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Abstract: Digital mammography is a tool for early detection of breast cancer, but its sensitivity is low in dense breasts, and the false 

negatives are high. Therefore, this research aims to create a digital mammography data transformation model to improve the accuracy of 

benign and malignant detection in breast and compare it with other advanced methods. This research took data from Dokter Sutomo 

Hospital Surabaya and Sanglah Hospital Denpasar in the form of mammogram images taken from the hospital database with complete 

pathology results from 2010 to 2023. A total of 442 mammograms consisting of 114 benign and 328 malignant, 50% taken for training as 

many as 57 benign and 164 malignant, and 50% for trials as many as 57 benign and 164 malignant. This research used three methods: K-

Nearest Neighbor (KNN), Naïve Bayes, and Support Vector Machine (SVM). Then, this research compared the three methods. Inclusion 

criteria: complete pathology results, no radiotherapy, and chemotherapy. The local hospital ethics committee approved this research. All 

patients were informed and obtained their verbal consent.The proposed KNN method with binary transformation had the best value with a 

sensitivity of 96.66% and False Negative 0%, compared to the Naïve Bayes method, which had a sensitivity value of 94.44% and False 

Negative 4%. In comparison, the SVM method had a sensitivity value of 84.85% and False Negative 4.16 %. Our meta-analysis showed 

that transformed physical parameters could increase sensitivity and decrease False Negatives. However, these findings must be proven on 

larger and multiple datasets with different mammography scanners 
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1. Introduction 

Breast cancer is the disease most feared by women. 

According to the World Health Organization In 2020, 7.8 

million women suffered from breast cancer in the last 5 

years[1]. Breast cancer is a significant public health 

problem due to the increasing death rate due to breast 

cancer[2]. The second main cause of death in women is 

breast cancer[3]. The main cause of death in women and 

the most commonly diagnosed is breast cancer[4], [5]. 

Breast cancer is the most prevalent in women throughout 

the world and is also the leading cause of death among 

women[6], [7]. Breast cancer is the main cause of death in 

Nigeria[8]. The main cause of death in women worldwide 

is breast cancer[9]. 

Breast cancer is the leading contributing factor to cancer-

related deaths for women in the age group 20 to 59 years 

worldwide[4], [10]. Early detection is needed to reduce 

mortality rate. In many countries, breast cancer is one of 

the most frequently diagnosed[11]. Early detection 

remains the mainstay of breast cancer control and better 

treatment[12]. Early detection with mammography 

screening can reduce breast cancer morbidity and 

mortality[11]. Early detection and appropriate treatment 

can reduce breast cancer mortality[13]. Early detection 

can be improved by combining biomarkers with screening 

mammograms[14]. Microcalcifications were found to be 

a sign of breast cancer. Signs of breast cancer are  if 

microcalcification is found[15]. Microcalcification has 

different absorption and scattering properties between 

benign and malignant[16]. The appearance of isolated 

microcalcifications on postoperative mammography is 

characteristic of breast cancer recurrence[17]. 

Microcalcification identification is an early diagnosis of 

breast cancer and can reduce breast cancer morbidity and 

mortality[18]. Mammography is able to detect 

microcalsification that is very small in size. 

Mammography plays an essential role in breast cancer 

screening as it can be used to diagnose breast masses and 

areas of breast calcification early[19]. The main modality 

used for breast cancer screening is mammography[18]. 

The most widely used tool for breast screening is 

mammography[20]–[22]. Breast soft tissue can be seen by 

mammography[23]. In developed countries, women over 
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40 are encouraged to undergo mammography screening 

yearly. The mortality rate of breast cancer at the age of 50-

60 years can be reduced by 20%-35% by mammography 

examination[24]. In Spain, women aged 50-69 years are 

advised to undergo mammography screening every 2 

years[25]. The American College of Radiology  since 

2017 recommended mammography screening starting at 

age 40, increasing life expectancy by 5-7 years[26]. 

