

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 516–520 |516

Robot Operating System: A Comprehensive Analysis and Evaluation

Dr. U. C. Patkar1, Vaishnavi Mandhalkar2, Aayush Chavan3, Shubham Songire4, Hrishikesh Kothawade5

Submitted: 02/10/2023 Accepted : 21/11/2023 Accepted: 01/12/2023

Abstract The Robot Operating System (ROS) has become a prominent open-source framework for the development of robot software.

This research paper offers a comprehensive analysis and assessment of ROS, encompassing its fundamental features, architectural

framework, ecosystem, and applications. The study delves into ROS's core elements, which include its messaging system, package

management, visualization tools, and the robust support from its community. It also delves into the benefits and challenges associated

with implementing ROS across diverse domains, ranging from research robotics to industrial automation and autonomous vehicles.

Moreover, the paper sheds light on the future directions and emerging trends within the development of ROS. This insight equips

researchers and practitioners with the knowledge to comprehend ROS's capabilities, making informed decisions when incorporating ROS

into their robotic projects.

Keywords: ROS, Robot Operating System, Robot, Navigation, Visualization, Automation.

1. Introduction

The realm of robotics has borne witness to remarkable progress in

recent years, endowing robots with the capacity to execute

intricate tasks and engage with their surroundings across diverse

domains. At the heart of these achievements lies a pivotal

component: the software framework upon which these robotic

systems are constructed. The Robot Operating System (ROS) has

surfaced as a preeminent open-source framework, furnishing an

enduring platform for the development and orchestration of

robotic applications. This research paper embarks on a

comprehensive exploration of the Robot Operating System

(ROS), delving into its origins, objectives, and its expansive

domain of application in the field of robotics.

The genesis of ROS dates back to 2007 when it took its nascent

steps at Willow Garage, a research institution dedicated to the

realms of robotics and autonomous systems. Its inception was

primarily rooted in the necessity for a standardized, reusable

software framework tailored to the realm of robotics research. As

time has unfurled, ROS has matured into a robust and

sophisticated platform, nurtured and upheld by a fervent

community of developers and scholars.

2. Key Features and Design Principles

The Robot Operating System (ROS) boasts a constellation of

distinctive features and design principles that underpin its

prominence and ubiquity within the realm of robotics. This

section casts a spotlight on the pivotal features and design

principles that have solidified ROS's standing as a dynamic and

adaptable framework for the cultivation of robotic software.

1. Modularity: ROS is architected around a modular

paradigm that empowers developers to disassemble

intricate robotic systems into discrete, self-reliant entities

termed nodes. Each node is tasked with executing a specific

function and can establish communication with other nodes

via a publish-subscribe messaging system. This modularity

lends itself to code reusability and system versatility,

expediting the development, integration, and assessment of

diverse components within a robotic system.

2. Message Passing: Communication between nodes in ROS

adheres to a publish-subscribe messaging model. Nodes are

equipped to publish messages on designated topics, while

other nodes can subscribe to these topics to receive the

messages. This decoupled communication mechanism

begets loose coupling among distinct components, enabling

autonomous development and facile integration of software

modules.

3. Package Management: ROS adopts a package-centric

system for the organization and dissemination of software

components. ROS packages encompass executables,

libraries, configuration files, and documentation,

simplifying the propagation and repurposing of code. This

package management system streamlines the management

of dependencies, as well as the installation and updating of

software components in a robotic application.

1 Department of Computer Engineering,

Bharati Vidyapeeth’s College of Engineering, Lavale, Pune,
Maharashtra, India
2 Department of Computer Engineering,

Bharati Vidyapeeth’s College of Engineering, Lavale, Pune,
Maharashtra, India
3 Department of Computer Engineering,

Bharati Vidyapeeth’s College of Engineering, Lavale, Pune,
Maharashtra, India
4 Department of Computer Engineering,

Bharati Vidyapeeth’s College of Engineering, Lavale, Pune,
Maharashtra, India
5 Department of Computer Engineering,
Bharati Vidyapeeth’s College of Engineering, Lavale, Pune,

Maharashtra, India

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 516–520 |517

4. Tools and Libraries: ROS furnishes a copious array of

tools and libraries that facilitate various facets of robot

software development. These include:

• Libraries such as rospy (for Python) and roscpp (for

C++), which provide interfaces and functionality for

node development.

