

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6 799www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |521

Fuzzy-Based Event Clustering for Semantic Load Shedding of Real-

Time Data Streaming

Shubham Vyas1*, Dr. Rajesh Kumar Tyagi2, Dr. Shashank Sahu3, Dr. Rajesh Kumar Tyagi4

Submitted: 01/10/2023 Accepted : 22/11/2023 Accepted: 02/12/2023

Abstract: In real-time data stream processing, load shedding is used to manage data overload. Fuzzy-based event grouping and load

shedding optimize Apache Kafka's performance in this study. This study presents a hybrid load-shedding strategy with high recall rates

that retains the throughput and cost models needed to calculate the value of matched events to shed. It also shows that deleting a constant

fraction of input events can reduce latency without losing recall. The study also shows that state-based methods had the highest recall rates

and input-based procedures the highest throughput. As time slices become more significant, the hybrid technique, which employs four or

more slices, is best for high recall rates and acceptable throughput. These findings can enhance machine learning algorithms and load-

shedding tactics for many applications. This study is dynamic and will test the method's flexibility by employing automated algorithms to

determine the system's ideal sampling rate. Workload, data flow, and resources comprise this environment

Keywords: Semantic Load Shedding, Fuzzy Clustering, K Nearest Neighbor (KNN), Apache Kafka, Real-Time Data Streaming.

1. Introduction

Apache Kafka handles most real-time processing methods; it is

common practice to use them in conjunction with a messaging

system that allows for the entry and product of various stream

continuity. To alleviate the starving issue, a load shedding (LS)

strategy is required, restricting the amount of arriving information

and keeping the system's performance stable, even when the

system is very busy. LS is a technique created to mitigate the

negative impacts generated by the high velocity and volume of the

processing of big data streams. LS is a method used by stream

processing systems to manage unanticipated spikes in the input

load [1]. Apache Kafka is a framework for the real-time delivery

of data streams operating as a distributed message queuing system.

Because it uses a distributed processing technique, Kafka has the

benefit of providing extremely massive data streams in a very short

amount of time [2]. However, when the data explosion takes place,

the message latency significantly rises, and the system may be

disrupted. Compared to other systems of messaging working in log

processing in real-time, Kafka has a greater output per second

cycle [3]. Additionally, unlike other messaging systems, each

consisting of a single cluster, Kafka is designed specifically for use

in distributed settings, making it simple to extend into several

clusters [4]. As an add-on, currently available systems keep data in

memory, which results in a decrease in the system's speed [5].

1.1. Apache Kafka

In the traditional integration system, when there are multiple

sources and target systems, creating integrations between them can

lead to various difficulties, such as selecting protocols and

handling different data formats like CSV, binary, hash, etc.

However, Kafka's primary purpose is to perform analytics for

streaming real-time data. It has more applications, including

website traffic tracking, error recovery, and message narrating and

replaying. Kafka is also known for being user-friendly and

providing fast throughput and consistent replication [6].

Kafka employs a pull-based paradigm for clients to receive data

whenever they need it, which leads to high throughput when the

platform is used for big data streaming. Kafka's architecture

includes various key components like producers, zookeepers,

consumers, partitions, brokers, and logs [7]. Record streams are

categorized into topics, and the topics are stored on drives as logs.

The entries that form a topic log are arranged chronologically and

stored in partitions that are numbered by offset [1]. These partitions

are dispersed among many brokers to ensure high throughput.

Consumers subscribe to topics of interest and obtain data using

offsets. With the cooperation of consumer organizations, the strain

on Kafka can be spread more evenly. Multiple consumers within a

consumer group can obtain data in parallel from various partitions

of a subject. To carry out this procedure, both the API Kafka

consumer and Kafka producer are used. A zookeeper oversees

coordinating the activities of all the brokers in a cluster [8].

1.2. Window-Aware Load Shedding

Window-Aware Load Shedding is a valuable technique for

managing the processing of data streams, especially in scenarios

where there is a high volume of data and limited processing

resources. It helps to ensure that data processing remains efficient

and effective without compromising the accuracy or quality of the

results. The main objective of this technique is to prevent

overloading and reduce the processing load on the system [9].

