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Abstract  This study compares the performance of two state-of-the-art deep convolutional Neural Network architectures, AlexNet and 

VGG-19, for predicting and classifying the sub-types of ovarian cancer from histopathological images. The dataset consisted of 500 

images, augmented to generate 24,742 images, which were used to train both models. The results showed that VGG-19 outperformed 

over AlexNet, achieving an accuracy of 90% compared to 70% for AlexNet. Other performance metrics, such as precision, recall, F1-

score, and AUC-ROC, were also analyzed. This study provides valuable insights into the use of computer-aided diagnosis for accurately 

Predicting the diagnosis and subtype of ovarian cancer, which can lead to early detection and treatment. 
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1. Introduction 

Ovarian cancer is a leading cause of cancer death among 

women and often goes undetected until symptoms such as 

bloating, pelvic pain, appetite loss, or abdominal swelling 

appear [1]. Unfortunately, by this point, the cancer has 

often spread to other parts of the body, making treatment 

difficult. Women who are post-menopausal or have a 

family history of ovarian cancer are at a higher risk [2]. 

Early detection is challenging, and it is the most persistent 

cause of death compared to other gynecological cancers. 

Various imaging techniques and serum markers have been 

researched to improve early detection, but they have 

disadvantages such as missed detections, time-consuming 

procedures, and requiring skilled clinicians. Serum 

Carbohydrate Antigen 125 (CA125) serves as a commonly 

employed biomarker in the detection of ovarian tumors. 

Elevated concentrations of CA125 are observed in roughly 

50% of women during the early stages of ovarian cancer 

(OC), and this percentage increases to over 80% during the 

later stages [3]. 

Magnetic resonance imaging (MRI), Ultrasound imaging, 

and positron emission tomography (PET) are frequently 

employed imaging modalities for the identification and 

characterization of tumors associated with ovarian cancer. 

However, machine learning algorithms such as linear 

support vector machine (SVM), logistic regression, 

ensemble SVM, random forest, and boosting have 

demonstrated inadequate classification accuracy [4]. To 

increase the chances of early detection and improve patient 

survival rates, a combined approach using biomarkers and 

machine learning algorithms may be effective. Previous 

research has predominantly focused on manual feature 

extraction and the utilization of supervised machine 

learning algorithms to classify images as either cancerous 

or non-cancerous. For example, Chen et al. [5] used a 

generic support vector machine with textural and 

pathological features to classify thyroid nodules, while 

Chang et al. [6] incorporated ultrasound images to detect 

Graves’ disease using SVM.  

2. Literature Review  

In their study, Albarqouni et al. [7] introduced a novel 

multi-scale CNN AggNet that incorporates crowdsourcing 

as an additional layer for data aggregation. Although deep 

learning methods were used for labelling the ground truth 

from non-expert crowd annotation, the influence of the 

computational aggregation method was found to be 

relatively small. Minig et al. [6], on the other hand, 

compared the outcomes of laparoscopy and open surgery 

in patients with ovarian cancer and showed that 

laparoscopic surgery had similar surgical and oncological 

outcomes. Finally, Sirinukunwattana et al. [7] developed a 

deep learning approach for detecting and classifying nuclei 

in colorectal cancer images that were sensitive to the local 

neighborhood. This method involved creating a spatially 

constrained CNN for nucleus detection and a nearby 
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ensemble predictor for classification, resulting in a 

systematic analysis of tissue morphology that improved 

our understanding of the tumor microenvironment. 

Xu. J et al. [8] proposed an innovative Deep CNN 

approach for the segmentation and classification of 

epithelial and stromal regions in breast and colon cancer. 

By analyzing the complex features using a data-driven 

approach, their method outperformed traditional methods 

that relied on handcrafted features, achieving higher 

classification accuracy rates across various applications. 

H. Sharma et al. [9] utilized CNN-based deep learning 

algorithms for automated classification to diagnose 

malignancy and detect necrosis in tissues. They used the 

widely used AlexNet framework to address categorization 

issues, resulting in impressive results with a cancer 

classification accuracy of 0.699 and necrosis classification 

accuracy of 0.8144. 