• RViz, a three-dimensional visualization tool that

empowers developers to visualize robot models, sensor

data, and trajectories.

• A suite of command-line tools (e.g., roscore, rostopic,

roslaunch) for debugging, visualization, and system

monitoring.

5. Flexibility and Portability: ROS is meticulously crafted to

transcend platform constraints, enabling developers to

execute their robot software across an array of operating

systems, encompassing Linux, macOS, and Windows. This

framework accommodates an array of programming

languages, including Python, C++, and Java, providing

developers the freedom to select the language of their

preference.

6. Simulation and Testing: ROS augments its arsenal with

simulation tools like Gazebo, which authorizes developers

to simulate and scrutinize their robot systems within virtual

environments. This simulation infrastructure streamlines

algorithm development, sensor integration testing, and the

evaluation of robot behaviors prior to deployment in the

tangible world.

7. Community and Ecosystem: ROS basks in the radiance of

a spirited and engaged community teeming with

developers, researchers, and robotics enthusiasts. This

community fuels the evolution and enhancement of ROS by

disseminating code, documentation, and tutorials. ROS

repositories, including ROS.org and ROS Wiki, constitute

invaluable wellsprings for accessing packages, libraries,

and documentation.

3. ROS Architecture

The architecture of the Robot Operating System (ROS) is the

cornerstone that defines how the various components of a robotic

system interact and communicate with one another. Designed to

foster modularity, scalability, and reusability, the architecture of

ROS serves as a foundational framework for building robust

robot software. This section offers an insightful overview of

ROS's architecture, elucidating its core constituents and

communication mechanisms.

Fig 1. ROS Architecture

Nodes: At the heart of a ROS system lie nodes, the elemental

building blocks. Each node constitutes an executable dedicated to

a specific task or computation within the robotic system. Nodes

are independent entities with the capacity to communicate with

one another by means of publishing and subscribing to messages

on specific topics. Their roles can span from processing sensor

data, orchestrating motor control, executing perception

algorithms, to undertaking high-level planning.

Master: The master node operates as the central coordination hub

within a ROS system. It orchestrates communication among

diverse nodes by maintaining a comprehensive registry of

available nodes, their associated topics, and services. The master

node offers a naming and registration service, thereby

empowering nodes to discover each other and initiate

communication.

Topics: Topics serve as the communication conduits within ROS,

affording nodes the capacity to publish and subscribe to

messages. Nodes can broadcast messages on designated topics,

and other nodes with an interest in these messages can subscribe

to the relevant topics for message reception. Topics are structured

around a publish-subscribe messaging model, engendering loose

coupling among nodes and streamlining data exchange.

Messages: Messages constitute the data structures instrumental in

inter-node communication through topics and services. ROS

encompasses a versatile and extensible message definition

language that empowers developers to craft custom message

types, thereby representing a multitude of data formats. ROS

further offers a repertoire of standard message types, catering to

common data formats such as integers, floats, strings, and sensor

readings.

Services: Services epitomize a request-response communication

pattern within ROS. Nodes can provide services, each defined by

a pair of messages: a request message and a response message.

When other nodes require a particular service, they dispatch a

request message, and the service provider node processes the

request before dispatching a corresponding response.

Parameters: ROS furnishes a parameter server, enabling nodes to

store and retrieve parameters dynamically during runtime.

Parameters are instrumental for configuring node behavior,

defining thresholds, and fine-tuning algorithms. This dynamic

access to and modification of parameters bestow flexibility and

adaptability upon the system.

Packages: ROS orchestrates the organization of code and

resources into packages, which serve as containers for

executables, libraries, configuration files, and documentation.

Packages are instrumental in facilitating code reuse, nurturing

modularity, and simplifying the dissemination of software

components across the ROS ecosystem. Dependencies between

packages are diligently managed through the package.xml file,

which specifies the requisite dependencies for each package.

