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Abstract: In real-time data stream processing, load shedding is used to manage data overload. Fuzzy-based event grouping and load 

shedding optimize Apache Kafka's performance in this study. This study presents a hybrid load-shedding strategy with high recall rates 

that retains the throughput and cost models needed to calculate the value of matched events to shed. It also shows that deleting a constant 

fraction of input events can reduce latency without losing recall. The study also shows that state-based methods had the highest recall rates 

and input-based procedures the highest throughput. As time slices become more significant, the hybrid technique, which employs four or 

more slices, is best for high recall rates and acceptable throughput. These findings can enhance machine learning algorithms and load-

shedding tactics for many applications. This study is dynamic and will test the method's flexibility by employing automated algorithms to 

determine the system's ideal sampling rate. Workload, data flow, and resources comprise this environment 
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1. Introduction 

Apache Kafka handles most real-time processing methods; it is 

common practice to use them in conjunction with a messaging 

system that allows for the entry and product of various stream 

continuity. To alleviate the starving issue, a load shedding (LS) 

strategy is required, restricting the amount of arriving information 

and keeping the system's performance stable, even when the 

system is very busy. LS is a technique created to mitigate the 

negative impacts generated by the high velocity and volume of the 

processing of big data streams. LS is a method used by stream 

processing systems to manage unanticipated spikes in the input 

load [1]. Apache Kafka is a framework for the real-time delivery 

of data streams operating as a distributed message queuing system. 

Because it uses a distributed processing technique, Kafka has the 

benefit of providing extremely massive data streams in a very short 

amount of time [2]. However, when the data explosion takes place, 

the message latency significantly rises, and the system may be 

disrupted. Compared to other systems of messaging working in log 

processing in real-time, Kafka has a greater output per second 

cycle [3]. Additionally, unlike other messaging systems, each 

consisting of a single cluster, Kafka is designed specifically for use 

in distributed settings, making it simple to extend into several 

clusters [4]. As an add-on, currently available systems keep data in 

memory, which results in a decrease in the system's speed [5]. 

1.1. Apache Kafka 

In the traditional integration system, when there are multiple 

sources and target systems, creating integrations between them can 

lead to various difficulties, such as selecting protocols and 

handling different data formats like CSV, binary, hash, etc. 

However, Kafka's primary purpose is to perform analytics for 

streaming real-time data. It has more applications, including 

website traffic tracking, error recovery, and message narrating and 

replaying. Kafka is also known for being user-friendly and 

providing fast throughput and consistent replication [6]. 

Kafka employs a pull-based paradigm for clients to receive data 

whenever they need it, which leads to high throughput when the 

platform is used for big data streaming. Kafka's architecture 

includes various key components like producers, zookeepers, 

consumers, partitions, brokers, and logs [7]. Record streams are 

categorized into topics, and the topics are stored on drives as logs. 

The entries that form a topic log are arranged chronologically and 

stored in partitions that are numbered by offset [1]. These partitions 

are dispersed among many brokers to ensure high throughput. 

Consumers subscribe to topics of interest and obtain data using 

offsets. With the cooperation of consumer organizations, the strain 

on Kafka can be spread more evenly. Multiple consumers within a 

consumer group can obtain data in parallel from various partitions 

of a subject. To carry out this procedure, both the API Kafka 

consumer and Kafka producer are used. A zookeeper oversees 

coordinating the activities of all the brokers in a cluster [8]. 

1.2. Window-Aware Load Shedding 

Window-Aware Load Shedding is a valuable technique for 

managing the processing of data streams, especially in scenarios 

where there is a high volume of data and limited processing 

resources. It helps to ensure that data processing remains efficient 

and effective without compromising the accuracy or quality of the 

results. The main objective of this technique is to prevent 

overloading and reduce the processing load on the system [9]. 

 

1.2.1. The Window Drop Operator  

The Window Drop operator, also known as WinDrop, is a 

technique used in load shedding for aggregating queries that use 

windows of time while processing data streams. It takes six 

parameters, including S, T, N, ω, δ, p, and B, along with the stream 
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S as its input. The variables T, N, δ, and ω are obtained from the 

attributes of downstream aggregate operators, and the load shedder 

determines "p" based on the amount of weight to be discarded. "B" 

is calculated depending on the application's needs [10]. 

