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Abstract: Assessing the stability of slopes holds immense significance in geotechnical engineering. However, 

the conventional and soft computing methods used for this purpose come with notable challenges. Unlike the 

black-box nature of soft computing techniques such as artificial intelligence and fuzzy logic, employing 

traditional limit equilibrium procedures for slope stability assessment is often arduous and time-intensive. In 

contrast, multiple regression (MR) analysis emerges as a pragmatic alternative for evaluating slope stability. MR 

offers a simplified equation that can determine the critical factor of slope safety without the need for complex 

iterative processes. This utilization of MR models streamlines the assessment process, reducing both time and 

complexity and overall enhancing the evaluation process. In this study, we explored the accuracy of MR models 

in estimating slope stability using real-world field data. Our dataset comprises six key variables: unit weight, 

cohesiveness, internal friction angle, slope angle, slope height, and pore water pressure ratio. We constructed 

multiple regression models to assess their effectiveness in determining slope stability, accounting for both dry 

and wet slope conditions. The study successfully developed several multiple regression models for both dry and 

wet slopes. Furthermore, we employed performance metrics like Mean Square Error (MSE) and Coefficient of 

Determination (R2) to rigorously evaluate and validate the accuracy of these models in comparison to traditional 

limit equilibrium methods.  The performance of the dry slopes R2 is 0.835 and wet slope of R2 value is 0.818. 
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1.Introduction 

The assessment of slope stability stands as 

a cornerstone in the field of geotechnical 

engineering, carrying profound implications for the 

safety and integrity of various civil engineering 

projects. Slope stability evaluations are 

instrumental in mitigating the risk of landslides, 

ensuring the structural soundness of embankments, 

and averting potentially catastrophic events. 

However, the traditional methodologies and soft 

computing approaches commonly employed for 

slope stability assessments are not without their 

challenges. Therefore, precise slope stability 

prediction has practical engineering value [1]. The 

slope engineering stability influencing elements 

have a very nonlinear connection. The system 

under examination is an open, dynamic, nonlinear 

system that consists of many complex and 

unexpected components. The technique of limit 

equilibrium [2] and numerical analysis techniques 

[3 - 6], are widely recognised as the conventional 

procedures used for the investigation of slope 

stability. For the evaluation of slope instabilities, 

soft computing techniques like Artificial Neural 

Networks (ANN) and fuzzy logic are currently 

being applied.  However, the black box 

methodology of these methods causes problems. 

These conventional techniques must deal with a 

significant computing burden. Their stability 

calculation procedure in particular is laborious, 

making it challenging to satisfy the demands of 
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accelerating slope designs. In the context of 

engineering mega-projects, particularly those 

including extensive slopes such as hydroelectric 

engineering, there is a prevalent demand for 

expeditious stability assessment and design at the 

initial stages of the design process. For the estimate 

and prediction of various parameters, multiple 

regression models are now often used across a 

diverse array of engineering disciplines, including 

geotechnical engineering. For geotechnical 

engineering systems, Zhang and Goh (2013) used 

the utilisation of multivariate adaptive regression 

splines in their study [7]. 

The contributions of the research are: 

• This research introduces multiple regression (MR) 

analysis as a practical substitute for conventional 

and soft computing methods, simplifying slope 

stability assessments. 

• MR models streamline the assessment process by 

providing a straightforward equation for critical 

factor determination, reducing time and 

complexity. 

• The study utilizes real field data, including vital 

variables, ensuring applicability to diverse slope 

stability scenarios. 

2.Related works 

Traditional methods, rooted in limit equilibrium 

procedures, often entail intricate and time-

consuming processes. On the other hand, 

contemporary soft computing techniques, like 

artificial intelligence and fuzzy logic, are often 

regarded as "black box" solutions, which may lack 

transparency and interpretability. In response to 

these challenges, this study explores an alternative 

approach: Multiple Regression (MR) analysis. MR 

analysis offers a pragmatic substitute for both 

traditional and soft computing methods in assessing 

slope stability. By providing a simplified equation, 

MR analysis can efficiently determine the crucial 

factor of slope safety without the need for complex 

and iterative procedures. This approach not only 

streamlines the assessment process but also 

enhances its overall efficiency. Multiple Regression 

(MR) approaches are a superior replacement for 

these techniques. The assessment of slope stability 

takes less time and is less complicated thanks to the 

use of MR, a method of statistics that  provides a 

streamlined equation that can be used to compute 

the crucial component of slope safety without  

using any iterative procedures. In contrast to soft 

computing techniques, the well-established MR 

equation establishes a direct and transparent 

relationship between the independent variables and 

the dependent variables. Sayed et al. (2012) [8] and 

Esmaeili et al. (2014) [9] used multiple regression 

analysis to forecast backbreak in the context of 

rock blasting activities. Mojtahedi et al. (2019) [10] 