W. Sun et al. [10] compared deep learning techniques with 

traditional CADx systems that relied on handcrafted 

features to automatically extract features from lung 

images. The approach considered features such as 

morphology, density, and texture, and outperformed 

standard CADx algorithms with a larger dataset and fine-

tuned parameters. 

H. Sharma et al. [12] utilized CNN architecture-based deep 

learning algorithms to automatically classify malignancy 

and detect necrosis in tissues. The widely used AlexNet 

framework was used to analyze categorization issues, 

which produced impressive results. This CNN framework 

classified cancer with an accuracy of 0.699 and necrosis 

with an accuracy of 0.8144. 

W. Sun et al. [13] compared deep techniques with 

traditional CADx systems that rely on hand-crafted 

features to automatically extract features from lung 

images. This approach incorporated morphology, density, 

and texture features, outperforming current standard CADx 

algorithms with a larger dataset and fine-tuned parameters. 

However, the method did not investigate the optimal input 

size and only employed a few layers. 

A. Das et al. [14] used CT liver images to develop a 

watershed Gaussian approach based on deep learning 

algorithms to detect cancer. Cancer regions were 

segmented using a Gaussian mixture model, and various 

textural features were extracted and used as input by the 

DNN classifier to determine the type of malignancy. The 

study achieved a 99.38 percent classification accuracy 

using 200 epochs and a validation loss of 0.062. Its main 

drawback was the lack of assessment of the lesion's 

volumetric size. 

S. Wang et al. [15] developed a non-invasive prediction 

model for detecting cancer recurrence by deriving 

biomarkers from CT images using a unique DL technique. 

The decision curve analysis confirmed the high 

effectiveness of this recurrence prediction model, and DL 

characteristics showed a better predictive value than 

clinical ones. However, the model could only recover 

intrinsic traits, and its use is limited to Cox-PH for 

additional research. 

Y. Feng et al. [16] used 3D convolutional processes to 

extract spatial and temporal features and obtain dynamic 

information for cancer detection using the perfusion 

process. The model was trained and validated using CEUS 

images obtained by two contrast agents, and the deep 

learning model outperformed prior methods by 91 and 90 

percent, respectively, in terms of specificity and accuracy. 

S. Marciauskas et al. [17] developed a novel selection 

approach for the proteome study of ovarian cancers that 

incorporated various normalization processes, as well as 

univariate statistics, naive Bayes, and logistic tree 

classifiers. This model aimed to achieve superior outcomes 

for verifying the selected proteins for early-stage ovarian 

cancer diagnosis. 

In their research, A. Dascalu and E.O. David [18] explored 

the influence of image quality on the accuracy of skin 

cancer diagnosis using a skin magnifier with polarized 

light (SMP). The acquired SMP images were subjected to 

deep learning techniques for processing, and the 

sonification outcomes were employed for diagnosing the 

results. Interestingly, the study revealed that image quality 

did not impact the accuracy of skin cancer diagnosis. The 

autonomous detection capability of this equipment proved 

advantageous for healthcare professionals. 

Z. Alyafeai and Ghouti [19] developed an autonomous 

deep learning model for detecting the cervix region and 

classifying cervical cancer. Our system used two pre-

trained DL techniques for automatic detection and 

classification. The detection model was considerably faster 

than traditional data-driven techniques, and the 

classification model employed self-extracted features using 

two lightweight CNN models. The proposed deep learning 

classifier demonstrated superior performance compared to 

similar models, excelling in terms of factors such as speed 

and classification accuracy. Consequently, it is well-suited 

for deployment on mobile phones. 

P. Kaur, G. Singh, and P. Kaur [20] developed a system 

based on Multi-Support Vector Machine (MSVM) with DL 

K-mean clustering, which provided superior results to the 

decision tree model. The effectiveness of this DL model 

was analyzed and validated using only a small dataset. 

Z. Liu et al. [21] studied the efficacy of medical IoT-

enabled CAD applications for deep reinforcement learning 

and lung cancer treatment. This model offered several deep 

reinforcement learning applications, which were effective 
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in locating lung cancer and improving treatment outcomes. 