WinDrop probabilistically keeps or drops B successive windows 

using a Bernoulli drop probability "p." It splits the input stream "S" 

into time windows of size, starting a new window every time unit. 

Each tuple contains a system-assigned window specification 

property with a default value of "-1" to enable a downstream 

aggregation to open a window. This window's specified value may 

initiate in that tuple, and by this "T" input, consecutive tuples 

would be kept in the stream to maintain the opened window's 

integrity. "t" is set as its specification property by 0 to prevent a 

downstream aggregation from opening a window [11]. 

According to Tatbul et al. (2004) [1], WinDrop encodes window 

keep/drop choices into stream tuples for downstream aggregation 

operators. Table 2 provides the semantics for the window-specified 

variables with an A. O. Agg (F, ω, δ) 2 and assumes that it can be 

used to put a window drop before Aggregate. By using the initial 

two variables of WinDrop as a crow file from Aggregate, WinDrop 

can classify the input stream into windows in a similar pattern as 

Aggregate. 

Table 1 provides a summary of the semantics for the window-

specified variables using the notation A.O. Agg(F,ω,δ)2, and it 

suggests that it can be used to place a window drop before the 

Aggregate operation. To eliminate the "p" portion based on the 

output of the Aggregate operation, WinDrop (ω,δ,p, B) is inserted 

at the input of the Aggregate operation. Note that the first two 

variables of WinDrop serve as a crow file from Aggregate, 

allowing WinDrop to partition the input stream into windows in a 

similar manner to Aggregate [1]. 

Table 1. Semantics for the window specification attribute 

Window 

instructions 

Details 

-1 Uncommitted 

0 Discontinued by window 

Τ Continued by a window; must take care of 

tuples with τ > T 

2. Literature of Review 

In recent years, the issue of load shedding in distributed stream 

processing systems has become a topic of great interest to 

researchers. In this literature review, we discuss several proposed 

solutions to address this problem. 

Bang et al. [12] proposed a load-shedding technique to prevent 

famine in Apache Kafka. The authors gathered metrics from the 

JMX interface and designed an engine to solve the issue of 

starvation. They also presented a method to prevent all message 

producers from sending data when necessary. Results from 

experiments showed that the load-shedding engine can effectively 

address the problem of starvation by reducing the number of 

messages in the broker data queue. 

Basaran et al. [13] suggested a simple load-shedding approach to 

resolve the per-stream backlog issue. This technique considers the 

per-stream backlog and query selectivity to enable smooth and 

fine-grained load shedding. The authors also conducted 

experiments using high-rate internet traces and demonstrated that 

their approach can accurately support the length of the queue for 

each stream. 

Wang et al. [14] presented a prediction model that combines the 

Fuzzy C-Means (FCM) clustering algorithm and the Fuzzy 

Network (FN) technique. The suggested model's Mamdani rule-

based structure is determined using a hybrid of the FCM algorithm 

(which uses data) and the expert-system approach (which uses 

expert knowledge) brought together using the FN technique. The 

parameters of the fuzzy set are optimized using a particle swarm 

optimization (PSO) technique. The suggested model was validated 

on 6 independent datasets, and the findings were compared to those 

obtained using the FCM technique. Based on these findings, the 

model is the most accurate, transparent, and interpretable option. 

Liu et al. [15] demonstrated cutting-edge methods of data 

categorization. The goal of this clustering is to generate a structure 

in the data that is in line with how people naturally think about 

classifying things. In comparison to traditional clustering 

techniques, the proposed method elucidates the underlying 

structure and reasoning behind cluster formation in greater detail. 

The results of Axiomatic Fuzzy Set (AFS) theories can be better 

understood when this is considered in the representation. 

Xie et al. [16] observed that beginning from a large-scale priority 

approach, fuzzy iteration with granular balls is used to improve 

iteration efficiency, with data membership degrees only 

considering the two granular balls in which they are placed. More 

processing techniques are available for the produced fuzzy 

granular-balls set, increasing the applicability of fuzzy clustering 

computations in a wide variety of data circumstances. 

