

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 639

Protectors of the Android Domain: Research into Mobile Malware

Detection and Defense

B. Bhaskar1, Sharanya S.2, A. Bala Murali3, E Archana4, Mr. T. A. Mohanaprakash*5

Submitted: 29/08/2023 Revised: 20/10/2023 Accepted: 02/11/2023

Abstract: Due to the ever-increasing amount of malware that can be found on mobile devices, Android malware detection has become

an essential topic of study. It starts with an overview of android malware, including its many subtypes such as Trojan horses, adware,

spyware, and ransomware, as well as the procedures that must be taken to avoid having malware installed on your device. In order to

detect malicious programs, it performs an analysis on a number of attributes that have been collected from the application package files

and system call traces of the device. The suggested solution makes use of a neural network model that was educated using a dataset

consisting of both safe and harmful apps. This problem is solved with the assistance of android malware detection with the use of

machine learning. In order to determine whether or not the Android application file that was uploaded includes malware or can be used

safely, the system that has been presented makes use of a method for supervised machine learning that is known as a Neural Network. It

gives an overview of the numerous methods that may be used to identify android malware, such as detection based on signatures,

detection based on behaviors, and detection based on machine learning. Mobile devices, especially smartphones powered by Android,

have emerged as indispensable aids in our day-to-day activities. On the other hand, a growth in the usage of mobile devices has resulted

in an increase in the number of cyber-attacks, with malware being a serious concern. Malware designed for Android devices presents a

serious threat to users of mobile devices since it has the potential to steal personal data, disrupt device functionality, and jeopardize the

security of the device. As a result, it is more important than ever to identify and eliminate malware on Android devices.

Keywords: Android malware, Malware detection, Trojan horses, Ransom ware, supervised machine learning, Personal data security.

1. Introduction

Smartphones have quickly become indispensable in most

people's lives, and the Android operating system has

amassed a significant following. However, developing

Android applications for third-party marketplaces involves

a number of obstacles, the most significant of which is the

elimination of any potential for infection. Traditional

detection approaches depend on technology that is based

on signatures, which is inadequate when dealing with

unknown forms of malware. Analysis, both static and

dynamic, of unknown harmful code in Android devices is

the primary focus of the currently available detection

techniques.

The proliferation of mobile devices has led to a rise in the

number of cybercriminal activities, which in turn has put

both the security and confidentiality of mobile systems in

jeopardy. The analysis of program permissions is a

standard way for detecting malware; however the process

gets more difficult when all accessible rights are taken into

consideration. As a result, we need a malware detection

system that is both effective and works in real time.

Learning machine algorithms, and particularly deep

learning, have been investigated as potential solutions to

these problems. The proliferation of mobile apps, on the

other hand, creates difficulties in terms of both scalability

and accuracy. Analysis of API calls and permissions, when

combined with machine learning techniques, may assist in

identifying malicious as well as benign Android

applications.

Because of Android's ubiquity, fraudsters are drawn to the

platform, which has led to a never-ending fight against

malware detection. For Android malware detection, a

variety of methodologies, including static, dynamic, and

hybrid methods, is used. This study focuses on detection

methods that are based on neural networks that are used for

Android apps. It does this by computing similarity scores

between malicious and benign apps on the basis of

suspicious API calls and then using those API calls as

features in a feature vector. During the SVM classifier

training process, potentially dangerous permission

1 Assistant Professor, Department of Computer Science and Engineering,

Madanapalle Institute of Technology and Science, Madanapalle – 517325,

INDIA, bhaskarb@mits.ac.in
2 Assistant Professor, Department of Data Science and Business Systems,

SRM Institute of Science and Technology, Kattankulathur, Chennai-

603203, INDIA, nice_sharanya@yahoo.co.in
3 Assistant Professor, Department of Computer Science and Engineering,

St. Joseph's Institute of Technology, OMR, Chennai-600119, INDIA,

balamura2@gmail.com
4 Assistant Professor, Department of Computer Science and Engineering,

Panimalar Engineering College, Chennai – 600123, INDIA,

archana.athi@gmail.com,https://orchid.org/0000-0003-3601-9259
5 Associate Professor, Department of Computer Science and Engineering,

Panimalar Engineering College, Chennai – 600123, INDIA,

tamohanaprakash@gmail.com, https://orchid.org/ 0000-0002-6885-4710

* Corresponding Author Email: tamohanaprakash@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 640

combinations and extra characteristics are used. The

system that has been presented can determine with high

precision whether or not an application contains harmful

code.