Before the 2000s, screen-film mammography was used to 

screen for breast cancer. Since the invention of digital 

selectors in 2000, digital mammography has been 

developed for clinical use[27]. In clinical practice, digital 

mammography  is recommended to detect breast 

tumors[28]. Clinical practice follow-up guidelines 

updated by the American society starting in 2013. Annual 

mammographic evaluations should be performed post-

treatment and after completion of radiation therapy[29], 

[30]. The mortality rate of breast cancer can decrease by 

about 23% if routine mammography examination is 

carried out among women invited to attend screening[31], 

[32]. However, in reality the mortality rate from breast 

cancer is still high. The number of deaths from breast 

cancer in 2018 was 626,679 people and new cases 

occurred around 2.09 million people[33]. Cancer is the 

second leading cause of death in the world after heart 

disease (8.97 million deaths) And the death toll is likely 

to occur around 18.63 million people by 2060[3], [34]. In 

Europe, it is estimated that the incidence of female breast 

cancer between 2020 and 2040 will increase by 7%, and 

the mortality rate will increase by 20.6%[35]. In 2021, the 

American Cancer Society reported that the number of new 

cases was around 281,550 people and the mortality rate 

was 43,600 people [36]. In 2022, the American Cancer 

Society estimates there will be about 1,918,030 new cases 

and 609,360 deaths in the United States[37], [38]. 

Mammography has disadvantages, such as: Breast density 

can affect screening value[39]. Mammography cannot 

screen for dense breast tissue[40]–[42]. Sensitivity will 

decrease if there is fibroglandular tissue covering the 

cancer[43]. Dense breast tissue can increase false 

negatives and decrease sensitivity[44]–[48]. 

Mammography sensitivity depends on breast density, the 

denser the breast, the smaller the   sensitivity[19]. Breast 

cancer detection still uses original data thus far, previous 

research showed the original data results have particularly 

low accuracy.  Khamis et al in 2017[49] used original data 

and obtained an accuracy of 83.3%, whereas Ma et al in 

2017 [50] used original data and obtained an accuracy of 

87.5%. Moreover, Fusco et al in 2020 [51] used original 

data and obtained an accuracy of 83%. Meanwhile, in this 

research used original data and obtained an accuracy of 

62.89%. There is still limited research that performs data 

transformation for the purpose of increasing the accuracy 

of breast cancer detection. Many still do not know how to 

increase sensitivity and reduce false negatives. In 

addition, many still do not know that there are ten physical 

parameters in medical images that can be used to increase 

sensitivity and reduce false negatives. Besides, many also 

do not know that data transformation and variable 

selection input, plays a very important role in increasing 

sensitivity and reducing false negatives. Therefore, this 

research aims to create a digital mammography data 

transformation model to improve the accuracy of benign 

and malignant detection in breast cancer and compare it 

with other advanced methods. This research is very 

important, considering that the number of breast cancers 

is increasing every year[35]. This research is important 

because 10%-30% of cases of dense breasts are 

undetected using mammography[14], [52]. 

2. Materials and Methods 

This research is quantitative research, with a population in 

the form of secondary data on benign and malignant 

mammograms that have never been biopsied. Samples 

were taken randomly of 442 mammograms from the entire 

population which is divided into 50% mammograms for 

training and 50% mammograms for trial. The research 

instrument was a document of the results of an anatomical 

pathology examination. This research procedure carried 

out is as in Figure 4. 

2.1 Datasets 

Before obtaining secondary mammography data from the 

radiology database at Dokter Sutomo Surabaya Hospital, 

the researchers took care of ethical clearance first. After 

obtaining ethical clearance with number 

07/Panke.KKE/I/2012 dated January 26, 2012, and No: 

1204/UN.14.2/KEP/2017 dated Denpasar, May 17, 2017, 

the next day starting January 27, 2012 until now, this 

research started taking secondary mammography data. 

The stages to obtain secondary mammography data were 

as follows. First, the research took the patient record data 

in the anatomical pathology room. Then, the research 

recorded the patient record number and anatomical 

pathology results of the operated patients. Further, the 

research looked for the patient’s mammography data 

based on the patient’s record data in the radiology room. 

