

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 696

A Hybrid Cost Estimation Method for Planning Software Projects

Using Fuzzy Logic and Machine Learning

Ajay Jaiswal*1, Jagdish Raikwal2, Pushpa Raikwal3

Submitted: 27/08/2023 Revised: 22/10/2023 Accepted: 01/11/2023

Abstract: Accurate cost prediction is crucial for efficient project management due to the potential for delays and budget over runs. The

present research presents a novel method for accurately estimating the price of software projects by combining fuzzy logic with machine

learning. The technique incorporates pre-processing procedures, feature selection, and fuzzy rule building to make use of historical data

from datasets including "Desharnais," "Kitchenham," and "Maxwell." An ensemble classifier is built up out of several methods (such as

Linear Regression (LR), Support Vector Machine (SVM), Feed Forward Neural Network (FNN), and Recurrent Neural Networks

(RNN)) and then evaluated using various standards. Prominent results include the SVM model achieving the highest R-squared error in

the Desharnais dataset, whereas the Ensemble model excelled in the Kitchenham dataset, achieving the highest R-squared error at

0.9307893, and the lowest Root Mean Squared Error at 0.2707119 among all models. In the Maxwell dataset, the LR model had the

maximum R-squared error of 0.6073169, while the RNN model had the lowest R-squared error of 0.0237821. This method has the

potential to improve software project planning in the actual world through accurate cost estimation.

Keywords: Software, Cost, Estimation, Project, Machine Learning (ML), Fuzzy Logic.

1. Introduction

The estimate of software development costs is a crucial

step performed early in the process. The purpose of this

method is to get a clearer picture of the project's

development and objectives in the future. It is also

important to have well-defined project parameters to help

stakeholders manage the project's people, stuff, software,

data, and even the feasibility study. The project manager's

estimations of the project's cost, time, and resources or

assets are greatly improved by accurate estimating findings

[1]. However, errors in the project cost-estimating process

might have a major impact on the timeliness and success of

the project's completion. Inaccurate or incomplete project

assessments could lead to delays or cost overruns in the

delivery phase and problems with the quality and

efficiency of the project's operations. As a result, software

project cost estimate remains a challenging topic in the

software engineering discipline [2]. To predict how much

more accurately a project will cost, several models have

been devised. Software cost estimates could be made with

more precision if the right methods are used. In industrial

economics, incorrect estimates of effort have been

discovered to be quite hazardous logic. Cost estimation for

software is a critical aspect of managing programs in

production. The practice of anticipating software costs has

advanced, although it is still imperfect. The ideal cost-

estimation approach proposes a way to increase the value

of the projected software cost by disclosing uncertainty 2

(in both comprehending the project and costing accuracy)

and lowering the risk that the estimate will be far off from

the real cost [3].

Fuzzy logic is a widely used method of estimate and

prediction and is one kind of soft computing. Multiple

decision-making programs now in use rely heavily on

fuzzy logic [5]. Predictions using fuzzy logic have been

used in a variety of fields, including medicine, politics,

sports, the economy, etc. [6].

1.1 Cost Estimation Technique

The price of the software could be estimated in several

ways [7]. One of the most important steps in creating new

software is determining how much it will cost. This

includes estimating the time frame, resources, and size of

the project [8, 9]. It has been estimated that software

project estimates might be off by as much as 40% [10].

These methods might be broken down into two broad

categories: algorithmic and non-algorithmic approaches. In

this part, the author details various methods and their

relative merits and demerits so that one can make an

informed decision about which approach is best [11].

Estimating how much a software project will cost is a

crucial part of software engineering, one that may make or

break a deal or a project. During the software development

life cycle, determining how much work will be needed and

how much it will cost is the primary focus of software cost

and effort estimation [12].

__

1 Prestige Institute of Engineering Management and Research, Indore

(MP) 4520007, India.