In conclusion, there is an urgent need for a malware

detection solution for Android that is both effective and

flexible. This study investigates neural network-based

classification algorithms that make use of API call analysis

and permission analysis to properly categorize applications

as either benign or dangerous.

2. Related Works

More and more sensitive data is being processed by today's

smartphones and tablets, which are equipped with a wide

range of applications and services. Popular mobile

platforms, such as Android and iOS, constitute an enticing

target for malware authors, and the number of

vulnerabilities targeting mobile devices is increasing

everyday along with the general trend. The current

statistics show an alarming surge in mobile malware

abusing victims to earn profits, moving towards a billion-

dollar sector, while experts attempt to discover alternative

detection ways to combat against mobile malware. When it

comes to mobile malware analysis and detection, current

methods aren't always up to snuff [2] [4].The purpose of

this paper is to present a well-organized summary of

current research on mobile virus detection approaches,

highlighting their strengths and weaknesses [1]. In recent

years, Android-powered smartphone use has skyrocketed.

Android's widespread appeal has attracted consumers, but

the platform's popularity has also led to heightened

security worries. Therefore, Android malware detection is

a hot issue in the field of mobile security. With a focus on

Android devices, this paper examines the most recent

mobile malware assaults, vulnerabilities, detection

methods, and security solutions. We have provided much

comprehensive taxonomy that classifies methods for

detecting mobile malware according to their analytical

methodology, platform, data collecting, operational effect,

acquired findings, and involvement of artificial

intelligence. In order to better understand the threat

landscape and the vulnerabilities that mobile malware

exploits, a new taxonomy is offered. In addition, we have

spoken about and categorized forensic analysis initiatives

from the standpoint of mobile malware detection. We took

the perspective of the invader and examined the numerous

evasion tactics often used by malware developers to thwart

detection. Finally, recommendations for future research are

provided to assist academics and business mitigates the

negative effects of these irritating attempts [2]. The

number of people who own smartphones, especially those

who use Android, has risen sharply in recent years.

Malware detection is an increasing priority on the Android

platform. Machine learning-based methods have improved

malware detection accuracy more than any other available

method. Therefore, machine learning algorithm malware

detection has to be made available on Android

smartphones. Researchers have suggested many Machine

Learning methods for malware detection, each using a

unique Machine Learning Algorithm like SVM, NB, or

DNN. With an emphasis on Machine Learning Based

classifiers, this article examines the current state of the art

in Android malware detection methods [3].

The mobile ecosystem as a whole is seeing fast

development in Android apps, but Android malware is also

expanding at a breakneck pace. The issue of Android

malware detection has been explored by a wide range of

researchers, who have proposed a wide variety of

hypotheses and approaches. According to the available

literature, machine learning shows great promise as an

efficient and effective method for identifying Android

malware. However, there are studies that have looked at

various problems with Android malware detection using

ML. We think our study is a good supplement to the

existing studies since it covers more ground. This article

provides a complete overview of machine learning-based

methods for detecting Android malware. The Android

system architecture, security procedures, and the

categorization of Android malware are briefly introduced,

along with some more contexts on Android apps. Next, we

zero in on machine learning to conduct a thorough review

and summary of the state of the field with regards to vital

factors such sample collection, data cleansing, feature

selection, ML model and algorithm development, and

detection efficiency assessment. Finally, we evaluate the

long-term outlook for machine learning-based Android

malware detection research. This survey will provide

researchers with a comprehensive understanding of

machine learning-based Android virus detection. It might

pave the way for future studies and assist direct

investigation in the sector as a whole [4]. The widespread

availability of smartphones is largely due to the Android

operating system. The newest innovations have down the

price to where it's accessible to everyone. The rise of

cybercrime on mobile devices has coincided with the rise

of the Android platform. Because it runs on an open source

OS, it is a frequent target of cybercriminals. The current

situation of Android security is analyzed in depth in this

article. This article divides Android system assaults into

four categories: (i) those that target the hardware, (ii) those

that target the kernel, (iii) those that target the hardware

abstraction layer, and (iv) those that target applications.