included four key variables, including slope height, 

slope angle, cohesiveness, and friction angle, as the 

primary factors. Gordan et al. (2016) [11] used five 

parameters as inputs in their study, namely slope 

height, angle, cohesiveness, angle of internal 

friction, and unit weight (or peak). Zhang and Goh 

(2016) [12] used multivariate regression analysis to 

evaluate the possibility for liquefaction. Sah et al. 

(1994) [13] and Erzin and Cetin (2013) [14] 

developed regression models for the purpose of 

forecasting slope stability. Sah et al. (1994) [13] 

created an empirical relationship for estimating 

slope stability using the greatest probability 

technique. The developed connection, however, is 

only applicable to a small number of slope failure 

types and is based on a small amount of data (46 

cases). Erzin and Cetin (2013) [14] devised a 

multiple regression equation for slope stability 

prediction, but only tested its accuracy for a small 

number of soil parametric ranges (675 examples). 

A large number of slopes (29112 examples in total) 

covering all conceivable slope configurations and 

soil characteristics were used to create MR models 

for the key FOS computation in the current study. 

For uniform dry slopes and saturated and slightly 

saturated slopes, two distinct equations have been 

constructed (i.e., wet slopes). By using real field 

data, the created models are further validated. 

These MR models were developed using IBM 

SPSS software. 

Pre-processing of Data  

MVI, or missing value imputation, is used 

in preprocessing. The only source of data used by a 

trainable automated classification decision-making 

process is a dataset. Conversely, the practical 

dataset often has an anomalously high percentage 

of missing values, which are often denoted by 

NaNs, null, blanks, undefined, or similar 

placeholders. A dataset's missing values must be 

removed or imputed in order to build a generic, 

reliable, and effective classification model. Several 

statistical and machine learning techniques are 

often employed to deal with missing data in an 

incomplete dataset, in contrast to the case deletion 
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strategy. Therefore, this paper uses median-based 

statistical imputation techniques for MVI purposes.  

Median-based statistical imputation 

techniques are a category of data imputation 

methods used in statistics and data analysis. These 

techniques involve replacing missing or incomplete 

data values with the median of the available data 

for that variable. The median is the middle value in 

a dataset when it is arranged in ascending or 

descending order, which makes it robust to outliers 

compared to other measures like the mean 

(average). Median-based imputation is commonly 

used in the preprocessing stage of data analysis. 

After imputation, the dataset can be analyzed using 

various statistical and machine learning techniques.  

 

 

 

 

 

 

 

Fig 1. Proposed Block Diagram 

3. Multiple regression model-based prediction 

 The statistical method known as multiple 

regression enables the analysis of a single 

dependent variable with a multitude of alternative 

independent variables. Multiple regression analysis 

is a statistical technique that involves using 

independent variables with known values to make 

predictions about a single dependent variable. 

Weights are used to show how much each predictor 

factor contributes to the overall prediction, and 

these weights are applied to each predictor value. 

𝑌 = 𝛽1
∗𝑋1 + 𝛽2

∗𝑋2 + ⋯ + 𝛽𝑛
∗𝑋𝑛 + 𝐶 

Here, X1,..., Xn are the independent variables, 

while Y is the dependent variable. When 

determining the weights, a, b1... bn, the dependent 

variable is optimised for prediction using the 

collection of independent variables using 

regression analysis. This is often accomplished by 

least squares estimate. This methodology may be 

used for the analysis of multivariate time series 

data in situations where a single variable is 

dependent on many factors. The variable Y, which 

is the dependent variable, may be represented by a 

model that incorporates a collection of independent 

variables. The prediction of the value of Y may be 

made using Equation 1 at any given time, provided 

that the values of the independent variable are 

known. The stability of slopes is assessed in the 

current work using MR in cases where the slopes 

are dry, saturated, and partially saturated.  (i.e., wet 

cases). In the instances of partial saturation and 

saturation, the geotechnical characteristics of soils 

(𝐶, 𝜙, 𝛽, 𝛾, 𝐻, Γ𝑢) serve as the independent 

variables, while the FOS is the dependent variable. 