ORCID ID: 0009-0002-3313-0912
2 IET, DAVV, Indore (MP), 452001, India.
3 PDPM-IIITDM, Jabalpur, 482005 India.

* Corresponding Author Email: ajay.jaiswal55555@gmail.com,

 jraikwal@ietdavv.edu.in, praikwal@iiitdmj.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 697

1.1.1 Non-algorithmic Techniques

The estimating procedure of non-algorithmic methods is

based on analogy and deduction. The team working on the

software project needs background information on a

comparable project that was completed in the past. Past

software projects or data sets are examined to provide a

foundation for estimates [13]. Some of the Non-

Algorithmic approaches are described in more depth

below:

Expert Judgement: Traditional methods of software cost

assessment sometimes include the use of expert opinion

throughout the planning and prototyping stages of software

development. Due to the nature of the method, a

professional cost estimator's knowledge and experience are

crucial to its success [14]. The expert's subject expertise

determines it. Because of their expertise, skilled estimators

estimate software costs. EJ is a method for estimating

software project costs by consulting with experts. EJ relies

on expert experience, expertise, motives, the area's

knowledge, and analyst-expert discussions. According to

Cooke, EJ's most important instrument is reluctance. Even

though non-cost estimators generally frown upon the usage

of EJ in a parallel engineering setting, it is becoming

increasingly commonplace [15]. Despite the lack of study

on statistical gathering techniques, there is a widespread

belief that the procedure must be mostly spontaneous and

hence unfair and sensitive to political pressures [16].

Estimation Techniques: Expert-based cost estimates

reflect the expertise of the experts who were consulted and

are hence reliant on the projects in which they were used.

Data collection and discovery could be hampered in

several everyday situations. These are cases when the

"expert judgment" approach works well [17]. It is the

standard method of calculating how long a software project

will take. The Wideband Delphi Method is one of the

techniques used to estimate costs using expert opinion.

There are two rounds of evaluation for these individuals.

One other instance of expert opinion is the work

breakdown structure [18].

Top-Down Estimating Method: The term "Macro Model"

is often used to refer to the top-down estimation technique

it describes. Using this technique, the overall software

project cost estimate is determined from the project's

global attributes, and then the project is broken down into

its constituent low-level mechanisms or components. The

Putnam model is a technique that takes this perspective.

For preliminary cost calculation when only global

parameters are available, the Top-Down approach is

preferable. Due to a lack of specifics at the outset, top-

down approaches are ideal for estimating software costs.

Bottom-up Estimating Method: A predicted total project

cost is then calculated by adding the individual product

costs determined using the base-up costing method. The

goal of a bottom-up approach is to build a framework's

gauge from data gathered about its constituent parts and

how they interact. The point-by-point model used by

COCOMO is the technique using this approach [19].

1.1.2 Algorithmic Techniques

The goal of these techniques is to help with the calculation

of software costs by providing some mathematical

formulae. Inputs such as Source Lines of Code, the number

of required functions, and cost drivers such as language,

design approach, skill levels, risk assessments, etc. are

used as the basis for these mathematical calculations,

which are based on research and historical data [20]. The

application of Algorithms created a plethora of models,

including COCOMO, Putnam, and function point models.

Constructive Cost Model (COCOMO): A new software

development activity's time, money, and effort costs might

be estimated using the COCOMO model. Lines of code are

used as the dependent variable in the COCOMO model,

which is a regression model. It is based on research into a

variety of past projects' worth of data [21]. The three levels

of COCOMO that Boehm proposed are Basic,

Intermediate, and Detailed. The basic COCOMO project

looked at how much work is related to program size [22].

The model's accuracy is low since it ignores the effect of

several important variables. It was suggested that

Intermediate COCOMO be made better by considering a

group of 15 cost drivers depending on different aspects of

software development. At each stage/module of the

software development process, the comprehensive

COCOMO evaluates all the cost-contributing elements

listed in Intermediate COCOMO [23].