The research covers a wide range of security risks and

countermeasures in these areas, providing a thorough

examination of the fundamental issues in the Android

security space. The essay also highlights the importance of

app developers in creating a safer Android ecosystem. This

article makes an effort to compare and contrast different

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 641

malware detection approaches with regards to their

respective strengths and weaknesses. This research may

aid in the development of a more complete, secure, and

effective response to the challenges Android faces by

providing insight into the Android security domain from

several perspectives [5]. The proliferation of

mobilemalware on the Android platform parallels the

explosion in smartphone use and usage. Due of its

dominant market share, Android is now a prime target for

cybercriminals. Malware authors are increasingly drawn to

Android due to the platform's openness, Android's high

market share, and the rising popularity and demand for

smartphones. From a scientific perspective, it is essential

for an examiner to see the malicious software in action in

order to grasp the extent of the threat to personal data.

With so many sophisticated methods available, it's

probable that no one method can detect malware

effectively on its own. As a result, we have a number of

options for efficient virus identification. This research

focuses on the differences and similarities between static

and dynamic analysis approaches to Android malware. In

addition to comparing and contrasting the two main types

of malware analysis, this study also covers the several sub-

techniques that fall under each. In this study, a new

method, hybrid analysis, is developed by fusing static and

dynamic analysis, and its efficacy is evaluated in relation

to that of established methods [6]. Researchers are putting

more time and effort into studying how to identify malware

on mobile smart devices. As mobile malware continues to

spread rapidly, protecting mobile users' anonymity is more

important than ever. Programming devices known as

intrusion detection systems collect data, analyze it, and

identify intrusions. Intrusion aversion systems (IPS) are the

next generation of these systems, and they have the ability

to take preventative measures. Accuracy rate is a crucial

metric for evaluating the efficiency of an Intrusion

Detection System. The goal of this study is to improve

upon previous research by increasing the proportion of

correct diagnoses while decreasing the number of false

positives [7].

More and more attention is being paid by researchers to the

problem of discovering mobile viruses. With the

proliferation of mobile viruses, privacy for mobile users is

more crucial than ever. Intrusion detection systems are

computerized tools that sift through data to find evidence

of hacking attempts. The next generation of such systems,

known as intrusion aversion systems (IPS), may take

preemptive action. When assessing the effectiveness of

IDS, accuracy rate is a vital indicator. The purpose of this

research is to build on past studies by raising the

percentage of accurate diagnoses while minimizing the

occurrence of false positives [8]. Since cellphones are

becoming more and more pervasive, they have access to

more private data. Advanced mobile malware, especially

Android malware, may steal or use this information

without the user's knowledge or permission. Therefore, it is

crucial to develop efficient methods of analyzing and

detecting such dangers. This article offers a thorough

review of the state-of-the-art in Android malware analysis

and detection methods, focusing on their ability to keep up

with rapidly changing malware. This article classifies

systems by approach and time period to analyze

development and flaws. This paper also provides a

framework for future study by discussing assessments of

industry solutions, malware statistics, and malware evasion

tactics [9]. Malware targeting the Android platform has

grown in proportion to the platform's success. Traditional

malware detectors are unable to identify these new forms

of malware because of the creative methods malware

authors use to construct harmful Android apps. Unknown

Android malware may be detected using machine learning

methods and the characteristics gathered from static and

dynamic analysis of Android apps. In this study, we take a

look at how different Android malware detection systems

identify malware and compare them using a number of

criteria. To further emphasize the prevalence of machine

learning algorithms in this field for identifying Android

malware in the wild, we were able to locate research work

in all the Android malware detection strategies that involve

machine learning [10].