This research only took the mammography data with a 

data record and a definite disease from anatomical 

pathology examination. The researchers did not have 

access to information that could identify individual 

participants during or after data collection. This research 

took data from Dokter Sutomo Hospital Surabaya and 

Sanglah Hospital Denpasar in the form of mammogram 

images taken from the hospital database with complete 

pathology results from 2010 to 2023. A total of 442 

mammograms, consisting of 114 benign and 328 

malignant, were taken. 50% for training with 57 benign 
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and 164 malignant, and 50% for testing with 57 benign 

and 164 malignant, respectively. Inclusion criteria: 

complete pathology results, no radiotherapy, and 

chemotherapy. The local hospital ethics committee 

approved this research. All patients were informed and 

obtained their verbal consent. The obtained 

mammography image was cropped with a suspicious mass 

of 2 cm x 2 cm. Then, this research calculated ten physical 

parameters with a distance between pixels of 1 to 10 

pixels. Thus, this research obtained 100 variables for each 

mammography image. Then, the obtained data was made 

into three models. The first model was untransformed 

(original) data, the second was binary transformed, and 

the third was bipolar transformed. Further, this research 

conducted an ANOVA test to select significant variables 

to classify benign and malignant. The results can be seen 

in Table 2 and Table 3. Furthermore, this research used 

the best data model between the three models as input 

variables for the Naïve Bayes and SVM methods. 

2.2 Mammography 

The mammography used in the Dokter Sutomo Hospital 

dataset was the Kodak brand type Dryview 6800 laser 

image for printing mammography films and direct view 

cr 975 for placing mammography films. The 

mammography tool settings used KV = 30, brightness = 

- 7, MAS = 25, contrast = -4, latitude = 11, and film size 

= 18 x 24 cm. 

2.3 Image analysis 

To calculate the physical parameters obtained from 

mammographic images from the dataset of Dokter 

Sutomo Hospital in Surabaya, first, the researchers 

cropped the suspicious mass with a size of 2x2 cm. 

Then, it was saved in BMP format and improved image 

quality with histogram equalization. Furthermore, the 

research analyzed the image by counting the number of 

gray level pairs appearing at a distance of 1 pixel, as 

shown in Figure 1, and gray level pairs at a distance of 

2 pixels, as shown in Figure 2. 

 

Fig. 1. Gray Level Pairs at a Distance of 1 Pixel            Fig. 2. Gray Level Pairs at a Distance of 2 Pixels 

 

And so on until the gray level pair at distance 10, as shown in Figure 3 

 

Fig. 3. Gray Level Pairs at a Distance of 10 Pixels 

 

The number of gray level pairs was obtained from 

H(y1,y1,d1) to H (y255,y255,d10) from the ten distances 

between pixels. Then, continuing with calculating the 

entropy, contrast, angular second moment, moment 

difference inverse, correlation, mean, deviation, entropy 

of hdiff, angular second moment of hdiff, and mean hdiff 

using equations (1 to 11): [53], [54] 

𝐸𝑛𝑡𝑟𝑜𝑝ℎ𝑦 =

− ∑ ∑ 𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑) 𝑙𝑜𝑔 𝐻 (𝑦𝑞 , 𝑦𝑟 , 𝑑)
𝑦𝑡
𝑦𝑟=𝑦1

𝑦1
𝑦𝑞=𝑦1

  (1) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ (𝑦𝑞 − 𝑦𝑟)
2

[𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)]
𝑦𝑡
𝑦𝑟=𝑦1

𝑦1
𝑦𝑞=𝑦1

2

         

                                                                                                             

(2)  
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𝐴𝑛𝑔𝑢𝑙𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 =

∑ ∑ [𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)]
𝑦𝑡
𝑦𝑟=𝑦1

𝑦1
𝑦𝑞=𝑦1

2

  (3) 

Moment Differential Inverse =

∑ ∑ [
𝐻(𝑦𝑞,𝑦𝑟,𝑑)

1+(𝑦𝑞−𝑦𝑟)
2]