Putnam model: This model is based on the analysis and

discovery of several completed projects, as well as the

distribution of labor suggested by Rayleigh and Norden.

The software equation, which is the central component of

Putnam's model, is defined as:

 (1)

Here, td is the software delivery time, and E is the

environmental element that duplicates the development

skills that can be extracted from past data using software

equations. The effort is measured in CY, while the

magnitude of S is expressed in the line of code (LOC).

Another fundamental connection first identified by Putnam

is.

 (2)

Here, D0 is a parameter for the size of the workforce,

which could be anywhere from 8 (for brand-new software)

to 27 (for heavily modified programs) [24]. Putnam’s

model is often used in SLIM and for prepping. SLIM is a

resource for workforce planning and estimating that is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 698

based on Putnam's model [25].

Function Point-Based Analysis: Function point analysis

(FPA) is a popular method for assessing software cost-

estimating frameworks. Each function is assessed by its

functional complexity throughout the point-counting

procedure that estimates an undertaking or application.

Software must meet FPA requirements. These functions

relate to information software uses and generation [26]. It

compares a software's fourteen general system

characteristics (GSCs) data input from external input,

external inquiry, external output, and internal logical file

(that is, the functionality needed by and provided to the

end consumer) against the standard standards [27].

2. Literature Review

This section examines the literature on a Hybrid Cost

Estimation Method for Planning Software Projects using

Fuzzy Logic and Machine Learning, discussing, and

analyzing the relevant work by different authors.

Butt et al., (2022) [28] provide a framework to deal with

these variables and prevent unnecessary delays or extra

expenses. The author used estimating methods in a variety

of software industry case studies, with similar outcomes.

The method calculates efforts independently. The author

provides a software-based estimating method that takes

team input and predicts project cost and time. The author

observed that the cost-estimating technique minimized

agile software project development difficulties and

improved project estimation. The suggested estimate

method provided a novel notion of estimation that helps

clients, the software industry, and programmers all work

together to satisfy clients, accommodate changes made

during sprints, and complete projects on schedule and

under budget.

Dashti et al., (2022) [29] examined how the Learnable

Evolution Model (LEM) algorithm affected feature

weighting optimization and presented an alternative

approach. The performance of this approach is evaluated in

this study using the Desharnais and Maxwell datasets. The

suggested technique has been tested and compared to

various evolutionary algorithms using the mean magnitude

of Relative Error (MMRE), Percentage of Predictions

(PRED (0.25)), and Median Magnitude of the Relative

Error (MdMRE) criteria. When applied to software cost

estimates, the suggested technique shows significant

improvement. The suggested model outperforms the

attribute-based encryption (ABE) model across all three

metrics (MMRE, MdMRE, and PRED (0.25) with an

average improvement of 86%, 79%, and 64%,

respectively; however, this does not reveal the breadth of

the test set.

Abdulmajeed et al., (2021) [30] use a new model based

on machine learning to determine how much a software

engineering project will cost. The Elman Neural Network

(ENN), Cascade Neural Network (CNN), and K-Nearest

Neighbors (KNN) algorithms were used to forecast the

expenses associated with creating software projects. NASA

project data was used to evaluate the models, and the

results were compared to those obtained using KNN, CNN,

and ENN. As shown by the findings, the KNN was the

most effective method for cost estimation and prediction,

while the based model achieved the best results in terms of

MMRE, RMSE, and Balanced Relative Error (BRE)

(0.101, 0.547, and 0.205, respectively). The suggested

approach was shown to be accurate to the tune of 90.238%

when the necessary calculations were made. This indicates

that the system is very accurate and displays little variance

using the KNN method for cost prediction.

Karimi and Gandomani (2021) [31] Introduce a novel

model built on a combination of ANFIS (Adaptive

Network-Based Fuzzy Inference System) and DE

(Differential Evolution). The goal of this model is to

improve upon earlier research by providing a more precise

estimate of the time and effort required to build software.

