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Abstract: Due to the ever-increasing amount of malware that can be found on mobile devices, Android malware detection has become 

an essential topic of study. It starts with an overview of android malware, including its many subtypes such as Trojan horses, adware, 

spyware, and ransomware, as well as the procedures that must be taken to avoid having malware installed on your device. In order to 

detect malicious programs, it performs an analysis on a number of attributes that have been collected from the application package files 

and system call traces of the device. The suggested solution makes use of a neural network model that was educated using a dataset 

consisting of both safe and harmful apps. This problem is solved with the assistance of android malware detection with the use of 

machine learning. In order to determine whether or not the Android application file that was uploaded includes malware or can be used 

safely, the system that has been presented makes use of a method for supervised machine learning that is known as a Neural Network. It 

gives an overview of the numerous methods that may be used to identify android malware, such as detection based on signatures, 

detection based on behaviors, and detection based on machine learning. Mobile devices, especially smartphones powered by Android, 

have emerged as indispensable aids in our day-to-day activities. On the other hand, a growth in the usage of mobile devices has resulted 

in an increase in the number of cyber-attacks, with malware being a serious concern. Malware designed for Android devices presents a 

serious threat to users of mobile devices since it has the potential to steal personal data, disrupt device functionality, and jeopardize the 

security of the device. As a result, it is more important than ever to identify and eliminate malware on Android devices. 

Keywords: Android malware, Malware detection, Trojan horses, Ransom ware, supervised machine learning, Personal data security.

1. Introduction 

Smartphones have quickly become indispensable in most 

people's lives, and the Android operating system has 

amassed a significant following. However, developing 

Android applications for third-party marketplaces involves 

a number of obstacles, the most significant of which is the 

elimination of any potential for infection. Traditional 

detection approaches depend on technology that is based 

on signatures, which is inadequate when dealing with 

unknown forms of malware. Analysis, both static and 

dynamic, of unknown harmful code in Android devices is 

the primary focus of the currently available detection 

techniques. 

The proliferation of mobile devices has led to a rise in the 

number of cybercriminal activities, which in turn has put 

both the security and confidentiality of mobile systems in 

jeopardy. The analysis of program permissions is a 

standard way for detecting malware; however the process 

gets more difficult when all accessible rights are taken into 

consideration. As a result, we need a malware detection 

system that is both effective and works in real time. 

Learning machine algorithms, and particularly deep 

learning, have been investigated as potential solutions to 

these problems. The proliferation of mobile apps, on the 

other hand, creates difficulties in terms of both scalability 

and accuracy. Analysis of API calls and permissions, when 

combined with machine learning techniques, may assist in 

identifying malicious as well as benign Android 

applications. 

Because of Android's ubiquity, fraudsters are drawn to the 

platform, which has led to a never-ending fight against 

malware detection. For Android malware detection, a 

variety of methodologies, including static, dynamic, and 

hybrid methods, is used. This study focuses on detection 

methods that are based on neural networks that are used for 

Android apps. It does this by computing similarity scores 

between malicious and benign apps on the basis of 

suspicious API calls and then using those API calls as 

features in a feature vector. During the SVM classifier 

training process, potentially dangerous permission 
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combinations and extra characteristics are used. The 

system that has been presented can determine with high 

precision whether or not an application contains harmful 

code. 

In conclusion, there is an urgent need for a malware 

detection solution for Android that is both effective and 

flexible. This study investigates neural network-based 

classification algorithms that make use of API call analysis 

and permission analysis to properly categorize applications 

as either benign or dangerous. 

2. Related Works 

More and more sensitive data is being processed by today's 

smartphones and tablets, which are equipped with a wide 

range of applications and services. Popular mobile 

platforms, such as Android and iOS, constitute an enticing 

target for malware authors, and the number of 

vulnerabilities targeting mobile devices is increasing 

everyday along with the general trend. The current 

statistics show an alarming surge in mobile malware 

abusing victims to earn profits, moving towards a billion-

dollar sector, while experts attempt to discover alternative 

detection ways to combat against mobile malware. When it 

comes to mobile malware analysis and detection, current 

methods aren't always up to snuff [2] [4].The purpose of 

this paper is to present a well-organized summary of 

current research on mobile virus detection approaches, 

highlighting their strengths and weaknesses [1]. In recent 

years, Android-powered smartphone use has skyrocketed. 