𝑦𝑡
𝑦𝑟=𝑦1

𝑦1
𝑦𝑞=𝑦1

    𝑦𝑟 ≠ 𝑦𝑞    (4) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑ ∑ 𝑦𝑞𝑦𝑟𝐻(𝑦𝑞,𝑦𝑟,𝑑)−𝜇𝐻𝑚(𝑦𝑞,𝑑)𝐻𝑚(𝑦𝑟,𝑑)
𝑦𝑡
𝑦𝑟=𝑦1

𝑦𝑡
𝑦𝑞=𝑦1

𝜎(𝐻𝑚(𝑦𝑞,𝑑))𝜎(𝐻𝑚(𝑦𝑟,𝑑))
   

    (5) 

With 

𝐻𝑚(𝑦𝑞 , 𝑑) = ∑ 𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)
𝑦𝑡
𝑦𝑟=𝑦1

, 𝐻𝑚(𝑦𝑟 , 𝑑) =

∑ 𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)
𝑦𝑡
𝑦𝑞=𝑦1

  

𝑀𝑒𝑎𝑛 = ∑ 𝑦𝑞𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)
𝑦𝑡
𝑦𝑞=𝑦1

   (6) 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

√∑ [𝑦𝑞 − ∑ 𝑦𝑝𝐻𝑚(𝑦𝑝, 𝑑)
𝑦𝑡
𝑦𝑞=𝑦1

]
2

𝐻𝑚(𝑦𝑞 , 𝑑)
𝑦𝑡
𝑦𝑞=𝑦1

  

    (7) 

Second − order histogram = 𝐻𝑑𝑖𝑓𝑓(𝑖, 𝑑) =

∑ ∑ 𝐻(𝑦𝑞 , 𝑦𝑟 , 𝑑)
𝑦𝑡
𝑦𝑟=𝑦1

𝑦𝑡

𝑦𝑞=|𝑦𝑞−𝑦𝑟|=𝑖
   (8) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 − 𝑜𝑟𝑑𝑒𝑟 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚  

= − ∑ 𝐻𝑑𝑖𝑓𝑓(𝑖, 𝑑) 𝑙𝑜𝑔 𝐻𝑑𝑖𝑓𝑓 (𝑖, 𝑑)      
𝑖𝑡
𝑖=𝑖1

 (9) 

Where EHD is Entropy of the second-order histogram 

𝐴𝑛𝑔𝑢𝑙𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 −

𝑜𝑟𝑑𝑒𝑟 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚  

= ∑ [𝐻𝑑𝑖𝑓𝑓(𝑖, 𝑑)]
2𝑖𝑡

𝑖=𝑖1
   (10) 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 − 𝑜𝑟𝑑𝑒𝑟 ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 =

∑ 𝑖𝐻𝑑𝑖𝑓𝑓(𝑖, 𝑑)
𝑖𝑡
𝑖=𝑖1

    

 (11) 

With yq, yr, and d, respectively, the gray-level value of 

the first pixel, the gray-level value of the second pixel, and 

the distance between the first pixel and the second pixel. 

H(yq, yr, d) is the number of gray-level pairs at a distance 

d. 

2.4 Related Work 

2.4.1 Firmness Difference Based Method 

Several works in the literature focused on the problem of 

benign malignant classification using Elastography. This 

technique utilized the theory that benign and malignant 

have differences in firmness. The image results obtained 

would be compared to the suspicious mass with its 

surroundings. If a suspicious mass has a stiffness that is 

uneasily deformed compared to its surroundings, it is 

described as a dark color. If a suspicious mass has a 

stiffness that is easily deformed compared to its 

surroundings, it is described as a light color. Malignant 

masses usually appeared dark and highly contrasted with 

the surrounding breast tissue during deformation. Benign 

masses usually appeared lighter and had lower contrast to 

the surrounding breast tissue during deformation. Benign 

tumors were loosely attached to the surrounding tissue, 

whereas malignant tumors were usually characterized by 

firm desmoplasticity. Research conducted by[55] to 

differentiate tumor firmness using the Role of supersonic 

shear wave imaging quantitative Elastography (SSI) by 

measuring shear wave velocity using a color scale 

calibrated in kilopascals (kPa). The results obtained for 

malignant were 134 kPa, while for benign was 50 kPa. 