1.2.1. The Window Drop Operator

The Window Drop operator, also known as WinDrop, is a

technique used in load shedding for aggregating queries that use

windows of time while processing data streams. It takes six

parameters, including S, T, N, ω, δ, p, and B, along with the stream

1 Ph.D. Research Scholar, Amity Institute of Information Technology,

Gurugram, Haryana, India, (r.shubhamvyas@gmail.com)
bPh.D., Professor - Department of Computer Science and Engineering,

Amity School of Engineering and Technology, Gurgaon, Haryana, India,

 (rktyagi@ggn.amity.edu)
3Ph.D., Professor - Department of Computer Science & Engineering, Ajay

Kumar Garg Engineering College, Ghaziabad, India, s

(sahushashank75@gmail.com)
4Ph.D., Professor - Department of Computer Science and Engineering,

Amity School of Engineering and Technology, Gurgaon, Haryana, India,

(rktyagi@ggn.amity.edu)

* Corresponding Author Email: r.shubhamvyas@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |522

S as its input. The variables T, N, δ, and ω are obtained from the

attributes of downstream aggregate operators, and the load shedder

determines "p" based on the amount of weight to be discarded. "B"

is calculated depending on the application's needs [10].

WinDrop probabilistically keeps or drops B successive windows

using a Bernoulli drop probability "p." It splits the input stream "S"

into time windows of size, starting a new window every time unit.

Each tuple contains a system-assigned window specification

property with a default value of "-1" to enable a downstream

aggregation to open a window. This window's specified value may

initiate in that tuple, and by this "T" input, consecutive tuples

would be kept in the stream to maintain the opened window's

integrity. "t" is set as its specification property by 0 to prevent a

downstream aggregation from opening a window [11].

According to Tatbul et al. (2004) [1], WinDrop encodes window

keep/drop choices into stream tuples for downstream aggregation

operators. Table 2 provides the semantics for the window-specified

variables with an A. O. Agg (F, ω, δ) 2 and assumes that it can be

used to put a window drop before Aggregate. By using the initial

two variables of WinDrop as a crow file from Aggregate, WinDrop

can classify the input stream into windows in a similar pattern as

Aggregate.

Table 1 provides a summary of the semantics for the window-

specified variables using the notation A.O. Agg(F,ω,δ)2, and it

suggests that it can be used to place a window drop before the

Aggregate operation. To eliminate the "p" portion based on the

output of the Aggregate operation, WinDrop (ω,δ,p, B) is inserted

at the input of the Aggregate operation. Note that the first two

variables of WinDrop serve as a crow file from Aggregate,

allowing WinDrop to partition the input stream into windows in a

similar manner to Aggregate [1].

Table 1. Semantics for the window specification attribute

Window

instructions

Details

-1 Uncommitted

0 Discontinued by window

Τ Continued by a window; must take care of

tuples with τ > T

2. Literature of Review

In recent years, the issue of load shedding in distributed stream

processing systems has become a topic of great interest to

researchers. In this literature review, we discuss several proposed

solutions to address this problem.

Bang et al. [12] proposed a load-shedding technique to prevent

famine in Apache Kafka. The authors gathered metrics from the

JMX interface and designed an engine to solve the issue of

starvation. They also presented a method to prevent all message

producers from sending data when necessary. Results from

experiments showed that the load-shedding engine can effectively

address the problem of starvation by reducing the number of

messages in the broker data queue.

Basaran et al. [13] suggested a simple load-shedding approach to

resolve the per-stream backlog issue. This technique considers the

per-stream backlog and query selectivity to enable smooth and

fine-grained load shedding. The authors also conducted

experiments using high-rate internet traces and demonstrated that

their approach can accurately support the length of the queue for

each stream.

Wang et al. [14] presented a prediction model that combines the

Fuzzy C-Means (FCM) clustering algorithm and the Fuzzy

Network (FN) technique. The suggested model's Mamdani rule-

based structure is determined using a hybrid of the FCM algorithm

(which uses data) and the expert-system approach (which uses

expert knowledge) brought together using the FN technique. The

parameters of the fuzzy set are optimized using a particle swarm

optimization (PSO) technique. The suggested model was validated

on 6 independent datasets, and the findings were compared to those

obtained using the FCM technique. Based on these findings, the

model is the most accurate, transparent, and interpretable option.

Liu et al. [15] demonstrated cutting-edge methods of data

categorization. The goal of this clustering is to generate a structure

in the data that is in line with how people naturally think about

classifying things. In comparison to traditional clustering

techniques, the proposed method elucidates the underlying

structure and reasoning behind cluster formation in greater detail.

The results of Axiomatic Fuzzy Set (AFS) theories can be better

understood when this is considered in the representation.

Xie et al. [16] observed that beginning from a large-scale priority

approach, fuzzy iteration with granular balls is used to improve

iteration efficiency, with data membership degrees only

considering the two granular balls in which they are placed. More

processing techniques are available for the produced fuzzy

granular-balls set, increasing the applicability of fuzzy clustering

computations in a wide variety of data circumstances.

Mi et al. [17] developed the fuzzy-based concept learning model

(FCLM) to address these two problems by making use of the

hierarchical structure of concepts represented in concept lattices.