Android's widespread appeal has attracted consumers, but 

the platform's popularity has also led to heightened 

security worries. Therefore, Android malware detection is 

a hot issue in the field of mobile security. With a focus on 

Android devices, this paper examines the most recent 

mobile malware assaults, vulnerabilities, detection 

methods, and security solutions. We have provided much 

comprehensive taxonomy that classifies methods for 

detecting mobile malware according to their analytical 

methodology, platform, data collecting, operational effect, 

acquired findings, and involvement of artificial 

intelligence. In order to better understand the threat 

landscape and the vulnerabilities that mobile malware 

exploits, a new taxonomy is offered. In addition, we have 

spoken about and categorized forensic analysis initiatives 

from the standpoint of mobile malware detection. We took 

the perspective of the invader and examined the numerous 

evasion tactics often used by malware developers to thwart 

detection. Finally, recommendations for future research are 

provided to assist academics and business mitigates the 

negative effects of these irritating attempts [2]. The 

number of people who own smartphones, especially those 

who use Android, has risen sharply in recent years. 

Malware detection is an increasing priority on the Android 

platform. Machine learning-based methods have improved 

malware detection accuracy more than any other available 

method. Therefore, machine learning algorithm malware 

detection has to be made available on Android 

smartphones. Researchers have suggested many Machine 

Learning methods for malware detection, each using a 

unique Machine Learning Algorithm like SVM, NB, or 

DNN. With an emphasis on Machine Learning Based 

classifiers, this article examines the current state of the art 

in Android malware detection methods [3]. 

The mobile ecosystem as a whole is seeing fast 

development in Android apps, but Android malware is also 

expanding at a breakneck pace. The issue of Android 

malware detection has been explored by a wide range of 

researchers, who have proposed a wide variety of 

hypotheses and approaches. According to the available 

literature, machine learning shows great promise as an 

efficient and effective method for identifying Android 

malware. However, there are studies that have looked at 

various problems with Android malware detection using 

ML. We think our study is a good supplement to the 

existing studies since it covers more ground. This article 

provides a complete overview of machine learning-based 

methods for detecting Android malware. The Android 

system architecture, security procedures, and the 

categorization of Android malware are briefly introduced, 

along with some more contexts on Android apps. Next, we 

zero in on machine learning to conduct a thorough review 

and summary of the state of the field with regards to vital 

factors such sample collection, data cleansing, feature 

selection, ML model and algorithm development, and 

detection efficiency assessment. Finally, we evaluate the 

long-term outlook for machine learning-based Android 

malware detection research. This survey will provide 

researchers with a comprehensive understanding of 

machine learning-based Android virus detection. It might 

pave the way for future studies and assist direct 

investigation in the sector as a whole [4]. The widespread 

availability of smartphones is largely due to the Android 

operating system. The newest innovations have down the 

price to where it's accessible to everyone. The rise of 

cybercrime on mobile devices has coincided with the rise 

of the Android platform. Because it runs on an open source 

OS, it is a frequent target of cybercriminals. The current 

situation of Android security is analyzed in depth in this 

article. This article divides Android system assaults into 

four categories: (i) those that target the hardware, (ii) those 

that target the kernel, (iii) those that target the hardware 

abstraction layer, and (iv) those that target applications. 

The research covers a wide range of security risks and 

countermeasures in these areas, providing a thorough 

examination of the fundamental issues in the Android 

security space. The essay also highlights the importance of 

app developers in creating a safer Android ecosystem. This 

article makes an effort to compare and contrast different 
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malware detection approaches with regards to their 

respective strengths and weaknesses. This research may 

aid in the development of a more complete, secure, and 

effective response to the challenges Android faces by 

providing insight into the Android security domain from 

several perspectives [5]. The proliferation of 

mobilemalware on the Android platform parallels the 

explosion in smartphone use and usage. Due of its 

dominant market share, Android is now a prime target for 

cybercriminals. Malware authors are increasingly drawn to 

Android due to the platform's openness, Android's high 

market share, and the rising popularity and demand for 

smartphones. From a scientific perspective, it is essential 

for an examiner to see the malicious software in action in 

order to grasp the extent of the threat to personal data. 

