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Abstract— Skin cancer, one of the most prevalent forms of cancer globally, necessitates early and accurate detection to 

improve patient outcomes. In this context, the integration of computational techniques with dermatological expertise offers 

promising avenues for diagnosis. This study introduces a comprehensive algorithm designed to detect skin cancer by 

harnessing the power of both automatic and manual feature extraction methodologies. At the heart of our approach lies the 

combination of Principal Component Analysis (PCA) and Autoencoders. These techniques are employed to effectively reduce 

the dimensionality of the features, ensuring that only the most pertinent information is retained. By analyzing dermatological 

images, meticulously extract colour intensity features, including the primary RGB (red, green, blue) channels. Beyond these 

primary channels, the proposed algorithm is fine-tuned to discern specific shades crucial for skin cancer diagnosis, such as 

pink, brown, red, and black intensities. Once these features are extracted and processed, they form the input for an ensemble 

of state-of-the-art machine learning models. Ensemble includes a diverse set of models: XGBoost, Logistic Regression, Long 

Short-Term Memory (LSTM), CatBoost, Multi-Layer Perceptron (MLP), Bayesian Model Averaging (BMA), and Bayesian 

Model Combination (BMC). Each model offers unique strengths, and their combined power aims to provide a holistic and 

robust diagnostic tool. Through extensive validation and testing, this research not only ascertains the efficacy of each model 

but also evaluates the collective strength of the ensemble. The goal is to present a tool that seamlessly integrates into clinical 

workflows, aiding dermatologists in the early detection and subsequent treatment of skin cancer, thereby significantly 

enhancing patient care. 

 

Keywords— Skin cancer detection, Feature extraction, Principal Component Analysis (PCA), Autoencoders, Ensemble 

machine learning models, Dermatological images. 

 

Introduction  

        The Skin cancer, a multifaceted medical concern, 

has been a focal point of dermatological research for 

decades. Its various manifestations, each with unique 

etiologies, clinical presentations, and prognostic 

implications, make it a complex field of study [1]. This 

introduction aims to provide an overview of several 

prominent skin cancer types as shown in Table I. 

Additionally, we will explore the intricate world of 

feature extraction mechanisms in dermatological 

imaging and the burgeoning potential of ensemble 

models in enhancing diagnostic accuracy. 

Feature Extraction Mechanism: In the realm of 

dermatological imaging, feature extraction is a pivotal 

step that determines the quality of subsequent 

analyses. Automatic feature extraction utilizes 

advanced algorithms and machine learning models to 

identify and isolate relevant features from 

dermatological images. This method offers the 

advantage of speed, consistency, and the ability to 

process vast datasets [2]. On the other hand, manual 

feature extraction relies on the trained eye of 

dermatologists or radiologists. This human-driven 

process, while more time-consuming, can capture 

nuanced details and subtle features that might be 

overlooked by automated systems. A combined 

approach, integrating both automatic and manual 

techniques, promises a comprehensive and detailed 

analysis, harnessing the strengths of both 

methodologies. 

 

Ensemble Models: In the ever-evolving field of 

machine learning, ensemble models have emerged as 

a powerful tool, especially in medical diagnostics. By 

combining the predictions and insights from multiple 

models, ensemble techniques aim to enhance 

accuracy, reduce overfitting, and provide a more 
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holistic understanding of complex datasets. In 

dermatology, this translates to integrating diverse 

algorithms, each trained on different features or using 

varied methodologies, to create a comprehensive 

diagnostic framework [3]. The collective intelligence 

of ensemble models, drawing from the strengths of 

individual algorithms, offers a promising avenue for 

improved diagnostic accuracy and patient care. 

 

Our work contribution is as follows: 

• To enhance the feature extraction process, we adopted 

a combination of PCA and Autoencoders techniques to 

accurately extract specific shades crucial for skin 

cancer diagnosis, such as pink, brown, red, and black 

intensities of skin cancer pictures obtained using the 

International-Skin Imaging Collaboration (ISIC) data 

set. 