3. Existing System:

Malware is a kind of cyber assault that is both widespread

and devastating. Results the testing findings showed that

with just 11 static features and the ExtraTree method, FG-

Droid was able to attain a 97.7% area under the ROC curve

(AUC) score. As a result of testing several models on the

Drebin, Genome, and Arslan datasets using machine

learning (ML), deep neural networks (DNNs), recurrent

neural networks (RNNs), long short-term memories

(LSTMs), and gated recurrent units (GRUs), this was born.

This method examines an app's attributes and behavior to

see whether it displays any signs of being harmful.

Permissions, file system interactions, network activities,

and code function procedures are all examples of things

that may be examined using heuristics. To detect malicious

activity, machine learning algorithms examine

characteristics and trends in the application. New and

changing malware strains may be detected using this

strategy. Our study provides suggestions in the form of

strategies to deal with rising security dangers presented by

malware and reduce threat and malware infection rates

based on the evaluated survey papers. Therefore, a novel

approach of feature grouping was devised to create a

classifier that is effective despite having little features,

minimal analysis time, and high classification success.

Consequences

❖ It has a cumbersome interface that is difficult to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 642

navigate.

❖ High Propensity to Make Mistakes

❖ It's a bigger hassle and uses up more supplies.

4. Proposed Methodology:

Any Android app's installation and restart activity logs, as

well as any API calls made by such apps before and after a

device restart, would be logged and characterized by the

proposed system. For a more reliable, precise, and scalable

android detection tool, it is necessary to conduct a critical

examination of existing mobile malware frameworks, as

suggested by the proposed model. In this work, we

examine and categorize mobile malware based on privilege

escalation and the objectives of their attacks. They also aid

researchers in understanding the methods used by modern

mobile malware to evade detection. The suggested model

is almost as accurate as the current model while using

much less memory and CPU time. Finally, the model's

little space and time commitment makes it morally

preferable to the status quo. Finally, the experimental

findings are analyzed and contrasted using a variety of

performance criteria.

BENEFITS:

❖ A simple and intuitive interface

❖ Improved precision and dependability

❖ The aesthetics of the setting

❖ More reliable and objective

4.1 System Architecture:

The procedure is mapped out by the system's architecture.

In this case, the website does the searching and archiving

for us. There, bot logic is utilized to pre-process the input

and get process details. The algorithm is then applied, and

further steps are conducted.

Fig1. Work Flow of the Proposed Work.

The procedure is mapped out by the system's architecture.

In this case, the website does the searching and archiving

for us. There, bot logic is utilized to pre-process the input

and get process details. The algorithm is then applied, and

further steps are conducted.

Fig2. Architecture Diagram

Data is first retrieved from APKs obtained from a Github

malware repository. The data is then pre-processed before

analysis. The last step is to feed the processed data into the

training model. Once the training data is in place, the

model is complete. The categorization result will be

delivered in the testing phase using the most precise

method.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 643

3.2 SYSTEM IMPLEMENTATION:

3.2.1 Pandas:

Pandas is a very effective library for doing such things

with data. Series and DataFrame are the two main new data

types that are presented. Pandas is utilized to effectively

manage textual data in this system. Filtering, cleaning,

manipulating, and analyzing data are all made possible by

its many features. Pandas can conduct a wide variety of

data operations, including handling missing values,

aggregations, merging datasets, and more. It is helpful for

preparing textual data for machine learning algorithms

since it streamlines processes like data preparation, feature

extraction, and exploratory data analysis.

3.2.2 NumPy:

When working with Python for scientific purposes, the

NumPy library is indispensable. In order to efficiently

store and manipulate huge multi-dimensional arrays, it

introduces the powerful nd array data structure. Here,

NumPy is utilized to manage numerical information

extracted from the processed text. It offers a wide variety

of mathematical operations that may be performed

numerically on arrays. Processing the numerical

characteristics and feeding them into machine learning

algorithms requires quick calculations, element-wise

operations, arrayslicing, and reshaping, all of which are

made possible by NumPy.