With so many sophisticated methods available, it's 

probable that no one method can detect malware 

effectively on its own. As a result, we have a number of 

options for efficient virus identification. This research 

focuses on the differences and similarities between static 

and dynamic analysis approaches to Android malware. In 

addition to comparing and contrasting the two main types 

of malware analysis, this study also covers the several sub-

techniques that fall under each. In this study, a new 

method, hybrid analysis, is developed by fusing static and 

dynamic analysis, and its efficacy is evaluated in relation 

to that of established methods [6]. Researchers are putting 

more time and effort into studying how to identify malware 

on mobile smart devices. As mobile malware continues to 

spread rapidly, protecting mobile users' anonymity is more 

important than ever. Programming devices known as 

intrusion detection systems collect data, analyze it, and 

identify intrusions. Intrusion aversion systems (IPS) are the 

next generation of these systems, and they have the ability 

to take preventative measures. Accuracy rate is a crucial 

metric for evaluating the efficiency of an Intrusion 

Detection System. The goal of this study is to improve 

upon previous research by increasing the proportion of 

correct diagnoses while decreasing the number of false 

positives [7].  

More and more attention is being paid by researchers to the 

problem of discovering mobile viruses. With the 

proliferation of mobile viruses, privacy for mobile users is 

more crucial than ever. Intrusion detection systems are 

computerized tools that sift through data to find evidence 

of hacking attempts. The next generation of such systems, 

known as intrusion aversion systems (IPS), may take 

preemptive action. When assessing the effectiveness of 

IDS, accuracy rate is a vital indicator. The purpose of this 

research is to build on past studies by raising the 

percentage of accurate diagnoses while minimizing the 

occurrence of false positives [8]. Since cellphones are 

becoming more and more pervasive, they have access to 

more private data. Advanced mobile malware, especially 

Android malware, may steal or use this information 

without the user's knowledge or permission. Therefore, it is 

crucial to develop efficient methods of analyzing and 

detecting such dangers. This article offers a thorough 

review of the state-of-the-art in Android malware analysis 

and detection methods, focusing on their ability to keep up 

with rapidly changing malware. This article classifies 

systems by approach and time period to analyze 

development and flaws. This paper also provides a 

framework for future study by discussing assessments of 

industry solutions, malware statistics, and malware evasion 

tactics [9]. Malware targeting the Android platform has 

grown in proportion to the platform's success. Traditional 

malware detectors are unable to identify these new forms 

of malware because of the creative methods malware 

authors use to construct harmful Android apps. Unknown 

Android malware may be detected using machine learning 

methods and the characteristics gathered from static and 

dynamic analysis of Android apps. In this study, we take a 

look at how different Android malware detection systems 

identify malware and compare them using a number of 

criteria. To further emphasize the prevalence of machine 

learning algorithms in this field for identifying Android 

malware in the wild, we were able to locate research work 

in all the Android malware detection strategies that involve 

machine learning [10]. 

3. Existing System: 

Malware is a kind of cyber assault that is both widespread 

and devastating. Results the testing findings showed that 

with just 11 static features and the ExtraTree method, FG-

Droid was able to attain a 97.7% area under the ROC curve 

(AUC) score. As a result of testing several models on the 

Drebin, Genome, and Arslan datasets using machine 

learning (ML), deep neural networks (DNNs), recurrent 

neural networks (RNNs), long short-term memories 

(LSTMs), and gated recurrent units (GRUs), this was born. 

This method examines an app's attributes and behavior to 

see whether it displays any signs of being harmful. 

Permissions, file system interactions, network activities, 

and code function procedures are all examples of things 

that may be examined using heuristics. To detect malicious 

activity, machine learning algorithms examine 

characteristics and trends in the application. New and 

changing malware strains may be detected using this 

strategy. Our study provides suggestions in the form of 

strategies to deal with rising security dangers presented by 

malware and reduce threat and malware infection rates 

based on the evaluated survey papers. Therefore, a novel 

approach of feature grouping was devised to create a 

classifier that is effective despite having little features, 

minimal analysis time, and high classification success. 

Consequences  

❖ It has a cumbersome interface that is difficult to 
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navigate. 

❖ High Propensity to Make Mistakes 

❖ It's a bigger hassle and uses up more supplies. 