The concept similarity measure in concept lattices is derived using

object-oriented and attribute-oriented fuzzy concept similarities,

and this paper first demonstrates some new related concepts for

FCLM in a standard fuzzy formal decision setting. Additionally, a

unique fuzzy idea learning framework is constructed, along with

learning algorithms to go along with it. Lastly, undertake tests on

a variety of real-world datasets to prove that the proposed method

can outperform other similarity-based learning techniques in terms

of classification accuracy. Further, one can test the approach on the

MNIST dataset to ensure its efficacy in idea identification.

Hayat et al. [18] present modern methods and key characteristics

of cloud computing based on fuzzy logic. An introduction to cloud

computing and a classification of existing studies come first.

Secondly, they summarize relevant research papers and provide

some of the most important methods described in the current

literature. The discussion concludes with some suggestions for

where the field may go from here.

Maratha et al. [19] estimate that prolongs the first node death as

much as feasible and delays the frequent re-clustering procedure to

save energy consumption by solving a linear optimization problem

to maximize the lifespan of devices such as CHs. The study also

employs the CH uniform distribution to guarantee consistent

power usage across all IoT gadgets. For IoT, the proposed

clustering method ECFEL (Efficient Clustering using Fuzzy logic

based on Estimated Lifetime) outperforms the existing protocols

Low Energy Adaptive Clustering Hierarchy (LEACH), Novel-

PSO-LEACH, FM-SCHEL, Modified LEACH (MOD-LEACH),

Dynamic k-LEACH (DkLEACH), and M-IWOCA. The

simulation's findings reveal that ECFEL has a longer first-node

death (FND), half-node death (HND), and last-node death (LND)

than other similar devices. The trials also show that ECFEL uses

less power while keeping a constant packet delivery ratio over a

longer period.

Mozafari et al. [20] proposed a unified engine that integrates

analytics, transaction processing, and stream processing in a single

cluster. The authors combined Apache Spark with Apache

GemFire to construct this approach, which they named Snappy

Data.

Rivetti et al. [21] presented a load-aware shedding technique

(LAS) for distributed stream processing systems. LAS works with

operator load that is affected by both input rate and tuple data. The

authors designed a load-shedding mechanism based on the

operator load to keep average queuing latencies near a specific

threshold. The authors demonstrated through experiments that

LAS is a close approximation to the optimal method and can

deliver performance that closely approaches a specified objective

while dropping some individual tuples if the specific load caused

by each tuple is considered.

The issue of load shedding in distributed stream processing

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |523

systems has prompted several suggested solutions from the

scientific community. Some of these methods are straightforward,

considering the per-stream backlog and query selectivity, while

others are more complicated, like combining different shedding

algorithms into a single model. The proposed techniques have

shown promising results in experiments and can significantly

improve the performance of distributed stream processing systems.

3. Background Study

The field of complex event processing (CEP) involves computer

systems that evaluate queries by applying them to streams of

events. These systems often have high input rates and query

selectivity, and load shedding is commonly used in traditional data

stream processing during short periods of high demand. However,

this approach may not always be suitable for CEP queries, as

certain stream elements may hold significant value for the query

answer. To address this issue, a hybrid model of input-based

shedding and state-based shedding has been proposed, which can

deliver high-quality results while working with minimal resources.

Experimental results indicate that using hybrid shedding instead of

baseline approaches can improve recall by up to 14 times for

synthetic data and up to 11 times for real-world data [22].

4. Problem statement

The problem addressed in this research is the efficient processing

and analysis of real-time data streams using complex event

processing (CEP) techniques. Specifically, the research focuses on

the topic of semantic load shedding, which involves determining

when and how much load to shed to manage the flow of data from

source to receiver. The challenge of prioritizing events for load

shedding is complex and requires special attention to be effectively

solved. To address this problem, a new method called fuzzy-based

clustering of events has been developed. This method is designed

to prioritize the scheduling of events based on clustering using the

KNN technique. The proposed solution involves several phases,

including data buffering, data processing, data clustering via KNN,

evaluating window drop size and slide, fuzzy-based priority

scheduling of events, and feature selection/optimization using

PSO.

5. Research Objectives

• To design and develop an optimized framework of

semantic load shedding using fuzzy-based priority

scheduling and evaluate the impact of buffer size and

KNN clustering on system performance.

• To implement the proposed enhancements to producer

and consumer APIs in Apache Kafka and assess the

impact on throughput, latency, recall, and ratio of shed

events.

• To compare the performance of the proposed framework

with related work and evaluate its effectiveness in

improving system performance.