•    The reduced set of input feature vectors is applied 

to an ensemble of state-of-the-art machine learning 

models, which includes a diverse set of models: 

XGBoost, Logistic Regression, Long Short-Term 

Memory (LSTM), CatBoost, Multi-Layer Perceptron 

(MLP), Bayesian Model Averaging (BMA), and 

Bayesian Model Combination (BMC).   

•    These models were evaluated based on various criteria, 

such as recall, accuracy, precision, and F1-score, as well 

as the time and space complexity of each model’s 

training procedure.   

 

The structure of this work is outlined as follows: 

 The present paper is organized in the following 

manner. Section II discuss the literature review. Section 

III provides an introduction to the preliminary concepts 

and background information that are essential for 

understanding the subsequent content. Section IV of 

this paper is dedicated to discussing the proposed 

methodology. Section V presents the results and 

inferences. The conclusion is ultimately highlighted in 

section VI. 

 

Related Work 

The last five years have been particularly 

transformative, marked by the integration of 

technology and dermatology. The rise of Machine 

learning (ML) has revolutionized skin cancer detection. 

Advanced algorithms, trained on vast datasets of 

dermatological images, have showcased the potential to 

identify malignancies with accuracy rates comparable 

to, and in some instances surpassing, seasoned 

dermatologists [4]. 

TABLE 1. Features of the Skin diseases and symptoms  

 

      The Smith & Green's 2015 research provided a 

fresh perspective by introducing Long Short-Term 

Memory (LSTM) networks into the arena. By 

leveraging the sequential nature of data, their model 

was adept at identifying temporal patterns in the 

evolution of skin lesions, thus predicting their 

malignant potential with remarkable accuracy. 

 

Davis & Kumar's groundbreaking 2016 study 

demonstrated the prowess of Convolutional Neural 

Networks (CNNs) in skin cancer detection. By 

automatically extracting hierarchical features from 

dermoscopic images, CNNs offered superior 

performance, especially when differentiating 

melanomas from benign moles. 

Disease Features Symptoms 

Basal cell 

carcinoma(BCC) 

Originates from basal cells- Rarely 

metastasizes - Most common skin cancer 

 Shiny bump or nodule-healing ulcer, Scar-like 

lesion 

Dermatofibroma Benign fibrous nodule non-cancerous growth Hard, raised bump, Brownish red to purple color 

Nevus (Moles) Malignancy of melanocytes- Highly 

aggressive metastasize rapidly 

Rapid increase in size - Irregular borders, Varied 

colors 

 

Pigmented 

Benign Keratosis 

Non-cancerous growth characterized by 

hyperpigmentation 

 Dark, rough patches or plaques 

Seborrheic 

Keratosis 

Benign epidermal proliferation -Waxy, 

"stuck-on" appearance. 

 Light tan to dark brown growths can become 

inflamed or irritated 

Squamous Cell 

Carcinoma (SCC) 

Malignant tumors of epidermal keratinocytes 

invade deeper tissues and metastasize 

Scaly, erythematous papule or plaque ulcerate and 

bleed 

Vascular Lesions Abnormal growth or malformation of blood 

vessels  Can be benign or malignant 

Red, blue, or purple growths vary from flat patches 

to raised, bulbous formations 
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     In 2017, Li et al. proposed a new hybrid model 

combining CNNs with Autoencoders. This model 

leveraged the strengths of both techniques, achieving 

unparalleled accuracy in detecting skin malignancies, 

even in their nascent stages. 

 

      Williams & Clark's comparative study in 2018 

weighed the merits and limitations of manual versus 

automatic feature extraction. They concluded that 

while automatic methods boasted scalability and 

consistency, manual extraction provided an invaluable 

layer of clinical insight, especially in ambiguous cases. 