2.4.2 K-Nearest Neighbor-Based Method  

Previous studies on sampling classification models or 

dataset collection applied the K-NN method. Research 

conducted by [56] optimized K-Nearest Neighbor 

model was used to find the best hyperparameters for the 

best K. From the Kaggle dataset, the best k value was 9 

with an accuracy of 94.35%. 

2.5. The Proposed Method 

2.5.1 Data Normalization 

This research proposed the input data be normalized first 

before using the KNN method to improve Accuracy, 

Sensitivity, Specificity, and Precision. There were three 

data models used in this research, namely non-normalized 

data, binary normalized data, and bipolar normalized 

data. The equation for normalizing data was proposed as 

follows: 

Binary Normalization= 0.8 * ( X – Min) / (Max – Min) 

+ 0.1     (12) 

Bipolar Normalization= 0.8*(X – Min)/(Max – Min) + 

0.1 +(X – Min)/(Max – Min) – 1  (13) 

2.5.2 Classification Algorithm 

The proposed model involved using a classification 

algorithm to classify benign-malignant and comparing 

its performance with similar data sets. This 

classification algorithm consisted of K-Nearest 

Neighbors, Naïve Bayes, and Support Vector Machines. 

2.5.3 K-Nearest Neighbor Algorithm 
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After transforming the data, this research conducted an 

ANOVA test to select significant variables that could 

differentiate malignant and benign. This research 

selected variables whose p-value was smaller than 0.05, 

as shown in Table 2. Then, the selected variables were 

used as input variables. The KNN method used the 

following equation: 

  (14) 

2.5.4 Naïve Bayes Method 

This research also used the Naïve Bayes method to 

classify benign and malignant. The results are shown in 

Figure 5, Table 5, Table 6 and Table 7. 

2.5.5 Support Vector Machine Method 

This research also used the SVM method to classify 

benign and malignant. The results are shown in Table 5, 

Table 6, and Table 7. 

2.6 Evaluation Method 

This research used an evaluation method to obtain the 

performance of each stage of the recommended model, 

using the confusion matrix Table 1 and equations (15 to 

20): 

Table 1. Confusion Matrix 

 Actually 

 

Predictio

ns 

 Maligna

nt 

Benig

n 

Maligna

nt 

T.P F.P 

Benign FN TN 

 

Accuracy = (TP+TN) / (TP+TN+FP+FN) (15) 

Sensitivity (Recall) = TP/(TP+FN) (16) 

Specificity = TN /(FP+TN)  (17) 

Precision = TP / (TP+FP)   (18) 

TPR = TP / (TP+FN)   (19) 

FPR = FP / (FP+TN)   (20) 

The results are shown in Table 4 to Table 6, and Figure 

6. 

2.7 Research Flowchart 

The sequence of research steps carried out is shown in 

Figure 4. 

 

Fig. 4. Research Flowchart 

3. Results and Discussions 

3.1 Results 

This research first conducted an ANOVA test to select 

genuinely significant variables for classifying benign and 

malignant to increase the sensitivity value and reduce 

False Negative. The results are shown in Table 2 and 

Table 3. Then, this research entered the significant 

variables using various methods, such as KNN, Naïve 

Bayes, and SVM. Further, the research calculated TP, FP, 

TN, FN, accuracy, sensitivity, specificity, precision, and 

percent positive phase, as shown in Table 4, Table 5, 

Table 6, and Table 7. This research calculated True 

Positive Rate (TPR) and False Positive Rate (FPR) values 

by making an ROC curve to evaluate the best model. The 

best result is a graph close to 1, as seen in Figure 6, Figure 

7, and Figure 8. 