3.2.3 Scikit-learn:

Scikit-learn is a very well-liked machine learning package

that has several useful tools and algorithms. Scikit-learn

provides crucial parts of this system, including those

responsible for identifying hate speech. To transform the

cleaned-up text into a numerical form usable by machine

learning, we use the CountVectorizer tool from Scikit-

learn. It does this by converting the text into a matrix of

token counts, which accurately represents the occurrence

of individual words and n-grams. The Decision Tree

Classifier in Scikit-learn is a supervised learning technique

that uses a labeled dataset to develop a set of decision rules

that may be used to categorize hate speech and abusive

language.

3.2.4 Flask:

Flask is a Python web framework that is both lightweight

and adaptable, making it ideal for developing both

websites and APIs. Flask is used to build the hate speech

detection system's user interface. Users may access the

system through a web-based interface or application

programming interface (API) endpoints.

Flask is responsible for directing requests and creating

answers. It allows the system to take user-entered content,

process it using the hate speech detection model, and

provide the findings to the authors of the material. The

user-facing part of the system may benefit from Flask's

simplicity and adaptability.

3.2.5 APK:

The Android operating system, and a number of other

Android-based operating systems, utilizes the Android

Package file format with the .apk extension to distribute

and install mobile applications, mobile games, and

middleware.

3.2.6 Werkzeug:

To create WSGI (Web Server Gateway Interface)

applications in Python, you may make use of the

Werkzeug library collection. One of the most complex

WSGI utility libraries, it began as a basic collection of

assorted utilities for WSGI applications. The developer is

free to choose their preferred approach to request

processing, database connectivity, and template engines.

Don't compel people to rely on each other. Features like as

a debugger, request/response objects, cache control

objects, cookie management, file uploads and a plethora of

community-built extensions are all part of the package. To

be distributed using the BSD license.

3.2.7 Androguard:

The Androguard is a reverse engineering tool for Android

applications written in the Python programming language.

In order to achieve this, we need to extract the app's

components from their raw Android Package (.apk) files.

Malware and security flaws may be tested for at this point.

As long as Python is there, Androguard will run on Linux,

Windows, and OSX. Please be aware that there are several

dependencies involved with operating Androguard on

Windows, and for the purpose of simplicity, we suggest

that you utilize a Virtual Machine to run Linux instead.

3.2.8 Keras:

Keras is the TensorFlow platform's high-level API,

providing a friendly, highly-productive interface for

addressing issues in machine learning with a special

emphasis on cutting-edge deep learning techniques. For

rapidly creating and releasing machine learning solutions,

it offers fundamental abstractions and building pieces.

3.2.9 Pickle:

Pickle is a module in Python used for serializing and de-

serializing Python objects. This convertsPython objects

like lists, dictionaries, etc. into byte streams (zeroes and

ones). You can convert the byte streams back into Python

objects through a process called unpickling. Pickling is

also known as serialization, flattening, or marshaling.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 644

5. Results and Discussion:

The need of efficient hate speech detection systems has

only grown in the dynamic environment of internet

discourse. In order to keep online communities free from

damage, these technologies are essential for monitoring

content and removing offending material. While progress

has been made with current hate speech detection systems,

there is still more that can be done to strengthen and

improve upon them. This article will explore a number of

methods for improving hate speech detection systems, such

as using more complex NLP methods, improved feature

engineering, a more diverse set of training data, and active

learning tactics. These developments have the potential to

lead to more dependable methods for policing

objectionable language and preventing the spread of hate

speech online. Advanced Natural Language Processing

(NLP) methods are one of the most promising areas for

enhancing hate speech detection systems. Simpler models,

such those used by rule-based or shallow machine learning

approaches, are often used by conventional systems. While

helpful, these approaches may not be enough for

identifying subtle forms of hate speech that vary greatly

depending on the setting. There are more advanced NLP

models that may be used to overcome this restriction, such

as Long Short-Term Memory (LSTM) networks and BERT

(Bidirectional Encoder Representations rom

Transformers).