Conversely, in the dry scenario, the independent 

variables are (𝐶, 𝜙, 𝛽, 𝛾, 𝐻), and the dependent 

variable is the FOS. The accuracy of the obtained 

MR equation is evaluated using R2 and MSE. The 

measure of association, or R2, represents the 

proportion of overlap between the answer variable 

and the calculated variable. The average of the 

squared discrepancies between the calculated value 

and the expected value is quantified by the mean 

squared error (MSE). 

• It is essential that a linear connection exists 

between the independent and dependent variables. 

Additionally, it's crucial to look for outliers because 

MR is susceptible to their impacts. Scatter plots can 

be used to test this premise. 

• In order to conduct a multiple linear regression 

analysis, it is necessary for the regression residuals 

to exhibit a normal distribution. Examining a 

histogram or a Q-Q-Plot will help you confirm this 

notion. 

•   Goodness-of-fit analyses including as 

Kolmogorov-Smirnov test, may similarly verify if a 

distribution is normal, but only on the residuals. 

• Multiple linear regression assumes that the data is 

not multicollinear. Multicollinearity happens when 

Data 

collection 
Pre-processing 

Multiple 

Regression 

Analysis 

Dry Slope and 

Wet Slope 

Evaluation 

Metrics 
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the levels of the independent variables are too high, 

of correlation with one another. 

Data set description 

The landform of the area, the physical and 

mechanical characteristics of of the soil and rocks, 

as well as external triggering variables like 

hydrogeological conditions, all have an impact on 

the stability of slopes. The FOS is a thorough 

metric for assessing slope stability. Since it is 

closely related to the soil's shear strength, the factor 

of safety (FOS) is a crucial component in the 

evaluation of slope stability. It is the ratio of the 

force causing a slope to slide to the resistance to 

slope sliding [15]. Numerous important factors, 

such as the unit weight, cohesiveness (C), and 

angle of internal friction, have an impact on the soil 

shear strength. Some researchers use the strength 

reduction approach [17] and the gravity increase 

methodology [16] to compute the (FOS). When 

evaluating the circumstances under which a slope is 

vulnerable to failure, a slope's geometric properties, 

namely the slope angle and slope height H, often 

play a critical role. The stability of the slope 

declines with increasing slope angle. The weight of 

the geotechnical is increased by water infiltration, 

and the soil's and rock's shear strength is decreased 

because of softening. All of these modifications 

have a negative impact on the stability of the slope. 

Consequently, the parameters pertaining to the 

geometry and geotechnical qualities of each slope 

are selected. 

Estimation of variables 

The characteristics that govern slope stability 

include unit weight (expressed in kN/m3), 

cohesiveness (measured in kPa), angle of internal 

friction (given in degrees), slope angle (also in 

degrees), slope height (measured in metres), and 

pore water pressure ratio [18]. There are, in theory, 

additional signs, but gathering them would present 

a significant obstacle before they could be used in 

real-world applications.  

𝐹𝑂𝑆 =  𝑓(𝛾, 𝐶, 𝜑, 𝛽, 𝐻, 𝑟𝑢)     (1) 

Multiple regression models are developed using a 

large amount of raw data. A sizable number of 

slopes (a total of 29112 instances) have been taken 

into account, with all feasible configurations and 

soil characteristics. Table 1 presents the data 

pertaining to dry instances, including a total of 

14,112 cases. On the other hand, Table 2 provides 

information on wet cases, encompassing the same 

dataset of 15,000 cases. Both tables offer 

comprehensive details about the range of data that 

was considered for analysis. The stability 

condition, expressed as FOS, is assessed for every 

slope under consideration. 