• To investigate the effectiveness of the Particle Swarm

Optimization algorithm in feature selection and feature

set optimization for real-time data streaming in the

proposed framework and determine the optimal feature

set for maximizing system performance.

6. Technique used

In this section, the technique which has been referred to is

described as follows:

6.1. Fuzzy Clustering

According to research [11], it has been discovered that the Fuzzy

C Means method is superior to other algorithms like Ward's

clustering and the K-means algorithm when it comes to machine

learning and image processing. The Fuzzy C Means method has

certain potential flaws due to its heavy dependence on prototypes

and the optimization process itself. This algorithm makes use of a

minimization function to optimize its performance:

 𝑗𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚 ||𝑥𝑖 − 𝑐𝑗||

2
, 1 ≤ 𝑚 ≤ ∞ 𝑐

𝑗=1
𝑛
𝑖=1 (1)

Jm is evaluated difference using other parameters, where xi

represents the ith point in the database, cj represents the jth center

allocated for the cluster, and || ∗ || means the distance between the

dataset or point to the center. The idea of randomness in fuzzy logic

is where the fuzziness index known as "{m|m {m|m R>1}}" comes

from. This index indicates the degree of ambiguity associated with

an event. The iterative procedures below are required to get a result

for the goal function located above [23].

𝑢𝑖𝑗 =
1

∑ 〖(
||𝑥𝑖−𝑐𝑗||

2
𝑚−1

||𝑥𝑖−𝑐𝑘||
〗)𝑐

𝑘=1

 (2)

𝐶𝑗 =
∑ 𝑢𝑖𝑗

𝑚.𝑥𝑗
𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

 (3)

In Equations 2 and 3, the degree of membership is "uij" of

individual xi belonging to cluster j; Cj is the center. Both are taken

as though. case by case [12].

The computation follows these steps:

The process of Fuzzy c-means involves the following steps:

• Initialization of cluster center: In this step, the

distance of each data point from the centers is

calculated using Euclidean distances.

• Membership degree evaluation: Each data point is

evaluated for its membership degree, with the total

membership degree being equal to 1.

• New cluster centers calculation: The new cluster

centers are calculated using the estimated membership

degree in equation (4).

• Repeat the above steps until convergence: The above

steps are repeated until the gap between the previous

and current generations of "jm," "cj," or "uij" is less

than a predetermined threshold value (ε). The value of

ε can be an intuitively tiny amount or a previously

established value, depending on the situation.

One limitation of Fuzzy c-means is its reliance on prototypes and

the optimization process itself, even though it has been shown to

outperform other algorithms in machine learning and image

processing, such as Ward's clustering and the k-mean algorithm

[13].

6.2. K Nearest Neighbor

The author proposed a fast K-nearest neighbor (KNN) method

called FKNN, with the aim of addressing the drawbacks of large

calculations. However, it was found that FKNN failed to improve

accuracy. In this study, clustering was utilized to reduce the

amount of computing required, and the centers of clusters were

selected as the representative locations. To overcome the fault of

no difference between distinctive terms and reduce the high

calculation complexity [24], the authors used KNN, which is a

supervised learning predictable classification non-parameter

technique in pattern recognition. KNN is used to classify training

samples without the need for further data.

6.3. Proposed Methodology

The complete strategy of the proposed architecture, as shown in

Figure 1, is elevated in this section. The initial step of the

architecture is the streaming of data, which is explained as follows:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |524

Fig 1. Proposed Architecture

6.4. Proposed Algorithm

Algorithm: Prioritize Event Scheduling via KNN Clustering.

Start

Phase I – Collection of Data Stream from Steps 1 – 3.

Step 1: Set buffer_size to an integer value

Step 2: data_buffer ← []

Step 3: Start a loop to collect data from the data stream

new_data ← Read and Extract major data from the data

stream

data_buffer ← new_data

if length (data_buffer) = buffer_size do

Process "data_buffer" as a batch

Clear "data_buffer"

Phase II – Data-Events on Data-Domain & process from Steps 4

– 11

Step 4: Input ← Data Event and associated Data Domain and

process

Step 5: Identify the Data Domain and process associated with

the Data Event.

Step 6: Extract the relevant Data from the event.

Step 7: Update the relevant Data in the system based on the

process.

Step 8: Trigger any relevant actions or decisions based on the

Updated Data.

Step 9: Store the Updated Data and any relevant information

about the event in a Log or DataBase.

Step 10: Return the Updated Data.

Step 11: Output ← Updated Data and Relevant Actions or

Decisions

Phase III – Data Cluster via KNN & Data Events from Steps 12

– 17.

Step 12:
o Read the data into a matrix, X

o Choose a value for k, the number of

nearest neighbors to consider

Step 13:
o Normalize the data if necessary.

o Compute the distance between each pair

of data points.