Mi et al. [17] developed the fuzzy-based concept learning model 

(FCLM) to address these two problems by making use of the 

hierarchical structure of concepts represented in concept lattices. 

The concept similarity measure in concept lattices is derived using 

object-oriented and attribute-oriented fuzzy concept similarities, 

and this paper first demonstrates some new related concepts for 

FCLM in a standard fuzzy formal decision setting. Additionally, a 

unique fuzzy idea learning framework is constructed, along with 

learning algorithms to go along with it. Lastly, undertake tests on 

a variety of real-world datasets to prove that the proposed method 

can outperform other similarity-based learning techniques in terms 

of classification accuracy. Further, one can test the approach on the 

MNIST dataset to ensure its efficacy in idea identification. 

Hayat et al. [18] present modern methods and key characteristics 

of cloud computing based on fuzzy logic. An introduction to cloud 

computing and a classification of existing studies come first. 

Secondly, they summarize relevant research papers and provide 

some of the most important methods described in the current 

literature. The discussion concludes with some suggestions for 

where the field may go from here. 

Maratha et al. [19] estimate that prolongs the first node death as 

much as feasible and delays the frequent re-clustering procedure to 

save energy consumption by solving a linear optimization problem 

to maximize the lifespan of devices such as CHs. The study also 

employs the CH uniform distribution to guarantee consistent 

power usage across all IoT gadgets. For IoT, the proposed 

clustering method ECFEL (Efficient Clustering using Fuzzy logic 

based on Estimated Lifetime) outperforms the existing protocols 

Low Energy Adaptive Clustering Hierarchy (LEACH), Novel-

PSO-LEACH, FM-SCHEL, Modified LEACH (MOD-LEACH), 

Dynamic k-LEACH (DkLEACH), and M-IWOCA. The 

simulation's findings reveal that ECFEL has a longer first-node 

death (FND), half-node death (HND), and last-node death (LND) 

than other similar devices. The trials also show that ECFEL uses 

less power while keeping a constant packet delivery ratio over a 

longer period. 

Mozafari et al. [20] proposed a unified engine that integrates 

analytics, transaction processing, and stream processing in a single 

cluster. The authors combined Apache Spark with Apache 

GemFire to construct this approach, which they named Snappy 

Data. 

Rivetti et al. [21] presented a load-aware shedding technique 

(LAS) for distributed stream processing systems. LAS works with 

operator load that is affected by both input rate and tuple data. The 

authors designed a load-shedding mechanism based on the 

operator load to keep average queuing latencies near a specific 

threshold. The authors demonstrated through experiments that 

LAS is a close approximation to the optimal method and can 

deliver performance that closely approaches a specified objective 

while dropping some individual tuples if the specific load caused 

by each tuple is considered. 

The issue of load shedding in distributed stream processing 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528  |523 

systems has prompted several suggested solutions from the 

scientific community. Some of these methods are straightforward, 

considering the per-stream backlog and query selectivity, while 

others are more complicated, like combining different shedding 

algorithms into a single model. The proposed techniques have 

shown promising results in experiments and can significantly 

improve the performance of distributed stream processing systems. 

3. Background Study 

The field of complex event processing (CEP) involves computer 

systems that evaluate queries by applying them to streams of 

events. These systems often have high input rates and query 

selectivity, and load shedding is commonly used in traditional data 

stream processing during short periods of high demand. However, 

this approach may not always be suitable for CEP queries, as 

certain stream elements may hold significant value for the query 

answer. To address this issue, a hybrid model of input-based 

shedding and state-based shedding has been proposed, which can 

deliver high-quality results while working with minimal resources. 

Experimental results indicate that using hybrid shedding instead of 

baseline approaches can improve recall by up to 14 times for 

synthetic data and up to 11 times for real-world data [22]. 