Table 1 Data ranges for dry cases 

Parameter  Range No of cases 

Cohesion 10-45 7  

Angle of 

friction 

10°-40° 6  

Angle of 

inclination  

15°-50° 7  

Unit weight 15-24 6 

Height 6-54 8 

Total number of case = 14112 

 

Table 2 Data ranges for Wet cases 

Parameter  Range No of cases 

Cohesion 10-45 5 

Angle of 

friction 

10°-40° 5 
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Angle of 

inclination  

15°-50° 5 

Unit weight 15-24 4 

Height 6-54 6 

Γu 0-0.5 5 

Total number of cases = 15000 

 

The determination of FOS for this broad collection 

of scenarios using traditional limit equilibrium 

approaches is a difficult undertaking due to the 

complexity and time-intensive aspects of the 

operation. As a result, the FOS was assessed using 

the stability chart technique. The Michalowski 

stability chart method, which is implemented in 

MATLAB code, is utilized to analyse the stability 

of several slopes. The use of lower limit kinematic 

analysis is employed inside the Michalowski 

stability chart technique (2002), which has been 

well validated. In this section, a total of 14,112 

examples of dry slopes and 15,000 cases of wet 

slopes were examined in order to develop the MR 

model. 

3.1 MR model for dry slopes    

Therefore, an MR model has been created using the 

raw data generated by the Michalowski stability 

chart for evaluating the critical FOS for dry slopes. 

Data ranges from Table 1 are taken into 

consideration for the formulation of the MR 

equation because the MR model development 

demands a large amount of raw data. Prior to 

formulating the MR equation, it is essential to 

ascertain the fulfilment of the fundamental 

assumptions behind the equation. 

Scatter plots have been generated to validate the 

assumption of linearity between the independent 

and dependent variables. The figures from 1 to 5 

illustrate the linear connections between the 

independent and dependent variables. In this 

context, the variables 𝐶, 𝛽, 𝛾, and 𝐻 are considered 

as independent variables, while the FOS is regarded 

as the dependent variable. Figure 1 illustrates the 

correlation between the FOS and the parameter 𝛾, 

while manipulating the variable 𝜙. The constants 𝐶 

= 15, 𝛽 = 25, and 𝐻 = 10 are held fixed as 

independent and dependent variables. 

 

Fig 2.  Connection between stability of slopes and unit weight of soils 
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Fig 3.  Connection between stability of slopes and angle of internal friction of soils ϕ 

 

Fig 4. Relation between stability of slopes and cohesion of soils 

 

 

Fig 5. Relation between stability of slopes and height of the soils 
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Fig 6. Relation between stability of slopes and slope angles 

In a manner similar to the depiction in Figure 2, 

Figure 3 presents a visual representation of the 

correlation between FOS and the manipulation of 

one independent variable, while keeping the other 

independent variables constant at certain values (C 

= 10, γ = 14, H = 5). The relationship between FOS 

and C is depicted in Fig. 4 by changing while 

holding the other independent variables,𝛾 = 17, 𝛽 = 

25, 𝐻 = 10, constant. Figure 5 demonstrates the 

correlation between the FOS and the variable H, 

while keeping the other independent variables C = 

15, β = 25, and γ = 17 constant. Figure 6 

demonstrates the correlation between the FOS and 

the manipulation of the other independent 

variables, namely 𝐶 = 24, 𝛾 = 17, and 𝐻 = 10, 

which are held constant. The first assumption is 

satisfied as seen by the figures (Figs. 1–5), which 

demonstrate a linear relationship between the 

independent factors and the dependent variable. 

The histogram in Fig. 7 is shown with a fitted 

normal curve to test the second supposition. The 

dependent variable FOS is shown in the figure to 

be regularly distributed. 

 

Fig 7. Normal distribution plot for dry cases 
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The Pearsons matrix is then used to determine 

whether multicollinearity exists in the data (i.e., the 

third assumption). When the independent variables 

are not independent of one another, 

multicollinearity arises. The ranges of collinearity 

are between 1 and -1. The number "1" denotes a 

strong relationship between the variables, whereas 

the value "0" denotes no relationship at all. If the 

sign is negative, it indicates a significant inverse 

correlation between the variables, thereby 

establishing the contrary as true. Table 4 presents 

the correlation coefficients pertaining to each of the 

independent variables. The table indicates a lack of 

multicollinearity or minimal multicollinearity 

among the independent variables. 