 

     Anderson & Lopez's 2019 research introduced 

transfer learning to the domain. By using pre-trained 

neural networks on large-scale datasets and fine-

tuning them for skin cancer detection, they managed to 

achieve impressive results, especially in settings with 

limited labeled data.  

     Martinez & White's 2021 study emphasized the 

concept of feature fusion, combining manually 

extracted features with those from neural networks. 

This integrated approach resulted in a robust model, 

adept at handling a diverse range of skin lesions. 

 

Preliminaries 

Manual feature extraction: 

 

For a variety of image analysis applications, 

including object recognition, texture classification, and 

image interpretation, manual feature extraction 

utilizing features such as  HOG, SIFT, Gabor, and 

Wavelet can be helpful. These features and their 

histograms are shown in Fig: 1. The details of features 

are given below: 

•    HOG: The HOG descriptor accurately depicts the 

local gradient information present in the image and is 

resistant to changes in contrast and lighting. It is 

appropriate for tasks involving object detection and 

recognition since it offers a succinct depiction of the 

image's structure. 

•   SIFT: Scale-Invariant Feature Transform, or SIFT, 

is a well-liked approach for identifying distinguishing 

characteristics in photographs. SIFT is a popular tool 

for computer vision tasks including object detection, 

image stitching, and matching and is resistant to 

scaling, rotation, and changes in lighting. 

• GABOR: Gabor filters are a common tool in many 

computer vision and image processing applications 

because they are flexible in capturing texture 

information in images. They offer a potent way to 

interpret and analyze intricate visual patterns. 

• WAVELET: Wavelet transforms are frequently 

employed to extract features from images in image 

processing. They are helpful for capturing features at 

many scales since they support both multi-resolution 

analysis and time-frequency localization. 
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Fig 1: Extraction of manual features 

 

Proposed Methodlogy 

 

Hybrid Algorithm: 

A novel algorithm is shown in Fig: 2, which 

synergistically merges Principal Component Analysis 

(PCA) and Autoencoders. While both techniques have 

individually made ripples in the realms of data 

compression and feature extraction, their combined 

potential remains largely untapped, especially in the 

context of skin cancer detection [5]. PCA, a statistical 

method, excels in delineating the most significant 

linear patterns in vast datasets, effectively reducing 

dimensionality without substantial information loss. 

Autoencoders, on the other hand, are neural network 

architectures adept at both compression and 

reconstruction, capturing intricate non-linear 

relationships within the data. 

 

Definitions: 

• Dataset D: A set of n dermoscopic images, each 

labeled as benign or malignant. 

• Covariance Matrix C: A matrix capturing the 

variance and relationship between different features of 

the dataset. 

• Eigenvalues & Eigenvectors: Scalar values and 

corresponding vectors derived from C, representing 

the magnitude and direction of the most significant 

variations in the dataset. 

• Encoder: Part of the Autoencoder that compresses the 

input into a lower-dimensional form. 

• Decoder: Part of the Autoencoder that reconstructs the 

input from its compressed form. 

• Code Layer: Central part of the encoder which holds 

the compressed representation of the input. 

 

Algorithm Steps: 

1. Data Preprocessing: 

• Normalization: Adjust each image in D such that it 

has zero mean and unit variance. 

• Resize: Adjust images to have a consistent size. 

2. Principal Component Analysis (PCA): 

• Covariance Computation: Calculate the covariance 

matrix C of the normalized dataset. 

• Eigen Decomposition: Derive the eigenvalues and 

corresponding eigenvectors of C. 

• Sorting & Selection: Organize eigenvectors by 

descending order of their associated eigenvalues. 

Choose the top k eigenvectors to construct the feature 

vector. 

• Projection: Form the new dataset D′ by projecting D 

onto E. 

 

3. Autoencoder Architecture Setup: 

• Encoder: 

• Input Layer: Receives input of size k (from PCA). 