Step 14:
o For each data point, find its k nearest

neighbors using the computed distances.

o Assign each data point to a cluster based

on the majority class of its k nearest

neighbors.

Step 15:
o Repeat Steps 13 – 14 until convergence,

i.e., no data points change cluster

assignment.

Step 16:
o Return the final cluster assignments for

each data point.

Step 17:
o Visualize the clusters to check the quality

of the clustering results.

Phase IV – Evaluate the Window Drop Size and Slide.

Step 18: Define Evaluate_Window_Drop_Size_and_Slide with

Data & Desired_Performance_Metric.

best_window_drop_size ← 0

best_slide ← 0 ; best_performance ← -inf

For j in possible_window_drop_sizes, do

 For i in possible_slides, do

result ← run_sliding_window_algorithm(data, j, i)

performance ← evaluate_performance(result,

desired_performance_metric)

if performance > best_performance do

best_window_drop_size ← j

best_slide ← slide

best_performance ← performance

Phase V – Fuzzy-based Priority Scheduling of Event-based from

Steps 19 – 17.

Step 19: Input events and their fuzzy priorities

Step 20: Define a fuzzy inference system to calculate the crisp

priority of each event.

Step 21: Sort the Events Based on their Crisp Priorities

Step 22: Schedule the Events in the order of their Crisp

Priorities

Step 23: Repeat the process for new incoming events and update

the schedule accordingly

Step 24: Cluster event scheduling priority Determines event

Prioritisation after Window Drop Size and Slide

analysis.

Step 25: Then is shared with the Transfer Node by checking the

if-else condition for completion.

Step 26: The Highest Priority event from End-User input will

be Shared if any events remain.

Step 27: Repeat until all event clusters reach the transfer node.

Phase VI – Feature Selection / Feature Set Optimisation using

PSO from Steps 20 – 21.

Step 28: LS manages data flow and preserves system

performance when overloaded, solving the starvation

problem.

Step 29: Kafka distributes massive volumes of real-time log data.

Step 30: Apache Software Foundation created it.

Step 31: A fuzzy-based event grouping system has been made for

semantic load shedding in real-time data streaming.

End

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |525

7. Result and Discussion

7.1. Constant used to calculate results.

There are some constants or parameters used to calculate results at

the time of implementation, which are shown in Table 2 as given

below:

Table 2. Apache Kafka Streams

Parameter Value Default

Instances

Count

6 /

No. of

threads

5 /

Java heap

/Memory

20GB/

22GB

/

Producer

Compression

lz4 (L:

none)

none

Producer

Batch Size

300 KB

(L: 16KB)

20 KB

Results

According to Figure 2 (a), the hybrid load-shedding approach

achieves the highest recall. This strategy achieves a 100 percent

recall rate for latency constraints ranging from 900μs to 500μs,

which is consistent with previous research. In contrast, the baseline

solutions lose their effectiveness quickly as the latency boundaries

become more restrictive. Accordingly, it seems that the suggested

method can accurately evaluate input event significance and deal

with incomplete matches.

Fig 2 (a). Recall of latency bound.

The results indicate that state-based techniques, as shown in Figure

2(a) (fine granular shedding), provide better recall, whereas input-

based methods, as illustrated in Figure 2(b), generate higher

throughput (instant resource savings). It is worth noting that, given

the memory results shown earlier, the proposed approach is almost

as effective as the input-based solutions. The impact of shedding

on the accuracy and speed of Fuzzy EC under a strict latency

constraint is also assessed.

Fig 2 (b). Throughput of latency bound.

The efficiency of the suggested method is shown by the ratio of

shed events to partial matches, as shown in Figure 2 (c) and Figure

2(d). The described approach discards a fixed fraction of input

events up to 500μs. The increase in shed partial match, which does

not affect recall, is used to achieve the required decrease in latency,

as seen in Figure 2(a). A more consistent proportion of rejected

partial matches occurs when more input events must be discarded

to fulfill the latency limitation. Reduced stress during the shedding

process is achieved using input-shedding to avoid the development

of incomplete matches.

Fig 2 (c). The ratio of Shed event of latency bound.

Fig 2 (d). The ratio of Shed PMs of latency bound.

It is essential to measure the efficiency of input events or

incomplete matches that do not influence recollection. Figure 3 (a)

and Figure 2 (b) show the success of selecting and evaluating their

quality. Input-based shedding using the cost model Hyl maintains

a higher recall compared to random input (RI) and selectivity-

based input (SI) shedding at the cost of a slightly lower throughput.

This indicates that the cost model can provide a reliable estimate

of the value of matches and events to shed.