Table 4 Multicollinearity to independent variable 

 γ 𝜙 C H β β 

γ 1 -0.011 -0.024 0.020 0.024 

𝜙 -0.011 1 0.047 -0.083 -0.167 

C -0.024 0.047 1 -0.102 -0.059 

H 0.020 -0.083 -0.102 1 0.112 

β 0.024 -0.167 -0.059 0.112 1 

 

The last homoscedasticity assumption, according to 

Osborne and Waters (2002) [19], states that the 

variance of the errors is constant at all levels of the 

independent variables. In other words, the 

researchers make the assumption that the mistakes 

are distributed consistently throughout the 

variables. Osborne and Waters (2002) 

recommended showing the standardised residuals 

against the standardised predicted values of the 

regression model as a way to visually evaluate 

homoscedasticity. Figure 8 displays the scatter plot 

for the cases that were thought to be dry. The 

criterion is verified by the figure, which shows that 

all residual errors are uniformly dispersed about 

zero. 

 

Fig 8. Homoscedasticity residual plot for dry cases 

Using SPSS software, an MR model for dry slopes 

has been created after all fundamental assumptions 

have been verified. Eq. 1  presents the created MR 

model. 

𝐹𝑂𝑆 = 𝐶 ∗ 0.0169 + 𝜙 ∗ 0.0208 −  𝛽 ∗ 0.0371 −  𝐻 ∗ 0.0371 +  𝛾 ∗ 0.0208 +  2.4727       

  (1) 

The performance of the constructed multiple 

regression model is evaluated by using the data 

required for its creation, as shown in Table 1, and 

by generating a correlation diagram. Figure 9 

displays the correlation plot illustrating the 

relationship between the FOS established using the 
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stability chart technique and the FOS derived from the developed MR model. 

 

Fig 9. Correlation plot of training data for dry cases 

The statistical estimation of the correlation between 

the two factors of interest is shown by the 

Coefficient of Determination R^2, which is 

calculated using Equation (2). The estimated FOS 

obtained by the MR model is found to be identical 

to the FOS calculated using the chart approach, as 

shown by the R2 value of 1.  Nevertheless, this 

situation is considered ideal, as shown by Smith's 

(1986) assertion that  R 2 value over 0.8 is seen 

favourable. 

𝑅2 = [
𝑁 ∑ 𝑦∗𝑦′−(∑ 𝑦)(∑ 𝑦′)

√[𝑁 ∑ 𝑦2−(∑ 𝑦2)][𝑁 ∑ 𝑦′2−(∑ 𝑦′)2]
]

2

      (2) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦 − 𝑦′)21

𝑁    (3) 

The Value Account for (VAF) encompasses 

variations and indices, and it is determined via the 

use of Equation 4. This calculation serves the 

purpose of regulating the predictive capability of 

the developed model's output. When the value of 

VAF approaches 100%, the associated error is 

minimised. 

𝑉𝐴𝐹 = 100[1 −
𝑣𝑎𝑟 (𝑦−𝑦′)

𝑣𝑎𝑟(𝑦)
]     (4) 

The evaluation of the disparity between predicted 

values generated by a model and the actual values 

obtained from the observed physical field under 

investigation is often conducted via the use of the 

root mean square error (RMSE). The 

aforementioned dissimilarities are often referred to 

as residuals, and the Root Mean Square mistake 

(RMSE) is a computational method that 

consolidates these residuals into a singular metric, 

so magnifying the mistake and effectively 

highlighting any discrepancies in Equation (5). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦 − 𝑦′)21

𝑁    (5) 

Where y is the FOS from the MR approach, y′ is 

the FOS from the stability chart method, N is the 

total number of cases, and var () is the variance. 

The created MR model is confirmed by the derived 

Coefficient of determination R 2 value of 0.835, 

which shows high correlation between the two 

values (Smith 1986)[20] . 

3.2 MR model for Wet slopes    

For instances that are fully and partially saturated, a 

different MR equation has been created. The 

creation of the MR equation for both scenarios took 
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into account a total of 15000 cases. The data is 

checked against all four major hypotheses listed in 

the Multiple Regression Model section before 

creating the multiple regression equation. 