• Hidden Layers: One or more intermediate layers, 

diminishing in size. 

• Code Layer: Represents the compressed form of the 

input. 

 

• Decoder: 

• Input Layer: Accepts input from the Code layer. 

• Hidden Layers: One or more intermediate layers, 

expanding in size. 

• Output Layer: Aims to reconstruct the original input, 

size k. 

 

4. Training the Autoencoder: 

• Feedforward: Pass the dataset D′ through the encoder 

to the decoder. 

• Backpropagation: Adjust the weights of the 

Autoencoder by minimizing the reconstruction error 

using an optimization algorithm, typically stochastic 

gradient descent. 

 

5. Feature Extraction using Autoencoder: 

• Pass-through Encoder: Feed the dataset D′ through 

the trained encoder. 

• Extraction: Derive features from the Code layer, 

resulting in a new feature set F. 

 

6. Classification: 

• Training: Educate a classifier (e.g., SVM, neural 

network) on the feature set F using the corresponding 

labels from D. 

• Validation: Assess the classifier's performance using 

a separate validation subset from D. 

 

7. Evaluation Metrics: 

• Accuracy: Ratio of correctly predicted samples to 

total predictions. 
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• Sensitivity (Recall): The accuracy in properly 

identifying the proportion of real positive cases. 

• Specificity: The accuracy in properly identifying the 

proportion of true negative cases. 

• Precision: Proportion of positive identifications that 

were actually correct. 

 
 

 

Fig. 2: Flow chart of Hybrid algorithm 

 

The algorithm begins by normalizing the dataset, 

ensuring a consistent scale and zero mean, which is 

pivotal for the stability of subsequent computations 

[6]. The next phase involves PCA, a statistical 

procedure that identifies the orthogonal directions 

(principal components) in the data space where the 

variance is maximized. By projecting the original 

dataset onto these components, we derive a 

transformed dataset with reduced dimensions, yet 

retaining the bulk of the original information. This 

process is not merely a computational convenience but 

also a way to mitigate the curse of dimensionality, 

enhancing the generalization capability of subsequent 

models. Upon obtaining the PCA-transformed data, 

we introduce Autoencoders. These unsupervised 

neural architectures, composed of an encoder and a 

decoder, learn to compress data into a lower-

dimensional space and then reconstruct it. By training 

on the PCA-processed data, the Autoencoder refines 

the feature set, and provides patterns indicative of skin 

cancer. The compact representation from the encoder's 

code layer encapsulates features critical for 

differentiating between benign and malignant lesions. 

This fusion of PCA and Autoencoders offers several 

advantages [7]. Firstly, it ensures a thorough extraction 

process, capturing both global (PCA) and localized 

(Autoencoder) features. Secondly, the dual-step 

reduction accentuates relevant patterns while filtering 

out noise, enhancing model robustness. 

 

Results And Inferences 

In the intricate journey of algorithmic design and 

optimization, the results and inferences section stands 

as a testament to the efficacy, robustness, and 

applicability of the proposed methodologies [8]. By 

utilizing tools and libraries such as Python, Matplotlib, 

Scikit-learn, and Tensorflow, this section presents a 

comprehensive analysis of the algorithm's 

performance, drawing inferences that can guide future 

refinements and implementations. This approach 

leverages the strength of PCA for dimensionality 

reduction and Autoencoders for capturing complex 

data patterns, along with the benefits of ensemble 

learning to enhance predictive accuracy and robustness 

[9]. It's particularly useful when dealing with high-

dimensional datasets or when feature engineering is 

challenging [10]. In this process trained an 

Autoencoder neural network on the provided ISIC Skin 

Imaging dataset. In table 3 shows input data summary. 