 

 

 

 

( ) −
=

=

=
ni

i
UT ii

D
1

2
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Table 2. ANOVA Test Results 

N

o 

param

eter 

T

y

p

e 

Transformation 

   Original Binary Bipolar 

   Means Median Varia

nces 

P Means Media

n 

Varian

ces 

P Means Media

n 

Varian

ces 

P 

1 Entry2 B 3.62391

89 

3.67239

00 

0.02

7 

0.3

3 

0.6818

84 

0.7087

37 

0.017 0.0

04 

0.4092

40 

0.4696

59 

0.084 0.0

1 

m 3.64806

09 

3.68146

00 

0.02

6 

0.6206

83 

0.6768

51 

0.043 0.2715

38 

0.3973

15 

0.217 

2 Entry1

0 

B 3.65570

46 

3.68822

00 

0.02

3 

0.2

1 

0.7497

78 

78137

58 

0.015 0,0

0 

0.4307

35 

0.5144

50 

0.106 0,0

0 

m 3.68494

69 

3.72387

50 

0.02

3 

0.3281

08 

29274

12 

0.029 -

0.3867

5 

-

0.4663

3 

0.149 

3 Contr1 B 316.332

798 

279.885

670 

3124

1 

0.1

8 

0.2050

00 

0.1691

25 

0.017 0,0

0 

-

0.6637

4 

-

0.7444

6 

0.085 0,0

0 

m 384.860

324 

282.776

475 

1366

39 

0.3137

83 

0.2660

59 

0.034 -

0.4189

8 

-

0.5263

6 

0.172 

4 Contr1

0 

B 1381.88

089 

1091.65

350 

8134

65 

0.1

1 

0.6477

64 

0.5496

63 

0.161 0,0

0 

-

0.4313

8 

-

0.5196

1 

0.130 0.0

3 

m 1644.74

618 

1365.60

101 

1304

34 

0.1370

83 

0.1128

64 

0.011 -

0.8165

6 

-

0.8710

5 

0.058 

5 MA7 B 0.00048

44 

0.00026

00 

0,00

0 

0.6

9 

0.1083

58 

0.1015

52 

0.004 0.0

0 

-

0.8811

9 

-

0.8965

0 

0.020 0.0

1 

m 0.00072

24 

0.00024

00 

0,00

0 

0.1370

39 

0.1152

86 

0.011 -

0.8166
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Table 3. Significant Data to Differentiate Benign and Malignant 

Data type Significant Physical Parameters 

Original Dev1, Dev2, Dev3, Dev4, Dev5, Dev6, Dev7, Dev8, Dev9, Dev10, 

MaHd1, MaHd2, MaHd3, MaHd4, MaHd5, MaHd6, MaHd7, MaHd8, 

MaHd9, and MaHd10 

Binary Transformation Entr10, Contr10, MA10, MD10, EntrHd10, MaHd10, and MeanHd10 

Bipolar Transformation Entr2, Contr1, MA7, MD1, EntrHd1, MaHd1 and MeanHd4 

 

Table 4. TP, FP, TN and FN Calculation Results Using the KNN Method 

Data Type  

T.P F.P FN TN 

Original 22 47 35 117 

Binary Transformation 57 2 0 162 

Bipolar Transformation 48 21 9 143 

 

Table 5. Performance comparison with KNN, Naïve Bayes, and SVM methods with Original transformation data 

Metode accuracy Sensitivity Specificity Precision False 

Negatif 

KNN 62.90 % 38.60 % 71.34% 31.88 % 62.90 % 

Naïve Bayes 72.00 % 72.00 % 0.00 % 100 % 28.00 % 

SVM 97.76 % 96.49 % 91.46 % 79.71 % 0.91% 

 

Table 6. Performance comparison with KNN, Naïve Bayes, and SVM methods with binary transformation data 

Metode accuracy Sensitivity Specificity Precision False 

Negatif 

KNN 99.09 % 96.66 % 98.78 % 96.61 % 0.00 % 

Naïve Bayes 92.00 % 94.44 % 85.71 % 94.44 % 4.00 % 

SVM 95.83 % 84.85 % 100 % 100 % 4.16% 
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Table 7. Performance comparison with KNN, Naïve Bayes, and SVM methods with bipolar transformation data 

Metode accuracy Sensitivity Specificity Precision False 

Negatif 

KNN 86.43 % 84.21% 87.19% 69.57 % 86.43 % 

Naïve Bayes 84.00 % 81.82 % 100 % 100 % 16.00 % 

SVM 91.85 % 91.23 % 92.07 % 80 % 2.26% 

 

 

Fig. 5. Classification Graph Using Naïve Bayes. 