Pham et al. [22] developed a two-stage DL model to 

enhance the detection of malignancy and reduce false-

positive predictions. The initial stage of the DL algorithm 

eliminated noncancerous areas that were mistakenly 

labeled, followed by a DL classifier for cancer cell 

identification. The two-stage approach reduced errors by 

36.4% to 89%, resulting in a higher detection rate and 

fewer false-positive outcomes. However, some limitations 

of this approach, such as the small dataset used and high 

sensitivity with low specificity, were observed. 

Shakeel et al. [23] employed the Improved Profuse 

Clustering Technique (IPCT) and DL Instantaneously 

Trained Neural Networks (DITNN) to predict lung cancer. 

They improved the image quality using the weighted mean 

algorithm and segmented the affected regions based on the 

estimated pixel similarity value after improving image 

quality. The trained features achieved a classification 

accuracy of 98.42% and a minimal classification error of 

0.038. 

Authors Contributions: 

I. Collection of Dataset (Ovarian Cancer) 

II. Pre-Processing of Data 

III. Dataset Augmentation 

IV. Fine Tuning of SOTA Architecture 

3. Methods and Material 

A. Image Dataset 

In this particular investigation, the collection process 

involved acquiring 85 images devoid of cancerous cells 

from a total of 42 patients receiving medical treatment at 

Smt. Kashibai Navale Medical College & General Hospital 

located in Pune, India. The challenge encountered in this 

endeavor stemmed from the scarcity of patients in the 

hospital's database who had undergone treatment for types 

of ovarian cancer (OC) other than Serous carcinoma. 

Proficient pathologists were responsible for the 

procurement of patient samples, subsequent slide 

preparation in their laboratory, and utilization of a Leica 

ICC50 microscopic camera to capture stained cell samples. 

Significantly, this cutting edge 5-megapixel camera 

enables the real-time transmission of high-definition 

images to smartphones and laptops. Correspondingly, 

carcinoma images representative of each OC subtype were 

obtained from a publicly accessible resource known as The 

Cancer Repository, as depicted in Table 1. It is important 

to highlight that registration on their respective websites is 

required for open access to the Cancer Repository. In order 

to align the dataset with the latest state-of-the-art (SOTA) 

models used for ovarian cancer prediction, the RGB 

images underwent uniform resizing as an essential 

preprocessing step. In its entirety, the dataset consists of 

images containing carcinomas associated with OC, 

encompassing malignant tumors across four distinct 

subtypes. Additionally, it includes non-carcinoma images 

containing normal tissues and benign images of non-tumor 

glandular tissues. The primary goal of this dataset is to 

enable the automated classification of OC using 

histopathology images, with a particular focus on the 

subtypes characterized as carcinomas. 

Table I : Image Dataset details 

Class 
Original 

Images 

Augmented 

Images 

Serous 175 5640 

Mucinous 100 5223 

Endometroid 60 4353 

Clear Cell 80 4999 

Non-Cancerous 85 4527 

Total 500 24742 

B. Data Augmentation 

Data augmentation refers to a collection of methods that 

increase the quantity and improve the quality of training 

datasets for Deep Learning, thereby enabling the creation 

of superior deep learning models. 

The recent advancements in deep learning technology have 

been propelled by improvements in deep network 

architectures, high-performance computing, and access to 

large datasets. Deep convolutional neural networks 

(CNNs) have exhibited exceptional accomplishments 

across a range of computer vision tasks, encompassing 

image classification, object detection, and image 

segmentation. However, the generalizability of deep 

learning models remains a challenging issue, which refers 

to the performance gap between a model's performance on 

training data and unseen testing data. Models with poor 

generalizability are typically overfitted to the training data. 

To overcome this challenge and build effective deep 

learning models, Data Augmentation has emerged as a 

powerful technique that can minimize the gap between the 

training and testing sets by providing a more extensive set 

of possible data points and reducing overfitting. 