Fig 3 (a). Recall (Input-based)

0

20

40

60

80

100

9 7 5 3 1

R
ec

al
l

(%
)

Latency bound (x100us)

RI RS SI SS HY Proposed

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9R
at

io
 o

f
S

h
ed

 E
v
en

ts
(%

)

Latency Bound (x100us)

Hybrid

RI

SI

Proposed

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

R
at

io
 o

f
S

h
ed

 P
M

s
(%

)

Latency Bound (x100μs)

Hybrid

SS

RS

Proposed

0

20

40

60

80

100

10 30 50 70 90

R
ec

al
l(

%
)

Shedding Ratio (%)

RI SI HYI Propsed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |526

Fig 3 (b). Throughput (input-based)

Figure 3 (c) depicts the recall rates of state-based techniques, and

it is evident that the proposed HyS method outperforms both

random strategies (RS) and selectivity-based strategies (SS) in

terms of recall. Despite discarding 50 percent of the partial

matches, the proposed method maintains a perfect 100 percent

recall rate, whereas the baseline solutions achieve only a 30 percent

recall rate.

Fig 3(c). Recall (State-based)

Figure 3 (d) indicates that all methods have similar throughput at

that moment. However, the baselines can achieve better throughput

only when they have high shedding ratios, which result in

extremely low recall. Therefore, in practical terms, this approach

has limited utility.

Fig 3 (d). Throughput (state-based)

Figure 4(a) demonstrates the impact of query selectivity variation,

indicating that the suggested method achieves the best results even

when the 99th percentile latency has a 50% constraint, and the

recall is not affected. This finding aligns with the initial

expectations.

Fig 4 (a). Recall of variance of Query selectivity.

In Figure 4 (b), the impact on throughput is evident. The hybrid

approach can effectively evaluate the significance of input events

and discard those that are deemed unimportant when selectivity

exhibits low variances. However, when dealing with high variance,

the method employs a very fine level of partial matches to achieve

comparable throughput to the baseline technique.

Fig 4 (b). Throughput of variance of query selectivity

The number of partial matches growing at a fixed input rate as a

function of time window size is shown in Figure 5. The number of

partial matches generated is based on the period of the query. The

99th percentile delay is limited to 50% of the total. As shown in

Figure 5 (a), the proposed technique consistently achieves the

highest recall, and recall improves for all methods as the window

size increases. This improvement in recall could be attributed to an

enhanced cost estimate.

Fig 5 (a). Recall of window size.

0

100000

200000

300000

400000

500000

600000

700000

10 30 50 70 90T
h
ro

u
g
h
p

u
t

(e
v
en

ts
/s

)

Shedding Ratio (%)

Hybrid

SI

Proposed

RI

0

20

40

60

80

100

10 30 50 70 90

R
ec

al
l

(%
)

Shading Ratio (%)
RS SS HYS Propsed

0

2000

4000

6000

8000

10000

12000

14000

16000

10 30 50 70 90

T
h
ro

u
g
h
p

u
t

Sheding Ratio (%)

Hybrid

SS

RS

Proposed

0

20

40

60

80

100

2 4 6 8 10

R
ec

al
l(

%
)

Variance control (C.V)

RI SI HYBRID RS SS Propsed

0

20000

40000

60000

80000

100000

120000

140000

2 4 6 8 10

T
h
ro

u
g
h
p

u
t

(e
v
en

ts
/s

)

Variance Control (C.V)

SS

SI

Hybrid

Proposed

RI

RS

0

20

40

60

80

100

1 2 4 8 16

R
ec

al
l

(%
)

Time Window Size(ms)

RI SI HYBRID RS SS Propsed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |527

As the window size increases, both partial and full matches are

considered to provide an estimation. Figure 5(b) shows that input-

based baseline approaches achieve the maximum throughput. The

hybrid approach is just as effective as state-based approaches.

Differences become less noticeable as the window size grows due

to the exponential rise in the number of partial matches and their

increased lifetime.

Fig 5 (b). Throughput of window size.

Figure 6 illustrates the effects of Query Pattern Length. The figure

shows that as the pattern length increases, the recall remains

unchanged, but the throughput decreases significantly.

Interestingly, the proposed method shows a smaller reduction in

throughput compared to the other methods. As a result, the

proposed method can perform better with more complex queries.

Fig 6. Recall of pattern length.

Figure 7 demonstrates the impact of improved temporal resolution.

As seen in the figure, an increase in the number of time slices

results in a decrease in throughput and an increase in overhead.

However, the hybrid approach provides better recall than RI and

SI (one slice) while maintaining similar throughput. Similar results

are obtained with state-level baseline strategies. The best recall is

obtained with four or more slices.