The suggested technique improved accuracy by up to 7%

as measured by the MMRE and Prediction (PRED) (0.25)

criterion, outperforming existing optimization algorithms

adapted from the genetic algorithm, evolutionary

algorithm, meta-heuristic algorithm, and neuro-fuzzy-

based optimization algorithm.

Priya et al., (2021) [32] provided a method for estimating

software development time utilizing an array of methods,

including machine learning and deep neural networks.

Ensemble methods involve combining numerous

independent models. The estimate strategies of averaging,

weighted averaging, bagging, boosting, and stacking were

classified as ensemble approaches. The generalized linear

model, the decision tree, the support vector machine, and

the random forest were among the stacking models

explored and compared. For the Albrecht, China,

Desharnais, Kemerer, Maxwell, Kitchenham, and

Cocomo81 datasets, the RF model stacking presented

yielded values of 0.9357274, 0.9839643, 0.65561700,

0.7520435, 0.8120214, 0.9246614, and 0.8667750.

Ullah et al., (2020) [33] provide a contrast between two

algorithmic approaches, the Baily-Base d model, and

Constructive Cost Models (COCOMO-II). Both Turkish

and NASA data sets are used in the simulation. The

following findings demonstrate that COCOMO-II

outperforms Bailey Basili in MMRE (Mean Magnitude of

Relative Error).

Qiao et al., (2020) [34] suggest a new method for

estimating software flaws, one that makes use of deep

learning. The evaluation findings show that the suggested

method is reliable and can outperform existing methods.

The mean square error is reduced by over 14% on average,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 699

and the squared correlation coefficient is increased by over

8% when using the proposed strategy.

Asheeri et al., (2019) [35] built a machine learning-based

software price prediction model. To make an early-stage

software cost prediction, a variety of machine learning

methods are used on two publicly available datasets. In this

study, the author employed the Root Relative Squared

Error (RRSE), the Relative Absolute Error (RAE), the

Mean Absolute Error (MAE), and the square root of the

RMAE as assessment metrics. The suggested model's goal

is to try prediction using the features of the dataset, then to

compare the predicted and real efforts and evaluate the

inaccuracy using various metrics. In this case, a higher R2

value indicates a better outcome, but lower values indicate

a better result for the other metrics. The results

demonstrate the efficacy of using machine learning

techniques for software price forecasting.

Mojeed et al., (2019) [36] introduce a memetic method to

the issue of calculating when programmers should work

extra. Overtime hours, project completion time, and overall

budget are the three objectives of this optimization issue.

The issue is solved by using the Multi-Objective Shuffled

Frog-Leaping Algorithm (MOSFLA), an algorithm

developed for overtime scheduling. The author employed

three popular multi-objective quality indicators to conduct

empirical assessment studies on six real-world software

project datasets. Contribution (IC) values of 0.0118, Hyper

volume (IHV) values of 0.0102, and Generational Distance

(IGD) values of 0.0102 were achieved by MOSFLA,

showing that it considerably exceeded the current typical

overtime management solutions in software engineering

projects.

Ullah et al., (2019) [37] suggest utilizing a typical Turkis

industry dataset in conjunction with a Flower Pollination

Algorithm (FPA) to optimize the parameters of a

Constructive Cost Model II (COCOMO-II). According to

the experimental results, the suggested method provides a

more accurate estimation than the Bat algorithm and the

original COCOMO-II in terms of the Manhattan distance

(MD) and the mean magnitude of relative errors (MMRE).

Jha et al., (2019) [38] apply deep learning to forecast

software maintainability indicators using several data sets.

Offers indicators that may be utilized for software

maintenance forecasting, and the suggested deep learning

model is more effective than any of the other approaches

studied. Furthermore, the experimental outcomes validate

the effectiveness of the proposed deep learning model for

software maintainability prediction.