Types of Image Data Augmentation techniques are 

Vertical shift, Horizontal shift, Vertical flip, Horizontal 

flip, Rotation, Brightness adjustment, and Zoom In/Out. 
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Fig. 1 : Data augmentation techniques 

4. Implementation of Deep Learning Models 

Our dataset was utilized to evaluate the performance of 

state-of-the-art methods, namely AlexNet and VGG-19, 

and a comparative analysis of the results was conducted. 

Now, let's delve into a discussion and comparison of the 

architectural aspects of these two cutting-edge models, 

AlexNet and VGG-19. 

A. Architecture of AlexNet  

In 2012, a pioneering DCNN architecture known as 

AlexNet was unveiled. This architecture, created by Alex 

Krizhevsky for the ImageNet Large Scale Visual 

Recognition Challenge (LSVRC), consisted of five 

convolutional layers, three max-pooling layers, two fully 

connected layers, and one softmax layer. The model was 

developed with an extensive parameter count of 60 million 

to address the classification task involving a vast collection 

of over 1.2 million high-resolution images from the 

ImageNet LSVRC-2010 dataset, encompassing more than 

1000 distinct categories. 

 

Fig. 2 : The architecture of AlexNet 

B. Layers of AlexNet Architecture 

Convolutional Kernels, known for their ability to employ 

multiple filters, play a crucial role in extracting valuable 

features from images. Typically, a single convolutional 

layer encompasses multiple kernels of identical size. As an 

illustration, in the case of AlexNet, the initial 

Convolutional Layer comprises 96 kernels, each with 

dimensions of 11x11x3. Here, the width and height of the 

kernel are typically equal, while its depth corresponds to 

the number of channels present. 

In the architecture, Overlapping Max Pooling layers follow 

the first two Convolutional layers. The third, fourth, and 

fifth convolutional layers are directly connected. 

Subsequently, an Overlapping Max Pooling layer is 

introduced after the fifth convolutional layer, and its output 

is then directed into two fully connected layers. The 

second fully connected layer serves to transmit 1000 class 

labels into a SoftMax classifier. 

Throughout the network, ReLU nonlinearity is applied 

after each convolutional and fully connected layer. In 

particular, ReLU nonlinearity is implemented following 

the first and second convolutional layers, while a local 

normalization step is conducted prior to pooling. 

Table II Summary of AlexNet model 

 Layers Feature 

Map 

Size Kernel 

Size 

Stride Activation Function 

Input RGB Image 1 227x227x3 - - - 

1 Convolution Layer 96 55x55x96 11x11 4 ReLU 

 Maxpooling Layer 96 27x27x96 3x3 2 ReLU 
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2 Convolution Layer 256 27x27x256 5x5 1 ReLU 

 Maxpooling Layer 256 13x13x256 3x3 2 ReLU 

3 Convolution Layer 384 13x13x384 3x3 1 ReLU 

4 Convolution Layer 384 13x13x384 3x3 1 ReLU 

5 Convolution Layer 256 13x13x256 3x3 1 ReLU 

 Maxpooling Layer 256 6x6x256 3x3 2 ReLU 

6 Fully Connected 

Layer 

- 9216 - - ReLU 

7 Fully Connected 

Layer 

- 4096 - - ReLU 

8 Fully Connected 

Layer 

- 4096 - - ReLU 

Outpu

t 

Fully Connected 

Layer 

- 1000 - - SoftMax 

 

As mentioned above, the model was trained using 24,742 

images, and the validation set comprised 1000 images. Our 

neural network architecture has 62,422,549 (62.4M) 

parameters of which 19,600 were non-trainable. We 

achieved a training accuracy of 70% and validation 

Accuracy of 55.5%. 

C. Architecture of VGG-19 

VGG19, an adapted iteration of the VGG model, consists 

of a comprehensive architecture with a total of 19 layers. 

These layers include 16 convolution layers, 3 fully 

connected layers, 5 max-pooling layers, and 1 softmax 

layer. Moreover, there are other variations of the VGG 

model, such as VGG11, VGG16, and several others. In 

terms of computational complexity, VGG19 involves 

approximately 19.6 billion floating-point operations 

(FLOPs). 

