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Abstract: The transmission lines form a very crucial part of any power system network. Hence its reliability of power transmission is 

equally important. But The chances of fault occurrence probability on transmission lines are quite large. Hence to maintain the reliability 

of transmission there is a need to classify, detect and isolate the faults that will occur on the transmission line. In this paper the Deep Neural 

Network based technique is implemented for classifying and locating the fault. The system implemented is a two-bus power system 

network, the line being 100 km long and working voltage is 132 kV. The input dataset RMS values of voltage and currents corresponding 

to no fault condition and different fault types including different phases. The model gives results with best accuracy in classifying 

symmetrical as well as unsymmetrical faults providing an overall greater accuracy for the faults studied.  
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1. Introduction 

The increasing demand for electrical energy in industrial as 

well as domestic sector necessitates the development of 

good relaying and protection system. This definitely adds to 

the efficiency and reliability of the entire system. Various 

methods have been developed for fault detection and 

classification. The travelling wave-based methods, 

impedance techniques and the methods based on 

synchronized phasors are one of the few methods [1]. Line 

fault is identified by the traveling waves [2]. DWT based 

methods makes use of decomposition techniques and 

wavelets. SVM methods also addresses the similar problem 

and is one of the classification techniques [3]. The technique 

using synchronous phasor measurement has a high 

capability for locating faults. But the requirement of phasor 

measurement units makes it costlier [4]. Fourier and wavelet 

based methods are used for signal analysis [5].Deep neural 

networks are based on number of layers (input, output and 

hidden) connected to each other. The technique necessitates 

the formation of large input dataset and training the network 

with this dataset. Training the neural network improves its 

accuracy.  

2. Literature Review 

Discrete wavelet transform (DWT) is employed for signal 

decomposition. The same technique is also used for feature 

extraction [6]. Thefeatures are extracted using Principal 

Component Analysis (PCA) and the results are compared 

with Linear Discriminant Analysis (LDA). The comparison 

is done with respect to time taken and other parameters [7]. 

The signal processing is used for signals that are non-

stationary. The fault investigation is done by neural network 

[8]. The model classified the faults with greater accuracy 

and was based on dataset obtained by simulating the power 

system network.[9]. Two deep learning models, namely 

CNN and ANN models were used for detection of the defect 

type in the transmission line. The two networks were 

compared with respect to their performances [10]. The 

neural networks based on discrete wavelet transform were 

implemented and provided better amount of classification 

accuracy for the microgrids [11]. SSAE deep neural network 

based on higher ability to extract features is implemented 

[12]. The distinguishable features are being extracted from 

the wavelets. Further principal component analysis (PCA) 

is put to usefor the reducing dimensionality of data set, and 

the principal components represent signals of the 

networkthat are non-stationary [13]. The technique models 

a system to generate the automatic processing of signals and 

extract the features with the help of deep learning and 

classify ten types of faults in transmission lines [14].  

3. Power System Network/Model 

The proposed power system is a transmission line 100 km 

long with line voltage of 132 kV as shown in figure 1. The 

static load of MW and MVAR have been connected to the 

bus 2 at the receiving end. Fault simulating block is 
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connected to the line that will simulate different 

unsymmetrical faults and symmetrical faults for different 

values of fault resistances and fault locations. 

 

Fig. 1.  A two-bus system 

The system block diagram is shown in figure 2. The output 

of the DNN model will be the type of fault. 

 

Fig. 2.  System Block Diagram 

The specifications of transmission line per km of length are 

given in table 1. 

Table 1. The Specifications of Transmission Line 

Variable Value 

Positive Sequence 

Resistance 

100.0445 Ohms/km 

Zero Sequence 

Resistance 

0.1123 Ohms/km 

Positive Sequence 

Inductance 

1.011e-3 H/km 

Zero Sequence 

Inductance 

2.0191e-3 H/km 

Positive Sequence 

Capacitance 

7.469e-9 F/km 

Zero Sequence 

Capacitance 

4.4e-9 F/km 

Figure 3 shows the current magnitude, phase and frequency 

waveforms for single line to ground fault. Figure 4 indicated 

the Voltages of the three phases for the same fault condition. 

 

Fig. 3.  Current Magnitude, Phase and Frequency 

Waveforms during Single Line to Ground Fault 

Fig. 4.  Phase A, B and C Voltage Waveforms during 

Single Line to Ground Fault 

4. Deep Neural Network 

The proposed neural network is designed to produce 

optimum results for the given input dataset. The number of 

neurons and hidden layers are chosen to gain maximum 

performance. Also, the activation function plays a crucial 

role in accurate classification. The series network is shown 

in figure 4. It is a network that consists of different layers 

connected one after another with single input and output 

layer. It consists of 3 fully connected layers and three layers 

with learnable weights. The fully connected layers consist 

of neurons 64-32-9 and the activation functions are relu-

relu-softmax. The z-score normalization is used to rescale 

the features. 
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Fig. 5.  Layer Graph 

5. Dataset Generation 

The data set consists of a table of 11152 rows and 97 

columns. The rows show the number of samples and the 

column shows the statistical features and targets. The 96 

columns are the statistical features representing the 

magnitude, phase and frequency of overall current, 

magnitude and phase of overall voltage and voltages of 

individual phases (RMS values). The last column represents 

the target/label/fault type. nine target labels, corresponding 

to no fault condition and different fault types including 

different phases. The labels (2 to 11) are the fault types 

phase A-G, phase B-G, phase C-G, phase A-B, phase A-C, 

phase B-C, phases A-B-G, phases B-C-G and label 1 is for 

No Fault condition. The phases are designated as A, B and 

C. The fault distance is measured from the sending end of 

transmission line. 