Fig 7. Throughput of temporal granularity.

Discussion

There are several ways in which the suggested model is preferable

than existing ones. Figure 6 shows that the throughput of a system

reduces dramatically as the length of a query pattern grows, but the

recall stays about the same. However, our model stands out by

exhibiting a lesser reduction in throughput than previous

approaches. Because of this special quality, our model can answer

even the most difficult problems with remarkable speed and

accuracy. Figure 7 shows that when the number of time slices is

increased, the throughput decreases and the overhead rises,

indicating the influence of enhanced temporal resolution. In

contrast, while retaining the same throughput as the baseline, our

hybrid technique improves by providing greater recall than

approaches employing only one time slice. This pattern is true even

at the state level, where baseline techniques with four or more

slices have the highest recall. while it comes to data-intensive

applications, the suggested approach stands out because of the

excellent balance it achieves between preserving throughput under

complicated query patterns and offering great recall while

managing higher temporal resolution.

8. Conclusion and future work

In conventional data stream processing, this task is accomplished

using a technique referred to as load shedding. In conclusion, the

proposed method is a promising approach for improving the

efficiency of Apache Kafka. The hybrid load-shedding technique

has demonstrated high recall rates while maintaining comparable

throughput and cost models for estimating the value of matches

and events to shed. Additionally, shedding a constant proportion

of input events can be an effective strategy for achieving the

desired decrease in latency without sacrificing recall rates.

Furthermore, state-based tactics have shown superior recall rates,

while input-based procedures generate higher throughput. In terms

of the number of time slices used, the hybrid method with four or

more time slices achieves the highest recall rates while maintaining

reasonable throughput. These findings can guide the development

of more efficient and effective machine-learning algorithms and

load-shedding techniques for various applications. Future works

will focus on making the method dynamic by incorporating an

automated procedure to compute the best sample rate based on the

system's environment, including workload, data flow, and

available resources. Overall, it contributes to advancing the state

of the art in machine learning algorithms and load-shedding

techniques.

DISCLAIMER: This paper is for research purposes only. The

views expressed in this paper are personal views of the author (s)

and not those of Optum/UHG. Optum/UHG or any of their

affiliates shall not be responsible for the statements made or views

presented by the author (s) in this paper.

0

50000

100000

150000

200000

250000

300000

350000

1 3 5 7 9 11 13 15

T
h
ro

u
g
h
 P

u
t

ev
en

t(
%

)

Time Window Size (ms)

SS

Hybrid

RI

SI

Proposed

RS

0

20

40

60

80

100

4 5 6 7 8

R
ec

al
l

Pattern Length
RI SI HYBRID RS SS Propsed

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5

T
h

ro
u

g
h

 P
u

t
ev

en
t(

%
)

Number of Time Silces

SS RS

Hybrid RI

Proposed SI

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(7s), 521–528 |528

Acknowledgment

The author would like to express her sincere gratitude to

supervisors from the "Electronics and Communications

Department " for their invaluable contributions to this research

paper. Their expertise and insights have been instrumental in

shaping the direction of this study. The author is also grateful for

the support and resources provided by the " Department of

Computer Science and Engineering, Amity School of Engineering

and Technology, Gurgaon, Haryana, India ". The author extends

our heartfelt thanks to all those who have contributed to the

successful completion of this research.

Conflict of Interest

The authors declare that they have no conflict of interest

References

[1] N. Tatbul and S. Zdonik, “Window-aware load shedding

for aggregation queries over data streams” in VLDB,

vol. 6, 2006, pp. 799-810.

[2] R. Guo et al., “Bioinformatics applications on Apache

Spark,” GigaScience, vol. 7, no. 8, p. giy098, 2018.

(doi:10.1093/gigascience/giy098).

[3] R. Shree et al., “KAFKA: The modern platform for data

management and analysis in the big data domain” in 2nd

international conference on telecommunication and

networks (TEL-NET). IEEE, 2017, pp. 1-5.

(doi:10.1109/TEL-NET.2017.8343593).

[4] A. Floratou et al., “Dhalion: Self-regulating stream

processing in heron,”, Proc. VLDB Endow., vol. 10, no.

12, pp. 1825-1836, 2017.

(doi:10.14778/3137765.3137786).

[5] G. Van Dongen and D. Van den Poel, “Evaluation of

stream processing frameworks,” IEEE Trans. Parallel

Distrib. Syst., vol. 31, no. 8, pp. 1845-1858, 2020.

(doi:10.1109/TPDS.2020.2978480).

[6] P. Le Noac’H et al., “A performance evaluation of

Apache Kafka in support of big data streaming

applications” in IEEE International Conference on Big

Data (Big Data). IEEE, 2017, pp. 4803-4806.