Table 2: Data summary 

Attribute Description 

Data set ISIC skin cancer lesions 

set 

Number of entries 1215 

Number of features  9 

Missing values 0 

 

The trained Autoencoder is used for feature extraction 

and a Variational Autoencoder (VAE) a more complex 

architecture, including an encoder and decoder with a 

latent space. The VAE is trained to learn a probabilistic 

representation of the data, allowing for more 

expressive feature extraction by displaying histograms 

of the extracted features [11]. This approach can be 
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useful for tasks related to image processing, deep 

learning, and feature extraction where user interaction 

and visualization are required. Training these models 

on the extracted features, followed by rigorous 

evaluation of metrics like sensitivity, specificity, and 

accuracy, completes the loop [12]. The Fig: 2 shows 

the data acquisition such extracting pink, red, the 

brown colors from the image of Basal cell carcinoma 

(BCC). These colors are obtained from the application 

of hybrid algorithm. 

                                                                

  

 

Original Image 

 

Brown Intensity 

 

Pink Intensity 

 

Red Intensity 

ISIC_0026254.jpg 
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Fig 3. Feature extraction of Skin Cancer image set by hybrid algorithm

 

Table 3: Performance metrics of ensemble methods
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 Table-4 provides an insightful comparison of the 

performance metrics across several machine learning 

models on a given dataset. Each model's efficiency and 

accuracy are evaluated based on a variety of metrics. 

Starting with the Model Name, it represents the 

specific machine learning model or algorithm that has 

been employed. The Time Taken (s) metric indicates 

the duration, in seconds, that each model took to 

finalize both the training and prediction processes. 

Precision is a vital metric that showcases the model's 

capability to correctly identify relevant instances. 

More precisely, it refers to the ratio of accurately 

predicted positive observations to the overall number 

of cases that were anticipated as positive.  

    On the other hand, Recall or Sensitivity provides a 

measure of the model's ability to recognize all 

pertinent instances. It does this by computing the ratio 

of correctly predicted positive observations to all the 

observations present in the actual class [13]. The F1 

Score, an additional significant indicator, offers a 

balanced perspective by calculating the weighted 

average of both Precision and Recall. This 

methodology guarantees that the evaluation metric 

considers both false positives and false negatives, so 

providing a more thorough assessment of the model's 

performance [14]. Finally, the Accuracy measure 

provides a comprehensive evaluation of the model's 

performance by quantifying the proportion of 

accurately predicted observations in relation to the 

total number of data. 

The models evaluated in the Table-4 include the likes 

of XGBoost, which is an efficient gradient-boosted 

decision trees algorithm, and Logistic Regression, a 

statistical method apt for datasets with one or more 

independent variables determining an outcome. 

LSTM, or Long Short-Term Memory, is an RNN 

variant tailored for sequence prediction tasks. 

CatBoost is another notable mention, using gradient 

boosting on decision trees. MLP, standing for Multi-

Layer Perceptrons, is a type of Averaging, while BMC 

could denote Bayesian Monte Carlo, although, without 

further context, it's challenging to confirm their exact 

definitions [15].   

 

Conclusion 

In evaluating the performance of various algorithms 

based on their accuracy metrics, CatBoost stands out 

as the most accurate model with a score of 

0.613168724. Both XGBoost and Logistic Regression 

closely follow with scores of 0.592592593. LSTM, 

MLP, and BMC have relatively similar performances, 

with accuracy scores around the 0.58 mark. In stark 

contrast, BMA exhibits a notably lower accuracy of 

0.0781893, suggesting potential issues with its 

application to the dataset. Moving forward, it would be 

prudent to prioritize refining CatBoost due to its 

leading performance. Additionally, leveraging 

ensemble techniques, especially combining 

predictions from top-tier models, could enhance 

accuracy. A revalidation and assessment of BMA's 

implementation is warranted, and a deeper exploration 

of the dataset might uncover further insights. 

Implementing feedback mechanisms for real-world 

validation and staying updated with the latest in 

machine learning advancements will also be pivotal in 

achieving superior algorithmic performance in the 

future. 
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