Saljoughinejad et al., (2018) [39] purpose to boost the

COCOMO model's precision in cost estimation. We use

meta-heuristic methods to examine the key factors in costs.

In this approach, COCOMO is enhanced in a

distinguishable fashion through careful selection of

coefficients and reconstruction. Using data from actual

software development projects, researchers found that the

IWO-PSO hybrid model yielded the most precise

outcomes.

Puspaningrum (2017) [40] presented a combination of the

cuckoo search and the harmony search method to fine-tune

the values of the four COCOMO-II parameters for

maximum accuracy. The suggested method is tested on the

NASA 93 dataset and analyzed with the Mean Absolute

Error (MAE) and the Mean Squared Error (MSSE). The

suggested technique outperforms COCOMO-II and the

cuckoo search algorithm in estimating the time and effort

required to complete a software project, as shown by the

experiments.

Miandoab et al., (2016) [41] proposed a hybrid approach

that is utilized, which takes the best features of the COA-

Cuckoo optimization process and the K-Nearest Neighbors

(KNN) algorithm. Composition algorithms are tested on

six distinct datasets using eight distinct metrics. Estimated

costs were shown to be more accurate because of these

analyses. Based on the findings, the typical relative error

for the COCOMO model is the corresponding numbers for

the genetic algorithm and the firefly method are 38.31 and

30.34, respectively. In the compositional model, this value

is equal to 22.53.

Yadav et al., (2015) [42] implement the most important

criteria for dependability at each stage of the software

development life cycle (SDLC), and a fuzzy logic-based

phase-wise software defect prediction model is provided.

Defect density indication is forecasted across the phases of

requirement analysis, design, coding, and testing with the

use of nine software metrics. Twenty sets of data from

actual software projects are used to verify the proposed

model's prediction accuracy. There are no major issues

with the validation. The average relative error and the

balanced mean relative error are two measures that tend to

improve with software project size.

Gharehchopogh et al., (2015) [43] investigated SCE by

combining the Meta-Heuristic Search Techniques of the

Genetic Algorithm (GA) and the Artificial Bee Colony

(ABC). The MRE error levels for the suggested model,

GA, and ABC algorithms are all lower than those of the

COCOMO model, as shown by the test results. The

convergence of the hybrid model is superior to that of the

GA and ABC algorithms.

Dizaji et al., (2015) [44] suggested using meta-heuristic

methods to calculate software project costs. In this work,

we apply the Ant Colony Optimization (ACO) and Lorentz

transformation as a Chaos Optimization Algorithm (COA)

using datasets from NASA for both development and

evaluation. The suggested technique is compared and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 700

evaluated with the COCOMO model using MARE, and the

findings reveal a decrease in MARE to 0.078%.

Du et al., (2015) [45] estimate the software costs, and a

neuro-fuzzy model has been developed, which combines a

neural network model with a fuzzy model. According to

the obtained data, the suggested model can enhance the

estimation accuracy by 18% using the Mean Magnitude of

Relative Error (MMRE) criteria.

Shepperd et al., (2014) [46] attempt to decipher the

seemingly contradictory experimental findings and identify

the variables most responsible for variation in predicting

accuracy. To identify the characteristics that affect

predictive ability, authors undertake a meta-analysis of all

applicable, high-quality primary studies of defect

prediction. Surprisingly, authors discover that the classifier

selection has a minor effect on performance (1.3%),

whereas the largest (31%). Researchers themselves serve

as an explanatory variable. Who does a task is more

important than the task itself.

Attarzadeh et al., (2010) [47] aim to increase precision in

software project estimates by putting out a novel realistic

model based on fuzzy logic. The primary goal of this study

was to examine how the fuzzy logic method, by describing

input parameters with a two-sided Gaussian function that

provided a superior transition from one interval to another,

may enhance the precision with which effort estimates are

made. The results obtained by applying COCOMO II and

the proposed model based on fuzzy logic to the NASA

dataset and the artificial dataset created for comparison

revealed that the proposed model was performing better

than ordinary COCOMO II and that the achieved results

were closer to the actual effort.