6. Feature Extraction/ Dataset Generation 

Feature extraction is the process of generating a new set of 

features from the original data. It helps to generate only the 

relevant/useful features and thereby decreasing redundancy. 

A combined technique using DWT and PCA is used to 

extract the features. DWT transform is used to obtain the 

frequency components of signal and is preferred over FFT 

since it retains information in time as well as frequency 

domain [16]. PCA reduces the linear dimensionality. It is 

used to extract the dominant features [17]. The combination 

of PCA and DWT is used to improve the feature extraction 

process [18]. The input is the original data and the output is 

in form of features that best represents the input data. Also, 

it reduces the complexity in time and space. The input 

features taken are overall current magnitude, phase and 

frequency, overall voltage magnitude and phase. The input 

voltages and currents are measured at the sending terminals 

of transmission line. 

 

Fig. 6.  Two-Dimensional DWT [19] 

Discrete wavelet transform (DWT) of the input test signal 

data is computed at level 1by Daubhechies mother db5 

wavelet. The decomposition steps are shown in figure 6. It 

shows the approximation coefficients and detail 

coefficients. The level 2 approximate and detail coefficients 

of frequency are obtained as shown in figure 7 and 8 

respectively. 

  

Fig. 7.  Level 2 Approximate Coefficients of Frequency 

  

Fig. 8.  Level 2 Detail Coefficients of Frequency 

Total twelve statistical features with respect to every 

parameter are extracted using DWT and PCA as follows [6, 

20]. The values are indicated in table 2 and figure 9. 
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1. Energy: The energy of a discrete-time signal over a finite 

interval -N ≤ n ≤ N is given by 

       𝐸𝑁 =  ∑ |𝑥(𝑛)2|𝑁
𝑛=−𝑁                                                              (1) 

 

2. Standard Deviation: It computes the standard deviation 

of all values in a given array.  

3. Mean: It is the mean of elements of vector or the matrix 

4. Kurtosis: The kurtosis of a distribution is defined as 

       k = 
𝐸(𝑥−µ)4

𝜎4                                                                              (2) 

where μ: mean of x, σ: the standard deviation of x, 

and E(t): the value of quantity 

5. Skewness: Skewness is an indication of asymmetry of 

data. 

s = 
𝐸(𝑥−µ)3

𝜎3                                                                                   (3)        

6. Entropy: Entropy indicates the information contain in 

the signal. 

 ∑ |𝑖 − 𝑗|𝑖,𝑗
2

𝑝(𝑖, 𝑗)                                                                  (4) 

7. Contrast: It is a measurement of the overall intensity 

contrast between the pixel and neighbouring pixel 

8. Correlation: It reveals a pixel's correlation with its 

neighbours over the entire image. 

∑
(𝑖−µ𝑖)(𝑗−µ𝑗)𝑝(𝑖,𝑗)

𝜎𝑖𝜎𝑗𝑖,𝑗                                                                (5)     

9. Homogeneity: It is used to gauge how well the 

distribution of GLCM pieces matches the diagonal. 

∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗                                                                              (6)                  

10. Variance: The variance is defined as follows for a 

vector A containing N observations (scalar). 

V=
1

𝑁−1
∑ |𝐴𝑖 − µ|𝑁

𝑖=1

2
                                                           (7)                  

 

μ: mean of A. 

11. RMS: For the input x, it calculates the root mean square 

value 

.√
1

𝑁
∑ |𝑥𝑛|2𝑁

𝑛=1                                                                         (8) 
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Fig. 9.  Statistical Features of Frequency 

7. Results And Discussion 

The MATLAB Simulink model is used for simulating 10 

different fault types that includes symmetrical and 

unsymmetrical faults along with no fault condition. The 

faults are simulated for every 1 km upto 100 km with the 

fault resistances ranging from 0.25 ohm to 130 ohm. Figure 

10 shows the accuracy and loss in training. 

 

Fig. 10.  Accuracy and Loss in Training 

Another neural network is developed for classifying the 

faults. Confusion matrix shows that the accuracy obtained 

by the classifier is 100% as shown in fig.9. 

 

Fig. 11.  Confusion Matrix for Fault Classification 

Table 3 shows the accuracy results for different types of 

faults. The accuracy obtained for each type of fault is 100%. 

It is obtained with the help of confusion matrix as in figure 

11. 

Table 3. The Specifications of Transmission Line 

Fault Type Accuracy 

No Fault 100 

A-G  100 

B-G  100 

C-G  100 

A-B  100 

A-C  100 

B-C  100 

A-B-G  100 

B-C-G  100 

A-C-G  100 

A-B-C-G  100 

  

8. Conclusion 

A fault classification method using a multilayer perceptron 

deep neural network is implemented in this paper. It locates 

and classifies in power transmission lines. 

MATLAB/SIMULUNK is used to model and simulate the 

transmission line and the implement the neural network. Ten 

different types of faults are classified for various fault 

locations and fault resistances. A Mean Square Error of 

2.12e-9 is obtained for fault locator and accuracy of 100% 

for fault classifier. The results are found to be very 

satisfactory for both classifier and locator. Hence the DNN 

is proved to be an efficient tool for transmission line fault 

investigation. 
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