4. Problem statement 

The problem addressed in this research is the efficient processing 

and analysis of real-time data streams using complex event 

processing (CEP) techniques. Specifically, the research focuses on 

the topic of semantic load shedding, which involves determining 

when and how much load to shed to manage the flow of data from 

source to receiver. The challenge of prioritizing events for load 

shedding is complex and requires special attention to be effectively 

solved. To address this problem, a new method called fuzzy-based 

clustering of events has been developed. This method is designed 

to prioritize the scheduling of events based on clustering using the 

KNN technique. The proposed solution involves several phases, 

including data buffering, data processing, data clustering via KNN, 

evaluating window drop size and slide, fuzzy-based priority 

scheduling of events, and feature selection/optimization using 

PSO. 

5. Research Objectives 

• To design and develop an optimized framework of 

semantic load shedding using fuzzy-based priority 

scheduling and evaluate the impact of buffer size and 

KNN clustering on system performance. 

• To implement the proposed enhancements to producer 

and consumer APIs in Apache Kafka and assess the 

impact on throughput, latency, recall, and ratio of shed 

events. 

• To compare the performance of the proposed framework 

with related work and evaluate its effectiveness in 

improving system performance. 

• To investigate the effectiveness of the Particle Swarm 

Optimization algorithm in feature selection and feature 

set optimization for real-time data streaming in the 

proposed framework and determine the optimal feature 

set for maximizing system performance. 

6. Technique used 

In this section, the technique which has been referred to is 

described as follows: 

6.1. Fuzzy Clustering 

According to research [11], it has been discovered that the Fuzzy 

C Means method is superior to other algorithms like Ward's 

clustering and the K-means algorithm when it comes to machine 

learning and image processing. The Fuzzy C Means method has 

certain potential flaws due to its heavy dependence on prototypes 

and the optimization process itself. This algorithm makes use of a 

minimization function to optimize its performance: 

   𝑗𝑚 =  ∑ ∑ 𝑢𝑖𝑗
𝑚 ||𝑥𝑖 − 𝑐𝑗||

2
, 1 ≤ 𝑚 ≤ ∞  𝑐

𝑗=1
𝑛
𝑖=1       (1) 

Jm is evaluated difference using other parameters, where xi 

represents the ith point in the database, cj represents the jth center 

allocated for the cluster, and || ∗ ||  means the distance between the 

dataset or point to the center. The idea of randomness in fuzzy logic 

is where the fuzziness index known as "{m|m {m|m R>1}}" comes 

from. This index indicates the degree of ambiguity associated with 

an event. The iterative procedures below are required to get a result 

for the goal function located above [23]. 

𝑢𝑖𝑗 =
1

∑ 〖(
||𝑥𝑖−𝑐𝑗||

2
𝑚−1

||𝑥𝑖−𝑐𝑘||
〗)𝑐

𝑘=1

         (2) 

𝐶𝑗 =   
∑ 𝑢𝑖𝑗

𝑚.𝑥𝑗
𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

                         (3) 

In Equations 2 and 3, the degree of membership is "uij" of 

individual xi belonging to cluster j; Cj is the center. Both are taken 

as though. case by case [12]. 

The computation follows these steps: 

The process of Fuzzy c-means involves the following steps:  

• Initialization of cluster center: In this step, the 

distance of each data point from the centers is 

calculated using Euclidean distances. 

• Membership degree evaluation: Each data point is 

evaluated for its membership degree, with the total 

membership degree being equal to 1. 

• New cluster centers calculation: The new cluster 

centers are calculated using the estimated membership 

degree in equation (4). 

• Repeat the above steps until convergence: The above 

steps are repeated until the gap between the previous 

and current generations of "jm," "cj," or "uij" is less 

than a predetermined threshold value (ε). The value of 

ε can be an intuitively tiny amount or a previously 

established value, depending on the situation.  

One limitation of Fuzzy c-means is its reliance on prototypes and 

the optimization process itself, even though it has been shown to 

outperform other algorithms in machine learning and image 

processing, such as Ward's clustering and the k-mean algorithm 

[13]. 

6.2. K Nearest Neighbor 

The author proposed a fast K-nearest neighbor (KNN) method 

called FKNN, with the aim of addressing the drawbacks of large 

calculations. However, it was found that FKNN failed to improve 

accuracy. In this study, clustering was utilized to reduce the 

amount of computing required, and the centers of clusters were 

selected as the representative locations. To overcome the fault of 

no difference between distinctive terms and reduce the high 

calculation complexity [24], the authors used KNN, which is a 

supervised learning predictable classification non-parameter 

technique in pattern recognition. KNN is used to classify training 

samples without the need for further data. 