(doi:10.1109/BigData.2017.8258548).

[7] B. R. Hiraman et al., “A study of Apache Kafka in big

data stream processing” in International Conference on

Information, Communication, Engineering and

Technology (ICICET). IEEE, 2018, pp. 1-3.

(doi:10.1109/ICICET.2018.8533771).

[8] K. M. Thein, “Me. ‘Apache Kafka: next generation

distributed messaging system.’,” Int. J. Sci. Eng.

Technol. Research, vol. 3, no. 47, pp. 9478-9483, 2014.

[9] Y. Chen et al., “Fast density peak clustering for large

scale data based on kNN,” Knowl. Based Syst., vol. 187,

p. 104824, 2020. (doi:10.1016/j.knosys.2019.06.032).

[10] B. Mozafari and C. Zaniolo, “Optimal load shedding

with aggregates and mining queries” in 26th

International Conference on Data Engineering (ICDE

2010). IEEE. IEEE, 2010, pp. 76-88.

(doi:10.1109/ICDE.2010.5447867).

[11] B. Zhao et al., “Eires: Efficient integration of remote

data in event stream processing” in Proc. 2021

International Conference on Management of Data, 2021,

pp. 2128-2141. (doi:10.1145/3448016.3457304).

[12] J. Bang et al., “Design and implementation of a load

shedding engine for solving starvation problems in

Apache Kafka” in Noms IEEE/IFIP Network Operations

and Management Symposium, vol. 2018. IEEE, 2018,

pp. 1-4. (doi:10.1109/NOMS.2018.8406306).

[13] C. Basaran et al., “Adaptive load shedding via fuzzy

control in data stream management systems” in Fifth

IEEE International Conference on Service-Oriented

Computing and Applications (SOCA). IEEE, 2012, pp.

1-8. (doi:10.1109/SOCA.2012.6449438).

[14] X. Wang et al., “Fuzzy-clustering and fuzzy network

based interpretable fuzzy model for prediction,” Sci.

Rep., vol. 12, no. 1, p. 16279, 2022.

(doi:10.1038/s41598-022-20015-y).

[15] X. Liu et al., “Fuzzy clustering with semantic

interpretation,” Appl. Soft Comput., vol. 26, pp. 21-30,

2015. (doi:10.1016/j.asoc.2014.09.037).

[16] J. Xie et al., “Research on efficient fuzzy clustering

method based on local fuzzy granular balls,” Arxiv e-

Prints, 2023: arXiv-2303.

[17] Y. Mi et al., “Fuzzy-based concept learning method:

Exploiting data with fuzzy conceptual clustering,” IEEE

Trans. Cybern., vol. 52, no. 1, pp. 582-593, 2022.

(doi:10.1109/TCYB.2020.2980794).

[18] B. Hayat et al., “A study on fuzzy logic-based cloud

computing,” Clust. Comput., vol. 21, no. 1, pp. 589-603,

2018. (doi:10.1007/s10586-017-0953-x).

[19] P. Maratha and K. Gupta, “Linear optimization and

fuzzy-based clustering for WSNs assisted internet of

things,” Multimedia Tool. Appl., vol. 82, no. 4, pp.

5161-5185, 2023. (doi:10.1007/s11042-021-11850-8).

[20] B. Mozafari et al., “SnappyData: A unified cluster for

streaming, transactions and interactive analytics” in

CIDR, vol. 17, 2017, pp. 8-11.

[21] N. Rivetti et al., “Load-aware shedding in stream

processing systems” in Proc. 10th ACM International

Conference on Distributed and Event-Based Systems,

2016, pp. 61-68. (doi:10.1145/2933267.2933311).

[22] K. Tang et al., “DRS+: Load Shedding Meets Resource

Auto-Scaling in Distributed Stream Processing” 18th

International Conference on Smart City; IEEE 6th

International Conference on Data Science and Systems

(HPCC/SmartCity/DSS). IEEE. IEEE, 2020, pp. 292-

301. (doi:10.1109/HPCC-SmartCity-

DSS50907.2020.00036).

[23] H.-Y. Wang et al., “A survey of fuzzy clustering validity

evaluation methods,” Inf. Sci., vol. 618, 270-297, 2022.

(doi:10.1016/j.ins.2022.11.010).

[24] S. K. Jha et al., “A hybrid machine learning approach of

fuzzy-rough-k-nearest neighbor, latent semantic

analysis, and ranker search for efficient disease

diagnosis,” J. Intell. Fuzzy Syst., vol. 42, no. 3, pp. 2549-

2563, 2022. (doi:10.3233/JIFS-211820).