 

Fig. 3 : Architecture of VGG-19 

1) This network accepted a fixed-size (224 * 224) RGB 

image as input, resulting in a matrix with a shape of 

(224,224,3). 

2) The sole preprocessing step conducted involved 

calculating the average RGB value for each pixel 

within the entirety of the training set. 

3) The use of (3 * 3) sized kernels with a stride size of 1 

pixel allowed for the entire image to be covered. 

4) The spatial padding was utilized to preserve the image's 

spatial resolution. 

5) Max pooling was applied by using a stride size of 2 

over a window of 2x2 pixels. 

6) To enhance both classification accuracy and 

computational efficiency, a Rectified Linear Unit 

(ReLU) was employed to introduce non-linearity to the 

model. This approach proved significantly more 

effective compared to previous models that relied on 

sigmoid or tanh functions. 

7) The implemented model consisted of three fully 

connected layers, where the initial two layers had a size 

of 4096, while the subsequent layer contained 1000 

channels dedicated to classification employing the 

1000-way ILSVRC. The third layer employed a 

softmax function. 

Table III Summary of VGG-19 model 

Layer Patch Size Input Size 

Convolutional 

Layer×2 

3×3/1 3×224×224 

Maxpooling Layer 2×2 64×224×224 

Convolutional 

Layer×2 

3×3/1 64×112×112 

Maxpooling Layer 2×2 128×112×11

2 
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Layer Patch Size Input Size 

Convolutional 

Layer×4 

3×3/1 128×56×56 

Maxpooling Layer 2×2 256×56×56 

Convolutional 

Layer×4 

3×3/1 256×28×28 

Maxpooling Layer 2×2 512×28×28 

Convolutional 

Layer×4 

3×3/1 512×14×14 

Maxpooling Layer 2×2 512×14×14 

Fully Connected 128 512x7x7 

Fully Connected Softmax 5 

5.  Result Analysis and Discussion   

While Training Model, the accuracy keeps increasing per 

epoch and the loss keeps decreasing as seen in Fig. 4. Also, 

early stopping at best accuracy has limited the number of 

epochs to 10 while the manual configuration was to run for 

15 epochs. 

 

Fig. 4 : Various graphs of AlexNet model training process 

From above Fig. 4 in graph (a) shown Epoch vs training 

Accuracy/Training Loss, ideally training Loss should be 

zero. AlexNet shows 0.075 loss at the accuracy of 0.70 and 

validation accuracy of 0.025. 

In Fig. 4(b) shows Epoch vs validation Accuracy 

/validation loss.as the Epoch increases validation accuracy 

increase and validation accuracy loss decreases. while 

training the model, at epoch 9 validation loss is 0.02616 at 

a validation accuracy of 0.02544. 

In Fig. 4(c) shows Epoch VS Training loss and validation 

loss from graph 4(c) it can be observed that validation loss 

is approximately equal to the Training Loss. Fig. 4 (d) 

shows Epoch VS Training Accuracy and validation 

Accuracy. Fig. 4 graph (d) shows that as Training 

Accuracy increases validation accuracy also increases so 

model performance also increases. 

A. VGG-19 

From above Fig. 5 in graph (a) shown Epoch vs training 

Accuracy/Training Loss, ideally training Loss should be 

zero. VGG-16 shows 0.0226 loss at the accuracy of 0.90 

and validation accuracy of 0.87. 

In Fig. 5 (b) shows Epoch vs validation Accuracy 

/validation loss.as the Epoch increases validation accuracy 

increase and validation accuracy loss decreases. while 

training the model, at epoch 11 validation loss is 0.0217 at 

a validation accuracy of 0.91. 

In Fig. 5 (c) shows Epoch VS Training loss and validation 

loss from graph (c) it can be observe that validation loss is 

approximately equal to the Training Loss. In Fig. 5 (d) 

shows Epoch VS Training Accuracy and validation 

Accuracy. Fig. 5 graph (c) shows that as Training 

Accuracy increases validation accuracy also increases so 

model performance also increases. 