6.3. Proposed Methodology 

The complete strategy of the proposed architecture, as shown in 

Figure 1, is elevated in this section. The initial step of the 

architecture is the streaming of data, which is explained as follows:  
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Fig 1. Proposed Architecture 

6.4. Proposed Algorithm 

Algorithm: Prioritize Event Scheduling via KNN Clustering. 

Start 

 

Phase I – Collection of Data Stream from Steps 1 – 3. 

Step 1: Set buffer_size to an integer value 

Step 2: data_buffer ← [] 

Step 3: Start a loop to collect data from the data stream 

new_data ← Read and Extract major data from the data 

stream 

data_buffer ← new_data 

 

if length (data_buffer) = buffer_size do 

 
Process "data_buffer" as a batch 

Clear "data_buffer" 

Phase II – Data-Events on Data-Domain & process from Steps 4 

– 11 

Step 4: Input ← Data Event and associated Data Domain and 

process 

Step 5: Identify the Data Domain and process associated with 

the Data Event. 

Step 6: Extract the relevant Data from the event. 

Step 7: Update the relevant Data in the system based on the 

process. 

Step 8: Trigger any relevant actions or decisions based on the 

Updated Data. 

Step 9: Store the Updated Data and any relevant information 

about the event in a Log or DataBase. 

Step 10: Return the Updated Data. 

Step 11: Output ← Updated Data and Relevant Actions or 

Decisions 

Phase III – Data Cluster via KNN & Data Events from Steps 12 

– 17. 

Step 12:  
o Read the data into a matrix, X 

o Choose a value for k, the number of 

nearest neighbors to consider 

Step 13:  
o Normalize the data if necessary. 

o Compute the distance between each pair 

of data points. 

Step 14:  
o For each data point, find its k nearest 

neighbors using the computed distances. 

o Assign each data point to a cluster based 

on the majority class of its k nearest 

neighbors. 

Step 15:  
o Repeat Steps 13 – 14 until convergence, 

i.e., no data points change cluster 

assignment. 

Step 16:  
o Return the final cluster assignments for 

each data point. 

Step 17:  
o Visualize the clusters to check the quality 

of the clustering results. 

 

Phase IV – Evaluate the Window Drop Size and Slide. 

Step 18: Define Evaluate_Window_Drop_Size_and_Slide with 

Data & Desired_Performance_Metric. 

 

best_window_drop_size ← 0 

best_slide ← 0 ; best_performance ←  -inf 

 

For j in possible_window_drop_sizes, do 

 For i in possible_slides, do 

  

result ← run_sliding_window_algorithm(data, j, i) 

performance ← evaluate_performance(result, 

desired_performance_metric) 

 

if performance > best_performance do 

   

best_window_drop_size ← j 

best_slide ← slide 

best_performance ← performance 

Phase V – Fuzzy-based Priority Scheduling of Event-based from 

Steps 19 – 17.   

Step 19: Input events and their fuzzy priorities 

Step 20: Define a fuzzy inference system to calculate the crisp 

priority of each   event. 

Step 21: Sort the Events Based on their Crisp Priorities 

Step 22: Schedule the Events in the order of their Crisp 

Priorities 

Step 23: Repeat the process for new incoming events and update 

the schedule accordingly 

Step 24: Cluster event scheduling priority Determines event 

Prioritisation after Window Drop Size and Slide 

analysis. 

Step 25: Then is shared with the Transfer Node by checking the 

if-else condition for completion. 

Step 26: The Highest Priority event from End-User input will 

be Shared if any events remain. 

Step 27: Repeat until all event clusters reach the transfer node. 

 

Phase VI – Feature Selection / Feature Set Optimisation using 

PSO from Steps 20 – 21. 

Step 28: LS manages data flow and preserves system 

performance when overloaded, solving the starvation 

problem. 

Step 29: Kafka distributes massive volumes of real-time log data. 