 

Fig. 6. Roc curve original 

 

Fig. 7. Roc curve binary 
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Fig. 8. Roc curve bipolar 

3.2 Discussions 

Not all physical parameters or features on a mammogram 

could differentiate between benign and malignant. Thus, 

an ANOVA test was needed to find significant 

parameters to differentiate between benign and 

malignant. Using original measurement data could not 

increase sensitivity and reduce false negatives, so data 

transformations such as binary and bipolar 

transformations were needed. Binary transformation was 

able to increase sensitivity and reduce false negatives. By 

using the same data and the same data transformation 

(binary transformation), the KNN method performance 

had the best performance, followed by the Naïve Bayes 

and SVM methods. The results of the literature study 

showed that data from the American Cancer Society 

Statistics in 2021 revealed 281,550 new cases of invasive 

breast cancer diagnosed among American women, 

ultimately resulting to the death of about 43,600[36]. 

According to the American Cancer Society, there will be 

an estimated 1,918,030 new cancer cases and 609,360 

deaths in the United States by 2022[38]. In Europe, it is 

estimated that the incidence of female breast cancer 

between 2020 and 2040 will increase by 7%, and the 

mortality rate will increase by 20.6%[35]. To overcome 

this case, the government should recommend routine 

examinations for women aged 40 years and above and 

conduct breast cancer screening. In addition, medical 

professionals must intervene in the community to 

socialize how to detect breast cancer early. 

The results of previous literature studies showed that 10% 

-30% of cases of dense breasts were undetected using 

mammography[14], [52], and dense breast tissue could 

reduce the sensitivity of mammography[40]–[42] 

Besides, mammography had False Negative ranging from 

10-15% of cases[57]. Literature studies showed that the 

comparison of accuracy, sensitivity, and specificity 

values with other sophisticated methods can be seen in 

Table 8.

Table 8. Summary of Performance Comparison Results of the Method Classification with the Proposed Data 

Normalization and Other Advanced Methods. 

Study years method accuracy Sensitivity Specificity 

Awad[55] 2013 (SSI) Not mentioned Not 

mentioned 

Not 

mentioned 

Khamis et al.[49] 2017 sonoelastographic strain 

ratio 

83.3 % 100% 88 % 

Aleem et al.[58] 2018 diffusion-weighted 

magnetic resonance 

imaging  

Not mentioned 89 % 94.7 % 

Abraham et al.[59] 2018 contrast enhanced MRI, 

diffusion-weighted MRI 

and proton-MRS 

Not mentioned 87.5 % 93.3 % 
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Mus et al.[60] 2017 Time to enhancement 

derived from ultrafast 

breast MRI  

Not mentioned Not 

mentioned 

Not 

mentioned 

Li et al.[61] 2018 contrast-enhanced 

sonography 

Not mentioned Not 

mentioned 

Not 

mentioned 

Liu et al.[62] 2019 Histogram analysis of 

diffusion kurtosis 

imaging 

Not mentioned 85.71 % 93.33 % 

Forte et al.[16] 2020 grating interferometry-

based mammography 

Not mentioned Not 

mentioned 

Not 

mentioned 

Ma et al.[7] 2021 diffusion weighted 

imaging and intravoxel 

incoherent motion 

Not mentioned 87 % 80% 

Ma et al.[63] 2021 deep learning neural 

architecture  

Not mentioned 70 % 90% 

Wang et al.[64] 2022 contrast-enhanced 

ultrasound 

Not mentioned 87 % 79 % 

Ma et al.[50] 2017 contrast-enhanced MRI 87.5 % 88.8 % 85.5 % 

Kanao et al.[65] 2018 Value of T2 weighted 

and diffusion weighted 

MR images 

Not mentioned Not 

mentioned 

Not 

mentioned 

Fusco et al.[51] 2020 magnetic resonance 

imaging and diffusion 

weighted MRI imaging 

83 % 88 % 77 % 

Zhang et al.[66] 2022 Quantitative transport 

mapping  

Not mentioned Not 

mentioned 

Not 

mentioned 

Han et al.[67] 2021 Genome-wide 

nucleosome profiles of 

plasma cell-free DNA 

Not mentioned 70.8 % 76.5 % 

Choi et al.[68] 2017 Comparison of 3D and 

2D shear-wave 

elastography 

Not mentioned 81.9 % 84 % 

Wubulihasimu et 

al.[69] 