4. Visualization and Debugging

In the realm of robot software development, the importance of

visualization and debugging cannot be overstated. Visualization

aids in comprehending a robot's behavior, scrutinizing sensor

data, and validating algorithm correctness, while debugging plays

a pivotal role in identifying and resolving issues within the

system.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 516–520 |518

Fig 2. Visualization in Gazebo

ROS equips developers with a plethora of techniques and tools

for visualization and debugging, contributing to the creation of

robust and reliable robotic systems. Here are some commonly

employed techniques and tools in the ROS ecosystem:

1. RViz: At the forefront of ROS visualization tools is RViz, a

robust 3D visualization platform. RViz empowers

developers to render sensor data, robot models, and other

visual elements in a dynamic 3D space. This tool facilitates

the visualization of critical aspects such as robot states,

trajectories, point clouds, laser scans, and more. RViz

provides an interactive interface that grants developers the

capability to assess a robot's behavior and validate their

algorithms.

2. RQT (ROS Qt-based GUI): RQT stands as a

comprehensive framework within ROS, offering a

multitude of plugins for visualization and debugging

purposes. It provides a graphical interface for analyzing

robot states, inspecting messages, and dissecting topics.

The framework encompasses essential plugins like

rqt_graph (which visualizes the ROS computation graph),

rqt_plot (for plotting numerical data), rqt_console (to

display log messages), and an array of other debugging and

analysis tools.

3. Gazebo: Gazebo emerges as a prominent open-source 3D

robot simulation environment, often used in conjunction

with ROS for the development and testing of robotic

systems. This tool presents a realistic physics engine,

sensor simulation capabilities, and a user-friendly graphical

interface. Gazebo enables developers to simulate and

visualize robot behaviors within diverse environments.

4. ROS Debugging Tools: ROS comes equipped with a

dedicated suite of tools designed explicitly for debugging.

Examples include rostopic echo (for printing messages

published on a topic), rostopic hz (which displays the

publishing rate of a topic), and rosmsg show (providing

insights into the details of a message type). These tools are

indispensable for comprehending data flow and identifying

potential issues within the system.

5. Logging and ROS Console Output: ROS introduces a

sophisticated logging system, facilitating the output of

debug information, warnings, and errors from your code.

The ROS console output (rosconsole) provides an avenue

for viewing these log messages, filtering them according to

severity, and conducting in-depth analysis of issues that

may arise during runtime.

6. Custom Visualization: Depending on the unique

requirements of a project, developers can craft custom

visualization tools by harnessing libraries such as OpenCV,

the Point Cloud Library (PCL), or OpenGL. These libraries

present capabilities for rendering visual elements,

processing sensor data, and constructing interactive

interfaces that significantly aid in the debugging and

analysis processes.

5. Advantages of ROS

The Robot Operating System (ROS) offers a multitude of

advantages that have solidified its status as a go-to framework for

robotic development. These advantages are instrumental in

simplifying the complexities of robot software development and

accelerating progress in the field. Here are some of the notable

advantages of ROS:

Modularity: ROS embodies a modular architecture that empowers

developers to dissect intricate robotic systems into discrete,

reusable components known as nodes. These nodes can be

developed independently, tested in isolation, and subsequently

integrated into the larger system. Modularity within ROS

promotes code reusability, expedites development, and simplifies

maintenance.

Middleware: ROS incorporates a middleware infrastructure that

serves as the communication backbone between nodes. This

middleware system proficiently manages message passing,

service calls, and parameter setting. It streamlines the exchange

of data and control commands among different components of a

robot system. By abstracting the intricacies of communication,

ROS simplifies the development process and encourages

interoperability between diverse components.

Large Community and Ecosystem: One of the hallmarks of ROS

is its vibrant and expansive community of developers,

researchers, and robotics enthusiasts. This dynamic community

has fostered an extensive ecosystem of open-source libraries,

tools, and packages contributed by its members. This wealth of

resources facilitates the leverage of existing solutions, expedites

development, and encourages the sharing of knowledge and best

practices.