Step 30: Apache Software Foundation created it. 

Step 31: A fuzzy-based event grouping system has been made for 

semantic load shedding in real-time data streaming. 

End 
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7. Result and Discussion 

7.1. Constant used to calculate results. 

There are some constants or parameters used to calculate results at 

the time of implementation, which are shown in Table 2 as given 

below: 

Table 2. Apache Kafka Streams 

Parameter Value Default 

Instances 

Count 

6 / 

No. of 

threads  

5 / 

Java heap 

/Memory 

20GB/ 

22GB 

/ 

Producer 

Compression 

lz4 (L: 

none) 

none 

Producer 

Batch Size 

300 KB 

(L: 16KB) 

20 KB 

Results  

According to Figure 2 (a), the hybrid load-shedding approach 

achieves the highest recall. This strategy achieves a 100 percent 

recall rate for latency constraints ranging from 900μs to 500μs, 

which is consistent with previous research. In contrast, the baseline 

solutions lose their effectiveness quickly as the latency boundaries 

become more restrictive. Accordingly, it seems that the suggested 

method can accurately evaluate input event significance and deal 

with incomplete matches. 

 

Fig 2 (a). Recall of latency bound. 

The results indicate that state-based techniques, as shown in Figure 

2(a) (fine granular shedding), provide better recall, whereas input-

based methods, as illustrated in Figure 2(b), generate higher 

throughput (instant resource savings). It is worth noting that, given 

the memory results shown earlier, the proposed approach is almost 

as effective as the input-based solutions. The impact of shedding 

on the accuracy and speed of Fuzzy EC under a strict latency 

constraint is also assessed. 

 

Fig 2 (b). Throughput of latency bound. 

The efficiency of the suggested method is shown by the ratio of 

shed events to partial matches, as shown in Figure 2 (c) and Figure 

2(d). The described approach discards a fixed fraction of input 

events up to 500μs. The increase in shed partial match, which does 

not affect recall, is used to achieve the required decrease in latency, 

as seen in Figure 2(a). A more consistent proportion of rejected 

partial matches occurs when more input events must be discarded 

to fulfill the latency limitation. Reduced stress during the shedding 

process is achieved using input-shedding to avoid the development 

of incomplete matches. 

 

Fig 2 (c). The ratio of Shed event of latency bound. 

 

Fig 2 (d). The ratio of Shed PMs of latency bound. 

It is essential to measure the efficiency of input events or 

incomplete matches that do not influence recollection. Figure 3 (a) 

and Figure 2 (b) show the success of selecting and evaluating their 

quality. Input-based shedding using the cost model Hyl maintains 

a higher recall compared to random input (RI) and selectivity-

based input (SI) shedding at the cost of a slightly lower throughput. 

This indicates that the cost model can provide a reliable estimate 

of the value of matches and events to shed. 

 

Fig 3 (a). Recall (Input-based) 
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Fig 3 (b). Throughput (input-based) 

Figure 3 (c) depicts the recall rates of state-based techniques, and 

it is evident that the proposed HyS method outperforms both 

random strategies (RS) and selectivity-based strategies (SS) in 

terms of recall. Despite discarding 50 percent of the partial 

matches, the proposed method maintains a perfect 100 percent 

recall rate, whereas the baseline solutions achieve only a 30 percent 

recall rate. 

 

Fig 3(c). Recall (State-based) 

Figure 3 (d) indicates that all methods have similar throughput at 

that moment. However, the baselines can achieve better throughput 

only when they have high shedding ratios, which result in 

extremely low recall. Therefore, in practical terms, this approach 

has limited utility. 

 

Fig 3 (d). Throughput (state-based) 

Figure 4(a) demonstrates the impact of query selectivity variation, 

indicating that the suggested method achieves the best results even 

when the 99th percentile latency has a 50% constraint, and the 

recall is not affected. This finding aligns with the initial 

expectations. 

 
Fig 4 (a). Recall of variance of Query selectivity. 

In Figure 4 (b), the impact on throughput is evident. The hybrid 

approach can effectively evaluate the significance of input events 

and discard those that are deemed unimportant when selectivity 

exhibits low variances. However, when dealing with high variance, 

the method employs a very fine level of partial matches to achieve 

comparable throughput to the baseline technique. 