4. Proposed Methodology: 

Any Android app's installation and restart activity logs, as 

well as any API calls made by such apps before and after a 

device restart, would be logged and characterized by the 

proposed system. For a more reliable, precise, and scalable 

android detection tool, it is necessary to conduct a critical 

examination of existing mobile malware frameworks, as 

suggested by the proposed model. In this work, we 

examine and categorize mobile malware based on privilege 

escalation and the objectives of their attacks. They also aid 

researchers in understanding the methods used by modern 

mobile malware to evade detection. The suggested model 

is almost as accurate as the current model while using 

much less memory and CPU time. Finally, the model's 

little space and time commitment makes it morally 

preferable to the status quo. Finally, the experimental 

findings are analyzed and contrasted using a variety of 

performance criteria. 

BENEFITS: 

❖ A simple and intuitive interface 

❖ Improved precision and dependability 

❖ The aesthetics of the setting 

❖ More reliable and objective 

4.1 System Architecture: 

The procedure is mapped out by the system's architecture. 

In this case, the website does the searching and archiving 

for us. There, bot logic is utilized to pre-process the input 

and get process details. The algorithm is then applied, and 

further steps are conducted. 

 

Fig1. Work Flow of the Proposed Work. 

The procedure is mapped out by the system's architecture. 

In this case, the website does the searching and archiving 

for us. There, bot logic is utilized to pre-process the input 

and get process details. The algorithm is then applied, and 

further steps are conducted. 

 

Fig2.  Architecture Diagram 

Data is first retrieved from APKs obtained from a Github 

malware repository. The data is then pre-processed before 

analysis. The last step is to feed the processed data into the 

training model. Once the training data is in place, the 

model is complete. The categorization result will be 

delivered in the testing phase using the most precise 

method. 
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3.2 SYSTEM IMPLEMENTATION: 

3.2.1 Pandas: 

Pandas is a very effective library for doing such things 

with data. Series and DataFrame are the two main new data 

types that are presented. Pandas is utilized to effectively 

manage textual data in this system. Filtering, cleaning, 

manipulating, and analyzing data are all made possible by 

its many features. Pandas can conduct a wide variety of 

data operations, including handling missing values, 

aggregations, merging datasets, and more. It is helpful for 

preparing textual data for machine learning algorithms 

since it streamlines processes like data preparation, feature 

extraction, and exploratory data analysis. 

3.2.2 NumPy: 

When working with Python for scientific purposes, the 

NumPy library is indispensable. In order to efficiently 

store and manipulate huge multi-dimensional arrays, it 

introduces the powerful nd array data structure. Here, 

NumPy is utilized to manage numerical information 

extracted from the processed text. It offers a wide variety 

of mathematical operations that may be performed 

numerically on arrays. Processing the numerical 

characteristics and feeding them into machine learning 

algorithms requires quick calculations, element-wise 

operations, arrayslicing, and reshaping, all of which are 

made possible by NumPy. 

3.2.3 Scikit-learn: 

Scikit-learn is a very well-liked machine learning package 

that has several useful tools and algorithms. Scikit-learn 

provides crucial parts of this system, including those 

responsible for identifying hate speech. To transform the 

cleaned-up text into a numerical form usable by machine 

learning, we use the CountVectorizer tool from Scikit-

learn. It does this by converting the text into a matrix of 

token counts, which accurately represents the occurrence 

of individual words and n-grams. The Decision Tree 

Classifier in Scikit-learn is a supervised learning technique 

that uses a labeled dataset to develop a set of decision rules 

that may be used to categorize hate speech and abusive 

language. 

3.2.4 Flask: 

Flask is a Python web framework that is both lightweight 

and adaptable, making it ideal for developing both 

websites and APIs. Flask is used to build the hate speech 

detection system's user interface. Users may access the 

system through a web-based interface or application 

programming interface (API) endpoints. 

Flask is responsible for directing requests and creating 

answers. It allows the system to take user-entered content, 

process it using the hate speech detection model, and 

provide the findings to the authors of the material. The 

user-facing part of the system may benefit from Flask's 

simplicity and adaptability. 

3.2.5 APK: 

The Android operating system, and a number of other 

Android-based operating systems, utilizes the Android 

Package file format with the .apk extension to distribute 

and install mobile applications, mobile games, and 

middleware. 