It is evident from Figs. 1–5 and 10 that link 

between the independent and dependent variables 

FOS is remarkably linear, satisfying the necessary 

linearity assumption. By varying while holding the 

other independent variables 𝐶 = 15, 𝛽 = 25, 𝛾 = 17, 

𝐻 = 22 constant, Fig. 11 illustrates the relationship 

between FOS and u. The normal distribution curve 

is used to confirm the normality of a dependent 

variable. The dependent variable's normal 

distribution plot is displayed in Fig. 12. The second 

premise is satisfactorily demonstrated by the figure, 

which shows that the dependent variable, FOS, is 

normally distributed. 

 

Fig 11. Relation between stability of slopes and pore water pressure Гu 

` 

Fig 12. Normal distribution for wet case 

The multicollinearity assumption is then confirmed 

using Pearson's matrix. Table 7 contains the 

correlation coefficients among all of the 

independent variables. To disregard the 

interdependence of the variables, these values must 

be less than 0.19, according to Osborne and Waters 

(2002). Table 7 exhibits little evidence of 

multicollinearity among the independent variables, 

hence providing support for the third premise of 

multicollinearity. 
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Table 4 Multicollinearity to independent variable 

 H β C 𝜙 γ Lu 

H 1 0.023 0.031 -0.068 -0.109 0.111 

β 0.023 1 0.011 -0.039 -0.033 0.047 

C 0.031 0.012 1 -0.019 -0.029 0.012 

𝜙 -0.068 -0.038 -0.019 1 -0.051 -0.129 

γ -0.109 -0.032 -0.029 0.051 1 -0.066 

Lu 0.111 0.047 0.012 -0.129 -0.066 1 

 

Fig. 13's scatter plot for the circumstances under 

consideration is shown to demonstrate how the 

homoscedasticity assumption can be verified. The 

image demonstrates that the residual errors exhibit 

a uniform distribution around zero, indicating an 

equitable distribution and confirming our initial 

assumption. 

 

Fig 13. Homoscedasticity residual plot for wet cases 

After confirming each of the four fundamental 

hypotheses, the MR equation for wet circumstances 

was created and is provided in Eq (6). 

𝐹𝑂𝑆 = 𝐶 ∗ 0.0169 + 𝜙 ∗ 0.0208 −  𝛽 ∗ 0.0371 −  𝐻 ∗ 0.0371 −  𝛾 ∗ 0.0208 − Γ𝑢 ∗ 0.6409 +  2.4727      

        (6) 

The FOS (Figure of Merit) of the dataset, 

consisting of 15,000 instances, used in the 

formulation of the MR (Multiple Regression) 

equation (as shown in Table 2), is determined using 

the chart method. Additionally, a correlation plot is 

shown, illustrating the relationship between the 

FOS acquired by the established MR model. The 

purpose of this action is to evaluate the efficacy of 

the formulated MR equation. 
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Fig 14 Correlation plot 

The provided graph, labelled as Figure 14, displays 

a residual plot that assesses the homoscedasticity of 

wet instances. Figure 14 shows the correlation plot. 

The statistical estimate, namely the Coefficient of 

determination R2 value, confirms the validity of the 

developed MR model, with a computed value of 

0.818. This numerical value indicates a strong 

association between the two fields of study. 

4. Conclusion  

Intelligent optimisation systems have been widely 

used in the field of slope deformation prediction.  

Many clever algorithms and technological tools 

have been combined to create new and improved 

models that anticipate slope deformation to a new 

degree of capacity. In the most recent research, a 

multiple regression model based on actual field 

data was developed and validated to evaluate slope 

stability.  Many models of multiple regression have 

been created. In this instance, taking into account 

slopes that are both dry and wet. After a 

comparison study with conventional limit 

equilibrium techniques, it is shown that the created 

MR models have the capacity to predict the FOS of 

slopes with high accuracy in both dry and wet 

conditions. The models' usefulness is shown by this 

confirmation of their ability to estimate key FOS 

and detect slope instabilities in real-world 

scenarios. Furthermore, the MR models created in 

this work do not depend on any data specific to a 

certain area and span a broad range of parameter 

modifications. Therefore, any real slope may be 

immediately applied to the MR models that are 

developed. It's vital to remember that this study 

does not take nonlinearity's effects into account, 

even if the regression plots of the training data for 

both scenarios (shown in Figures 8 and 13) show 

nonlinearity. For this investigation, we are limited 

to developing a linear multiple regression equation. 

By considering the influence of these 

nonlinearities, it may be further enhanced as the 

study's future emphasis. 
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