Visualization and Debugging: ROS places a strong emphasis on

visualization and debugging tools. RViz, a built-in 3D

visualization tool, provides developers with the capability to

visualize sensor data, robot models, and system configurations.

Additionally, ROS supplies logging and debugging utilities that

play a pivotal role in the analysis and resolution of issues during

both the development and runtime phases.

Testing and Simulation: Robust testing and simulation

capabilities are integral to the development and validation of

robotic systems. ROS caters to these needs by offering

frameworks such as rostest for unit testing and Gazebo for

simulating robot behavior across a spectrum of environments.

These tools grant developers the capacity to validate their code,

experiment with diverse scenarios, and curtail the reliance on

physical hardware during the development process.

6. Challenges of ROS

While the Robot Operating System (ROS) offers numerous

advantages, it also presents certain challenges that developers and

roboticists should be aware of. These challenges may affect the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 516–520 |519

adoption and implementation of ROS in specific contexts. Here

are the key challenges associated with ROS:

1. Learning Curve: ROS has a relatively steep learning

curve, particularly for individuals who are new to both

robotics and software development. Understanding ROS

concepts, tools, and its architectural intricacies demands

time and effort. However, this challenge can be mitigated

through the availability of comprehensive tutorials,

extensive documentation, and active community support,

which serve as valuable resources for learners.

2. Performance Overhead: The middleware abstraction in

ROS introduces performance overhead due to message

passing and the serialization/deserialization of data. In

applications demanding real-time processing or operating

within resource-constrained environments, this performance

overhead can become a significant concern. To address this

challenge, ROS offers mechanisms like real-time

extensions and optimized message formats, which aim to

minimize performance impact.

3. Compatibility and Versioning: ROS has evolved over

time, leading to the existence of different versions of ROS

packages. Managing compatibility between packages and

their dependencies is crucial. Mismatched versions can

result in compatibility issues. Furthermore, transitioning

between distinct ROS versions can sometimes be

challenging due to changes in APIs and package

availability. Ensuring a cohesive ecosystem across various

ROS packages is essential.

4. Limited Resource-Constrained Environments: While

ROS supports a diverse range of robots and applications, it

may not be suitable for resource-constrained environments

such as small embedded systems or microcontrollers with

restricted processing power and memory. In these cases,

alternative lightweight frameworks may be more

appropriate to ensure optimal performance and resource

utilization.

5. Security Considerations: Just like any software

framework, security is a vital consideration when working

with ROS. ROS relies on communication between different

components of a robotic system, and guaranteeing the

security and integrity of these communications is

paramount, particularly in safety-critical applications.

Implementing proper network configuration, message

authentication, and encryption mechanisms is essential to

mitigate security risks and safeguard against potential

vulnerabilities.

7. Industry Adoption and Future Outlook

The adoption of the Robot Operating System (ROS) in various

industries has been substantial, and the future of ROS

development holds promise for even broader applications and

enhancements. ROS 2 (Robot Operating System 2) is a

significant evolution of the framework, designed to address

limitations and extend its capabilities. This section discusses the

industry adoption of ROS and its future outlook:

Fig 3

Industry Adoption:

• ROS 2 Adoption: While ROS 1 continues to be widely

used due to its extensive codebase and existing projects,

ROS 2 is gaining traction for new developments and

deployments, especially in domains that demand real-time

capabilities and advanced scalability. This adoption is

facilitated by ROS 2's improvements in real-time

communication, security, and support for a broader range of

platforms.

• Migration to ROS 2: The ROS community is actively

involved in the process of migrating existing ROS 1

packages to ROS 2 and developing new packages tailored

for ROS 2. This collaborative effort involves creating

bridges that enable communication between ROS 1 and

ROS 2 components, ensuring a smooth transition.

Future Outlook:

• Enhanced Real-Time Capabilities: ROS 2 is expected to

witness further enhancements in real-time capabilities,

making it even more suitable for applications requiring

precise and low-latency control, such as robotics in

industrial automation and autonomous vehicles.