3.2.6 Werkzeug: 

To create WSGI (Web Server Gateway Interface) 

applications in Python, you may make use of the 

Werkzeug library collection. One of the most complex 

WSGI utility libraries, it began as a basic collection of 

assorted utilities for WSGI applications. The developer is 

free to choose their preferred approach to request 

processing, database connectivity, and template engines. 

Don't compel people to rely on each other. Features like as 

a debugger, request/response objects, cache control 

objects, cookie management, file uploads and a plethora of 

community-built extensions are all part of the package. To 

be distributed using the BSD license. 

3.2.7 Androguard: 

The Androguard is a reverse engineering tool for Android 

applications written in the Python programming language. 

In order to achieve this, we need to extract the app's 

components from their raw Android Package (.apk) files. 

Malware and security flaws may be tested for at this point. 

As long as Python is there, Androguard will run on Linux, 

Windows, and OSX. Please be aware that there are several 

dependencies involved with operating Androguard on 

Windows, and for the purpose of simplicity, we suggest 

that you utilize a Virtual Machine to run Linux instead. 

3.2.8 Keras: 

Keras is the TensorFlow platform's high-level API, 

providing a friendly, highly-productive interface for 

addressing issues in machine learning with a special 

emphasis on cutting-edge deep learning techniques. For 

rapidly creating and releasing machine learning solutions, 

it offers fundamental abstractions and building pieces. 

3.2.9 Pickle: 

Pickle is a module in Python used for serializing and de-

serializing Python objects. This convertsPython objects 

like lists, dictionaries, etc. into byte streams (zeroes and 

ones). You can convert the byte streams back into Python 

objects through a process called unpickling. Pickling is 

also known as serialization, flattening, or marshaling. 
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5. Results and Discussion: 

The need of efficient hate speech detection systems has 

only grown in the dynamic environment of internet 

discourse. In order to keep online communities free from 

damage, these technologies are essential for monitoring 

content and removing offending material. While progress 

has been made with current hate speech detection systems, 

there is still more that can be done to strengthen and 

improve upon them. This article will explore a number of 

methods for improving hate speech detection systems, such 

as using more complex NLP methods, improved feature 

engineering, a more diverse set of training data, and active 

learning tactics. These developments have the potential to 

lead to more dependable methods for policing 

objectionable language and preventing the spread of hate 

speech online. Advanced Natural Language Processing 

(NLP) methods are one of the most promising areas for 

enhancing hate speech detection systems. Simpler models, 

such those used by rule-based or shallow machine learning 

approaches, are often used by conventional systems. While 

helpful, these approaches may not be enough for 

identifying subtle forms of hate speech that vary greatly 

depending on the setting. There are more advanced NLP 

models that may be used to overcome this restriction, such 

as Long Short-Term Memory (LSTM) networks and BERT 

(Bidirectional Encoder Representations rom 

Transformers). 

 

Fig3. Represents the Apk file for virus Detection. 

Long short-term memory (LSTM) networks are a kind of 

deep learning model that performs particularly well with 

sequence data, such as that seen in text analysis. Sentiment 

analysis, text production, and language translation are just 

few of the areas where these models have excelled. In 

order to improve the accuracy of hate speech detection 

systems, LSTM networks are being included into them. 

These networks are able to better recognize the contextual 

links between words and phrases. Because of this enhanced 

comprehension, the algorithm is able to detect hate speech 

that would otherwise be overlooked by more simplistic 

approaches. In a similar vein, BERT, a cutting-edge 

transformer-based paradigm, has significantly advanced 

the science of natural language processing. The capacity of 

BERT to extract meaning and context from text is 

unrivaled. Systems designed to identify hate speech might 

benefit from BERT's ability to understand nuances in 

language including sarcasm, irony, and cultural allusions. 

Enhanced detection accuracy is the result of better 

contextual comprehension. 