2018 contrast-enhanced 

ultrasound  

Not mentioned 87 % 80% 

Wasan et al.[70] 2019 digital breast 

tomosynthesis 

97 % Not 

mentioned 

Not 

mentioned 

Chen et al.[71] 2020 Multiple b-valued 

diffusion-weighted 

imaging 

Not mentioned 97.7 % 55 % 

Yu et al.[72] 2021 shear-wave elastography  Not mentioned 98.7 % 62.1 % 

Eroglu et al.[23] 2021 Convolutional Neural 

Networks  

95.6 % 95.6 % 97.78 

Mosapour et al.[73] 2020 Expression levels of 

VLDL receptor and 

VLDL-c levels 

Not mentioned Not 

mentioned 

Not 

mentioned 

Shia[74] 2021 support vector machine Not mentioned 94.34 % 93.22 % 
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Davoudi et al.[75] 2014 Doppler Sonography Not mentioned Not 

mentioned 

Not 

mentioned 

Handayani et al.[76] 2021 K-Nearest Neighbor  97 % Not 

mentioned 

Not 

mentioned 

Naïve Bayes  94 % Not 

mentioned 

Not 

mentioned 

Assegie T.[56] 2021 Optimized K-Nearest 

Neighbor 

94.35 % Not 

mentioned 

Not 

mentioned 

Gunawan et al. 2023 K-Nearest Neighbor 

with Binary Transformed 

physics parameter data 

99.095 % 96.661 % 98.781 % 

Gunawan et al. 2023 K-Nearest Neighbor 

with Bipolar 

Transformed physics 

parameter data 

86.425 % 84.210% 87.195% 

Gunawan et al. 2023 K-Nearest Neighbor 

with non- Transformed 

physical parameter data 

62.896 % 38.596 % 71.341% 

Gunawan El al. 2023 Naïve Bayes 92,000 % 94.444 % 85.714 % 

Gunawan et al 2023 Support Vector Machine 95.833 % 84.848 % 100% 

 

Our proposed method is not much different from other state-of-the-art methods. 

4. Conclusion 

Breast cancer detection still uses original data thus far, 

previous research showed the original data results have 

particularly low accuracy. Khamis et al in 2017[49] used 

original data and obtained an accuracy of 83.3%, whereas 

Ma et al in 2017 [50] used original data and obtained an 

accuracy of 87.5%. Moreover, Fusco et al in 2020 [51] 

used original data and obtained an accuracy of 83%. 

Meanwhile, in this research used original data and 

obtained an accuracy of 62.89%. This research proposed 

using transformed data to increase accuracy. In this 

research, binary and bipolar transformation data were 

used. The result obtained in this research were able to 

increase accuracy to 99.09% for binary transformed data 

and 86.43% for bipolar transformed data, which 

previously was 62.9% for original data. The weakness of 

using original data is the low accuracy value and high false 

negatives. Therefore, this research used data 

transformation techniques. The data transformation is 

carried out using 3 data models, namely original, bipolar, 

and binary model. From the result of this research 

analysis, it was found that the original data was not 

significant for detecting benign and malignant breast 

cancer. Meanwhile, binary data showed significant result. 

Besides that. Bipolar data showed significant result, 

although not as good as binary data, however more 

advanced than the original data. Based on data 

transformation in this analysis, it was found that binary 

data was more significant in increasing the accuracy of 

cancer detection. The contribution of this research is that 

with the data transformation method, benign and 

malignant cancer types are more accurately detected.  
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