• Safety-Critical Systems: The future of ROS development

includes increased support for safety-critical systems,

aligning with the growing demand for robotics in safety-

sensitive domains, including healthcare, aerospace, and

autonomous transportation.

• Interoperability and Integration: ROS 2 is likely to

continue efforts to enhance interoperability and integration

with other frameworks and standards, promoting seamless

communication and collaboration between robotic systems

and devices.

• Advanced Robotics: As robotics technology advances,

ROS 2 is expected to play a pivotal role in enabling the

development of more sophisticated and complex robotic

systems. This includes applications in areas such as

advanced manufacturing, precision agriculture, and smart

infrastructure.

Applications of ROS: A. Research: ROS is widely used in

academic and research environments, facilitating the development

and experimentation of new robotic algorithms, control strategies,

and perception techniques.

B. Industrial Automation: Many industrial robotics companies

employ ROS for research and development as well as integrating

and controlling robotic systems. ROS enables interoperability

between different hardware and software components, allowing

for flexible and customizable automation solutions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 516–520 |520

C. Autonomous Vehicles: ROS has found application in the field

of autonomous vehicles, encompassing ground-based and aerial

systems. It provides a framework for sensor integration,

perception, path planning, and control, making it suitable for

developing autonomous navigation algorithms.

D. Service Robotics: ROS is a common choice in the

development of service robots, including those designed for

healthcare, domestic tasks, and personal assistance. Its flexibility

and extensive library support simplify the creation of

sophisticated robot behaviors and interactions.

E. Education: ROS has gained popularity in educational settings,

serving as a platform for teaching robotics concepts and

programming. It provides a user-friendly interface and a wealth

of learning resources, enabling students to gain hands-on

experience in real-world robot development.

8. Conclusion

In conclusion, this research paper has offered a thorough

exploration of the Robot Operating System (ROS), shedding light

on its architecture, key features, components, and communication

methods. The assessment of ROS extends to its package

management system, visualization tools, and the robust support

provided by its vibrant community. Furthermore, the paper has

delved into the multifaceted applications of ROS, ranging from

research robotics to industrial automation and autonomous

vehicles, while also discussing the advantages and challenges

associated with its use.

The insights presented in this research paper are intended to serve

as a valuable resource for researchers, developers, and robotics

enthusiasts. By providing a comprehensive understanding of ROS

and its potential, this paper aims to empower individuals and

teams to harness the capabilities of ROS in propelling innovation

within the dynamic and exciting field of robotics

References:

[1] "ROS: an open-source Robot Operating System." by

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.,

Leibs, J., Wheeler, R., & Ng, A. Y. (2009).

[2] "A Comprehensive Survey of the Robot Operating System

(ROS) Ecosystem." by Mistry, M., Dunnigan, M.,

Bhattacharyya, S., & Grossman, T. (2017).

[3] Koubâa, A., Ros, R., Ferreira, A., & Tovar, E. (2013).

"Evaluation of the Robot Operating System for Wireless

Sensor Network Applications." Journal of Intelligent and

Robotic Systems, 69(1-4), 371-386.

[4] Daun, M., Schlegel, S., Albu-Schäffer, A., & Haddadin, S.

(2014). "Performance Evaluation of the Robot Operating

System in Real-World Scenarios." In IEEE International

Conference on Robotics and Automation.

[5] "Performance Evaluation of ROS Communication

Mechanisms for Robotic Systems." by Lentin, J., Mulder,

M., Stramigioli, S., & Kober, J. (2016).

[6] Zhang, Z., Hartley, R., & Mahony, R. (2015). "On the

Accuracy of the Robot Operating System (ROS) in

Robotics Research." In Australasian Conference on

Robotics and Automation.

[7] Shah, S., Yoder, C., & Gong, C. (2017). "Assessment and

Evaluation of the Robot Operating System (ROS)

Middleware." Journal of Software Engineering and

Applications, 10(6), 492-509.

[8] Moosavian, A., & Calinon, S. (2019). "Robot Operating

System (ROS): A Literature Review." Robotics and

Autonomous Systems, 110, 1-34.