 

Fig4. Represents the APK Tester 

 Improvements may be done both with improved NLP 

methods and with enhanced feature engineering. Selecting 

and developing useful qualities that the model employs in 

prediction is what feature engineering is all about. Basic 

linguistic variables, including word frequency and length, 

are typically used by conventional hate speech detection 

systems. Hate speech, however, often employs figurative 

language and symbols, thus these characteristics may not 

be exhaustive. Researchers might look at more 

sophisticated feature engineering methods to overcome this 

restriction. Word embeddings, which map words to dense 

vector spaces, are one such method, as are part-of-speech 

tagging and named entity identification, both of which may 

be used to determine relevant context. Such sophisticated 

elements might enrich the model's representation of the 

text, enabling it to pick up on hints of hate speech that 

would otherwise go unnoticed. In addition, factors unique 

to online hate speech, such as the prevalence of slang and 

emoticons meant to express contempt, may play a 

significant role in boosting the reliability of the system. 
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Fig5. Represents the selection of document from the file. 

Diversifying the training data is also a crucial part of 

improving hate speech detection systems. The success of 

machine learning models relies heavily on the quality of 

their training data. It is possible that the range of 

languages, cultures, and settings in which hate speech 

might occur is underrepresented in the datasets used to 

train many current algorithms. Therefore, these algorithms 

may not be able to properly recognize hate speech outside 

of their training environments.  

 

Fig6. Represents the output result after selection of the 

document from the file. 

More varied and representative training data is needed to 

overcome this obstacle. This information has to represent 

the diverse nature of online interaction by include a wide 

range of languages, dialects, cultural settings, and 

platforms. In addition, as time passes and new cultural 

references and societal challenges arise, so does hate 

speech.  

Training data should be regularly updated to ensure that 

the system can effectively identify new and emerging 

kinds of hate speech. Unfortunately, collecting large 

volumes of labeled training data may be a time-consuming 

and costly endeavor. This issue may be addressed with the 

use of active learning strategies. When it comes to 

choosing training data, active learning is a machine 

learning method that prioritizes difficult samples. The 

quantity of labeled data needed may be minimized by the 

strategic selection of samples that are on the model's 

decision boundary or those it is unsure about. 

 

Fig7. Represents the output result after selection of the 

document that detects the Virus. 

Active learning not only helps the model learn faster, but it 

also helps preserve resources. It allows the algorithm to 

become more responsive to shifting patterns of hate speech 

with less tagging effort. In reality, this means the algorithm 

may actively seek input from human annotators to improve 

its hate speech recognition skills when it meets new and 

possibly damaging material. In conclusion, it is crucial that 

hate speech detection technologies be developed and 

improved in the current digital environment. These 

systems may be made more reliable and accurate by using 

active learning procedures, increasing the diversity of 

training data, and adding sophisticated NLP techniques 

like as LSTM and BERT. Advanced feature engineering 

approaches enable richer representations of text, while 

more complex models allow for a more nuanced grasp of 

context and language. In order to keep up with the dynamic 

nature of online hate speech, the system is trained on a 

wide variety of data and uses active learning methods. Our 

attempts to curb hate speech and inflammatory language 

online must evolve in tandem with the rapid development 

of related technologies. By making these changes, we can 

look forward to improved hate speech detection algorithms 

that will make the internet a more welcoming and safe 

place for everyone to participate. 

6. Conclusion: 

Because of the Android operating system's meteoric rise in 

popularity among consumers, software developers are 

increasingly focusing their attention on this sector. This 

pattern has led to the distribution of a large number of apps 

that are helpful to consumers in the marketplaces. In this 

manner, many apps are openly shared, and a significant 

portion of them include the propagation of harmful 
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software. As a result, there is a technique of distribution 

that involves the inclusion of both harmful and innocuous 

programs. Malware that targets Android devices is among 

the most deadly dangers that can be found on the internet, 

and its frequency has skyrocketed over the last several 

years.  

Cyber security professionals are confronted with an 

unsolved issue. Identifying and categorizing Android 

malware may be accomplished using a number of different 

technologies that are based on machine learning. Malware 

classification may be effectively carried out with the help 

of this project's Machine Learning Model, which makes 

use of feature selection and a Machine Learning Classifier. 

Our model has shown promising results, with an SVM 

Category Classification accuracy of over 93% and an ANN 

Category Classification accuracy of over 90.82% 

respectively. In the not too distant future, we want to 

provide an online service that, among other things, will 

enable users to assess whether or not a program 

(application) is malware before downloading it, as well as 

the program's category and family. A great deal of progress 

would be made in protecting the safety of an Android 

smartphone if this safeguard were taken. 
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