 

Fig 4 (b). Throughput of variance of query selectivity 

The number of partial matches growing at a fixed input rate as a 

function of time window size is shown in Figure 5. The number of 

partial matches generated is based on the period of the query. The 

99th percentile delay is limited to 50% of the total. As shown in 

Figure 5 (a), the proposed technique consistently achieves the 

highest recall, and recall improves for all methods as the window 

size increases. This improvement in recall could be attributed to an 

enhanced cost estimate. 

 

Fig 5 (a). Recall of window size. 
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As the window size increases, both partial and full matches are 

considered to provide an estimation. Figure 5(b) shows that input-

based baseline approaches achieve the maximum throughput. The 

hybrid approach is just as effective as state-based approaches. 

Differences become less noticeable as the window size grows due 

to the exponential rise in the number of partial matches and their 

increased lifetime. 

 

Fig 5 (b). Throughput of window size. 

Figure 6 illustrates the effects of Query Pattern Length. The figure 

shows that as the pattern length increases, the recall remains 

unchanged, but the throughput decreases significantly. 

Interestingly, the proposed method shows a smaller reduction in 

throughput compared to the other methods. As a result, the 

proposed method can perform better with more complex queries. 

 

Fig 6. Recall of pattern length. 

Figure 7 demonstrates the impact of improved temporal resolution. 

As seen in the figure, an increase in the number of time slices 

results in a decrease in throughput and an increase in overhead. 

However, the hybrid approach provides better recall than RI and 

SI (one slice) while maintaining similar throughput. Similar results 

are obtained with state-level baseline strategies. The best recall is 

obtained with four or more slices.  

 

Fig 7. Throughput of temporal granularity. 

Discussion 

There are several ways in which the suggested model is preferable 

than existing ones. Figure 6 shows that the throughput of a system 

reduces dramatically as the length of a query pattern grows, but the 

recall stays about the same. However, our model stands out by 

exhibiting a lesser reduction in throughput than previous 

approaches. Because of this special quality, our model can answer 

even the most difficult problems with remarkable speed and 

accuracy. Figure 7 shows that when the number of time slices is 

increased, the throughput decreases and the overhead rises, 

indicating the influence of enhanced temporal resolution. In 

contrast, while retaining the same throughput as the baseline, our 

hybrid technique improves by providing greater recall than 

approaches employing only one time slice. This pattern is true even 

at the state level, where baseline techniques with four or more 

slices have the highest recall. while it comes to data-intensive 

applications, the suggested approach stands out because of the 

excellent balance it achieves between preserving throughput under 

complicated query patterns and offering great recall while 

managing higher temporal resolution. 

8. Conclusion and future work 

In conventional data stream processing, this task is accomplished 

using a technique referred to as load shedding. In conclusion, the 

proposed method is a promising approach for improving the 

efficiency of Apache Kafka. The hybrid load-shedding technique 

has demonstrated high recall rates while maintaining comparable 

throughput and cost models for estimating the value of matches 

and events to shed. Additionally, shedding a constant proportion 

of input events can be an effective strategy for achieving the 

desired decrease in latency without sacrificing recall rates. 

Furthermore, state-based tactics have shown superior recall rates, 

while input-based procedures generate higher throughput. In terms 

of the number of time slices used, the hybrid method with four or 

more time slices achieves the highest recall rates while maintaining 

reasonable throughput. These findings can guide the development 

of more efficient and effective machine-learning algorithms and 

load-shedding techniques for various applications. Future works 

will focus on making the method dynamic by incorporating an 

automated procedure to compute the best sample rate based on the 

system's environment, including workload, data flow, and 

available resources. Overall, it contributes to advancing the state 

of the art in machine learning algorithms and load-shedding 

techniques.  

DISCLAIMER: This paper is for research purposes only. The 

views expressed in this paper are personal views of the author (s) 

and not those of Optum/UHG. Optum/UHG or any of their 

affiliates shall not be responsible for the statements made or views 

presented by the author (s) in this paper.  
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