 

Fig. 5 : Various graphs of VGG-19 model training process 

 

Fig. 6 : Confusion matrix of VGG-19 and AlexNet models 

A confusion matrix is a valuable tool for assessing the 

effectiveness of a deep learning model. It provides a 

tabular representation that presents the count of accurate 

and inaccurate predictions made by the model, enabling the 

identification of misclassified classes. This information can 

be leveraged to enhance the model's overall accuracy. As 

depicted in Figure 6, VGG-19 exhibits a true positive rate 

exceeding 90% when compared to AlexNet. 
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Fig. 7 : Comparison of Accuracy for AlexNet and VGG-19 

Accuracy is a commonly employed performance metric in 

deep learning, serving as an indicator of a model's capacity 

to make accurate predictions on a given dataset. It is 

determined by calculating the ratio of accurate predictions 

to the total number of predictions made. The comparative 

results depicted in Figure 7 highlight the superior accuracy 

of VGG-19 in comparison to AlexNet. 

 

Fig. 8 : Comparison of AUC-ROC curve for AlexNet and 

VGG-19 models 

Figure 8 displays the AUC-ROC curve of both AlexNet 

and VGG-19 architectures. This curve serves as a visual 

representation of the performance of a deep learning 

multiclass classification model. It provides a metric for 

evaluating the accuracy of the model in distinguishing 

between positive and negative cases. A higher AUC-ROC 

score indicates better performance. Fig. 8 shows the 

comparative analysis of AlexNet and VGG-19. 

 

Fig. 9 : Comparison of Precision of VGG-19 and AlexNet 

models 

Figure 9 showcases a comparative analysis of the Precision 

metric, which evaluates the model's ability to generate 

accurate positive predictions. Precision is determined by 

dividing the number of true positive predictions by the 

total number of positive predictions made by the model. A 

higher precision score for VGG-19 indicates more precise 

positive predictions, while a lower precision score suggests 

a higher occurrence of false positive predictions, as 

illustrated in Figure 9. 

 

Fig. 10 : Comparison of F1-Score of VGG-19 and AlexNet 

models 

Figure 10 presents the F1 score comparison between the 

AlexNet and VGG-19 models. The F1 score combines 

precision and recall to provide an evaluation metric 

ranging from 0 to 1, with 1 representing optimal 

performance. A higher F1 score indicates better precision 

and recall, indicating a lower rate of false positives and 

false negatives, respectively. In essence, a higher F1 score 

signifies that the model can accurately predict both 

positive and negative cases. Thus, achieving a high F1 

score is desirable as it demonstrates the model's accuracy 

and reliability. Notably, Figure 10 illustrates VGG-19 

outperforming the AlexNet model across all five classes. 

 

Fig. 11 : Comparison of Recall of AlexNet and VGG-19 

models 

Figure 11 depicts the Comparison of Recall between the 

AlexNet and VGG-19 models. Recall is a crucial 

performance metric in deep learning that measures the 

model's effectiveness in correctly identifying all relevant 

instances within a dataset. It is computed by dividing the 

number of true positive predictions by the total number of 

actual positive cases. As illustrated in the figure, VGG-19 
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demonstrates a notable recall score across all classes. A 

high recall score is desirable as it indicates the model's 

capability to accurately identify a significant proportion of 

relevant cases. 

6. Conclusion 

This study demonstrates the effectiveness of deep learning 

models in predicting and classifying subtypes of ovarian 

cancer from histopathological images. Specifically, we 

compared the performance of two popular deep 

convolutional neural network architectures (DCNN), 

AlexNet and VGG-19, and found that VGG-19 

outperformed AlexNet with an accuracy of 90% compared 

to 70%. This indicates that VGG-19 is a better model for 

accurately diagnosing and classifying ovarian cancer 

subtypes. 

Apart from accuracy, the authors conducted an analysis of 

additional performance metrics including recall, precision, 

F1-score, and AUC-ROC, which serve to affirm the 

superiority of VGG-19 in comparison to AlexNet. These 

metrics offer a comprehensive evaluation of the models' 

performance, highlighting the potential of deep learning to 

enhance medical diagnosis. 
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