Fig3. Represents the Apk file for virus Detection.

Long short-term memory (LSTM) networks are a kind of

deep learning model that performs particularly well with

sequence data, such as that seen in text analysis. Sentiment

analysis, text production, and language translation are just

few of the areas where these models have excelled. In

order to improve the accuracy of hate speech detection

systems, LSTM networks are being included into them.

These networks are able to better recognize the contextual

links between words and phrases. Because of this enhanced

comprehension, the algorithm is able to detect hate speech

that would otherwise be overlooked by more simplistic

approaches. In a similar vein, BERT, a cutting-edge

transformer-based paradigm, has significantly advanced

the science of natural language processing. The capacity of

BERT to extract meaning and context from text is

unrivaled. Systems designed to identify hate speech might

benefit from BERT's ability to understand nuances in

language including sarcasm, irony, and cultural allusions.

Enhanced detection accuracy is the result of better

contextual comprehension.

Fig4. Represents the APK Tester

 Improvements may be done both with improved NLP

methods and with enhanced feature engineering. Selecting

and developing useful qualities that the model employs in

prediction is what feature engineering is all about. Basic

linguistic variables, including word frequency and length,

are typically used by conventional hate speech detection

systems. Hate speech, however, often employs figurative

language and symbols, thus these characteristics may not

be exhaustive. Researchers might look at more

sophisticated feature engineering methods to overcome this

restriction. Word embeddings, which map words to dense

vector spaces, are one such method, as are part-of-speech

tagging and named entity identification, both of which may

be used to determine relevant context. Such sophisticated

elements might enrich the model's representation of the

text, enabling it to pick up on hints of hate speech that

would otherwise go unnoticed. In addition, factors unique

to online hate speech, such as the prevalence of slang and

emoticons meant to express contempt, may play a

significant role in boosting the reliability of the system.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 645

Fig5. Represents the selection of document from the file.

Diversifying the training data is also a crucial part of

improving hate speech detection systems. The success of

machine learning models relies heavily on the quality of

their training data. It is possible that the range of

languages, cultures, and settings in which hate speech

might occur is underrepresented in the datasets used to

train many current algorithms. Therefore, these algorithms

may not be able to properly recognize hate speech outside

of their training environments.

Fig6. Represents the output result after selection of the

document from the file.

More varied and representative training data is needed to

overcome this obstacle. This information has to represent

the diverse nature of online interaction by include a wide

range of languages, dialects, cultural settings, and

platforms. In addition, as time passes and new cultural

references and societal challenges arise, so does hate

speech.

Training data should be regularly updated to ensure that

the system can effectively identify new and emerging

kinds of hate speech. Unfortunately, collecting large

volumes of labeled training data may be a time-consuming

and costly endeavor. This issue may be addressed with the

use of active learning strategies. When it comes to

choosing training data, active learning is a machine

learning method that prioritizes difficult samples. The

quantity of labeled data needed may be minimized by the

strategic selection of samples that are on the model's

decision boundary or those it is unsure about.

Fig7. Represents the output result after selection of the

document that detects the Virus.

Active learning not only helps the model learn faster, but it

also helps preserve resources. It allows the algorithm to

become more responsive to shifting patterns of hate speech

with less tagging effort. In reality, this means the algorithm

may actively seek input from human annotators to improve

its hate speech recognition skills when it meets new and

possibly damaging material. In conclusion, it is crucial that

hate speech detection technologies be developed and

improved in the current digital environment. These

systems may be made more reliable and accurate by using

active learning procedures, increasing the diversity of

training data, and adding sophisticated NLP techniques

like as LSTM and BERT. Advanced feature engineering

approaches enable richer representations of text, while

more complex models allow for a more nuanced grasp of

context and language. In order to keep up with the dynamic

nature of online hate speech, the system is trained on a

wide variety of data and uses active learning methods. Our

attempts to curb hate speech and inflammatory language

online must evolve in tandem with the rapid development

of related technologies. By making these changes, we can

look forward to improved hate speech detection algorithms

that will make the internet a more welcoming and safe

place for everyone to participate.

