 

PET 79.7 ±2.3 

CSF 53.6±4.4 

MRI + PET 

+CSF 
80.0±2.4 

MRI + PET 

+CSF 

Multi-modal 

multi-task 

learning 

83.2±1.5 

3. 
Suk, H. I.,2014 

[29] 

MRI 

204/101 

Hierarchical 

learning 

scheme 

10-Fold 

84.24± 6.26 

PET 84.29±7.22 

MRI+PET 85.67±5.22 

4. 
Lei, B 

et.al.,2016 [19] 

MRI 

204/101 

Simple 

modality 

fusion and  

SVM  10-Fold 

83.52± 5.38  

PET 82.95±6.37 

MRI + PET 83.67±5.49 

MRI + PET 

Hybrid level 

fusion and 

SVM 

86.57±4.72 

5. 
Lei, B. et. al. 

2017 [20] 
MRI+PET+CSF 393/186 

support vector 

classification 

(SVC) by 

sigmoid kernel 

10-fold 80.32 

 

     6. 

Tong, T. 

et.al.,2017 [31] 

MRI 

75/35 

Nonlinear 

Graph Fusion, 

Random 

Forest 

classifier 

 

- 

73.3 

PET 75.4 

MRI+PET 76.7 

MRI + PET + 

CSF + Genetic 
79.5 

MRI + PET + 

CSF + Genetic 
SVM 77.4 

 

7. 
Wang, Z, et. 

al., 2017 [33] 

MRI 

102/101 

 

Progressive 

Graph-based 

transductive 

learning 

(pGTL) 

10-fold 

70.7 ± 0.81  

 

PET 72.5 ± 0.76  

MRI+PET 78.9 ± 1.80  

 

8. 

Proposed 

method 

MRI 

100/96 

LASSO 

feature 

selection, 

5-fold 

96.35± 1.99 

PET 87.89± 0.74 

MRI + PET 98.57± 0.87 
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MRI + CSF feature 

normalization 

and SVM 

classifier 

96.58± 1.09 

MRI + PET + 

CSF 

97.51± 0.76 

MRI + PET + 

CSF + Genetic  

96.79± 0.82 

MRI + PET + 

CSF + Genetic 

+ Cognitive 

99.49 ± 0 

 

 

Table 9. Comparison of accuracy in classification of Alzheimer Disease (AD), Mild cognitive impairment (MCI) and 

cognitively normal (NC) subjects. 

Sl 

no 
Author Data 

AD/MCI/NC 

(count) 
Algorithm 

Validation 

method 

ACC 

(%) 

 

1. 

Tong, T. 

et.al.,2017 [31] 

MRI 

37/75/35 

Random forest 

classifier 

- 56.3 

PET - 56.5 

MRI+PET - 58.2 

MRI + PET + 

CSF + Genetic 
- 60.2 

MRI + PET + 

CSF + Genetic 
SVM - 59.6 

2. Proposed 

method 

MRI 

78/100/96 

LASSO feature 

selection, feature 

normalization 

and SVM 

classifier 

5-fold 

85.09±1.22 

PET 84.81±0.81 

MRI + PET 88.08±1.16 

MRI + CSF 87.82±0.98 

MRI + PET + 

CSF 
90.09±0.9 

MRI + PET + 

CSF + Genetic  
90.68±0.89 

MRI + PET + 

CSF + Genetic 

+ Cognitive 

94.99 ± 0.8 

 

6.Conclusion 

This paper explores and evaluates the LASSO feature 

selection method to enhance the classification of MRI and 

PET Region of Interest (ROI) features for Alzheimer's 

Disease (AD) versus Mild Cognitive Impairment (MCI) 

versus Normal Controls (NC). The analysis involves the 

feature selection of ROI features from MRI and PET, 

coupled with the fusion of Cerebrospinal Fluid (CSF),  

 

Genetic, and Clinical features. The fusion of features, 

wherein clinical and genetic data are combined with 

conventional modalities such as MRI, PET, and CSF, 

demonstrates an improvement in classification accuracy. 

 

The proposed LASSO-based feature selection and 

multimodality fusion result in an 11% improvement in the  

 

 

classification accuracy of AD versus MCI and a 2% 

improvement in AD versus MCI versus NC, compared to 

scenarios without employing any feature selection 

technique on the data. 
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Appendix 

 

Table 10. Chosen Patient IDs of the ADNI-1 Dataset 

Categories ID’s of Subjects 

AD (78) 

1059, 1257, 221, 929, 1341, 316, 1339, 3, 1205, 991, 286, 682, 213, 343, 642, 1109, 219, 

543, 1171, 1307, 850, 1254, 836, 1056, 321, 554, 147, 400, 1037, 889,1281, 1283, 1285, 341, 

577, 760, 1001, 627, 1368, 1391, 1044, 474, 1371, 1379, 535, 690, 730, 565, 1164, 1397, 

1402, 149, 470, 492, 1144, 747, 1062, 777, 1157, 228, 374, 979, 370, 891, 1221, 431, 754, 

1382, 167, 216, 266, 740, 1409, 1290, 497, 438,  841, 1041 

MCI (100) 

222, 546, 675, 128, 293, 344, 1030, 1199, 326, 362, 861, 1282,  634, 917, 932, 1033, 1175, 

240, 325, 860, 1120, 1186, 1275, 80, 142, 155, 282, 314, 407, 446, 549, 598,679, 721, 1010, 

1425, 1346, 464, 941, 957, 1007, 1217, 1294, 1299, 1211, 1380, 746, 909, 1357, 641, 282, 

314, 407, 446, 549, 598, 679, 721, 1010, 1425, 941, 957, 1007, 1217, 1265, 1294, 1299, 

1211, 1380,1357, 641, 531, 958, 1034,892, 930, 995, 950, 1114, 1343, 378, 410, 1103, 1106, 

1118, 361, 1243, 1315, 1322, 708, 709, 865, 1077,112, 394, 925, 1210, 1419, 1427, 135 

NC (96) 

223, 610, 484, 731, 751, 842, 862, 67, 419, 420, 2, 5, 8, 16, 21, 23, 637, 1133, 502, 359,  43, 

55, 97, 883, 647,   14, 96, 130, 1063, 74, 120, 843, 845, 866, 618, 95, 734, 741, 48, 555, 576, 

672, 813, 327, 454, 262, 779, 818, 934, 575, 1023, 467, 768, 1099, 315, 311, 312, 386, 363, 

489, 526, 171, 90, 352,533, 534, 47, 967,1013, 173, 416, 360, 648,  657, 506, 680, 259, 230, 

245, 272, 500, 522, 863, 778, 232, 1200, 319, 301,459, 686, 972,1194, 1195, 1197, 1202, 

1203 
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