6. Conclusion:

Because of the Android operating system's meteoric rise in

popularity among consumers, software developers are

increasingly focusing their attention on this sector. This

pattern has led to the distribution of a large number of apps

that are helpful to consumers in the marketplaces. In this

manner, many apps are openly shared, and a significant

portion of them include the propagation of harmful

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 639–646 | 646

software. As a result, there is a technique of distribution

that involves the inclusion of both harmful and innocuous

programs. Malware that targets Android devices is among

the most deadly dangers that can be found on the internet,

and its frequency has skyrocketed over the last several

years.

Cyber security professionals are confronted with an

unsolved issue. Identifying and categorizing Android

malware may be accomplished using a number of different

technologies that are based on machine learning. Malware

classification may be effectively carried out with the help

of this project's Machine Learning Model, which makes

use of feature selection and a Machine Learning Classifier.

Our model has shown promising results, with an SVM

Category Classification accuracy of over 93% and an ANN

Category Classification accuracy of over 90.82%

respectively. In the not too distant future, we want to

provide an online service that, among other things, will

enable users to assess whether or not a program

(application) is malware before downloading it, as well as

the program's category and family. A great deal of progress

would be made in protecting the safety of an Android

smartphone if this safeguard were taken.

Acknowledgements

No funding sources.

Author contributions

All authors are equally contributed in preparing,

experimenting and reviewing the article.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] V. Kouliaridis, K. Barmpatsalou, G. Kambourakis,

and S. Chen, ‘‘A survey on mobile malware detection

techniques,’’ IEICE Trans. Inf. Syst., vol.103, no. 2,

pp. 204–211, Feb. 2020

[2] Qamar, A. Karim, and V. Chang, ‘‘Mobile malware

attacks: Review, taxonomy & future directions,’’

Future Gener. Comput. Syst., vol. 97, pp. 887–909,

Aug. 2019.

[3] E. J. Alqahtani, R. Zagrouba, and A. Almuhaideb,

‘‘A survey on Android malware detection techniques

using machine learning algorithms,’’ in Proc. 6th Int.

Conf. Softw. Defined Syst. (SDS), Rome, Italy, Jun.

2019, pp. 110–117.

[4] H. Lubuva, Q. Huang, and G. C. Msonde, ‘‘A review

of static malware detection for Android apps

permission based on deep learning,’’ Int. J. Comput.

Netw. Appl., vol. 6, no. 5,pp. 80–91, Sep./Oct. 2019.

[5] P. Bhat and K. Dutta, ‘‘A survey on various threats

and current state of security in Android platform,’’

ACM Comput. Surv., vol. 52, no. 1, p. 21, Feb. 2019.

[6] M. Choudhary and B. Kishore, ‘‘HAAMD: Hybrid

analysis for Android malwaredetection,’’ in Proc. Int.

Conf. Comput. Commun. Informat. (ICCCI), Jan.

2018, pp. 1–4 [7]. D. BalaGanesh,

[7] Chakrabarti, and D. Midhunchakkaravarthy, ‘‘Smart

devicesthreats, vulnerabilities and malware detection

approaches: A survey,’’ Eur. J. Eng. Res.Sci., vol. 3,

no. 2, pp. 7–12, Feb. 2018.

[8] P. Yan and Z. Yan, ‘‘A survey on dynamic mobile

malware detection,’’Softw.Qual. J., vol. 26, no. 3, pp.

891–919, Sep. 2018.

[9] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L.

Cavallaro, ‘‘The evolution of Android malware and

Android analysis techniques,’’ ACM Comput. Surv.,

vol. 49, no.4, p. 76, 2017.

[10] S. K. Muttoo and S. Badhani, ‘‘Android malware

detection: State of the art,’’ Int. J. Inf. Technol., vol.

9, no. 1, pp. 111–117, Mar. 2017.