Attarzadeh et al., (2010) [48] introduce a novel fuzzy

logic model to address the estimated inaccuracy introduced

by the COCOMO model's dependence on input data. The

primary goals of this study are to examine how applying

fuzzy logic to the model results in more precise software

effort estimations and to identify the impact of crisp inputs

and fuzzification approaches on the accuracy of the

system's output. The empirical results indicated that the

MMRE and the Pred (0.25) for projects with a relative

error of less than or equal to 0.25 were both marginally

reduced when using fuzzy logic for software effort

estimations.

3. Proposed Methodology

This section shows the working principle of A Hybrid Cost

Estimation Method for Planning Software Projects using

Fuzzy Logic and Machine Learning [49]. Below is the

step-by-step description of the proposed methodology and

Fig 1 shows the flow diagram.

The suggested approach for estimating the cost of software

projects makes use of datasets with the names

"Desharnais", “Kitchenham", and "Maxwell". These

statistics provide historical data about software projects.

Some of the topics included in this data are project size and

complexity, as well as team experience and real expenses.

To get the data ready for use, several pre-processing

activities such as addressing missing values and scaling

features are carried out. To determine which characteristics

should be extracted for use in cost estimating, the author

uses the TF-IDF. Lasso is used for feature selection to zero

in on relevant characteristics. The terms "low", "medium"

and "high" for project size are examples of the linguistic

variables used in the development of fuzzy rules, which are

in turn based on expert knowledge and historical data. The

AND, OR, and NOT operators are used to combine these

fuzzy rules to form fuzzy inference rules.

Then, the defuzzification process is used on the hazy

output memberships to provide precise numbers for use in

the cost-estimating process. The suggested method makes

use of a multi-model ensemble classifier that draws from

LR, SVM, Feed FNN, and RNN techniques. An ensemble

classifier is created by combining the results of many

individual classifiers using fuzzy logic. The performance

of the ensemble classifier is measured in terms of metrics

like Mean Absolute Error (MAE), Mean Squared Error

(MSE), and Root Mean Squared Error (RMSE) [50], and

compared to other classifiers like Random Forest (RF).

When it comes to real-world software project planning, the

optimum cost-estimating model based on fuzzy logic is

used. Before being used for real-world cost prediction in

software projects, the final ensemble classifier is verified

on fresh, unseen software project data to guarantee its

generalizability and reliability.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 701

Fig.1. Architectural Structure of Methodology

4. Proposed Algorithm

Algorithm: Pseudocode of proposed Cost Estimation

Method for Planning Software Projects using Fuzzy

Logic and Machine Learning

Data Preprocessing

def preprocess_data(dataset):

preprocessed_datasets = preprocess(datasets)

return preprocessed_datasets

Feature Extraction:

def extract_features_with_tfidf(dataset):

tfidf_vectorizer = TfidfVectorizer()

tfidf_features = tfidf_vectorizer.fit_transform(dataset)

return tfidf_features

Feature Selection:

def select_features_with_Lasso(dataset):

selected_features = select_features(dataset)

lasso_model.fit(dataset, selected_features)

return selected_features

Fuzzy Logic Rule Development

def develop_fuzzy_rules(dataset):

fuzzy_rules = create_fuzzy_rules(dataset)

return fuzzy_rules

Defuzzification

def defuzzify_output(fuzzy_output):

crisp_output = defuzzification_process(fuzzy_output)

return crisp_output.

Ensemble Classifier Construction

def train_base_classifiers(dataset):

base_classifier_lr = train_linear_regression(dataset)

base_classifier_svm =

train_support_vector_machine(dataset)

base_classifier_fnn =

train_feed_forward_neural_network(dataset)

base_classifier_rnn = train_re-

current_neural_network(dataset)

return base_classifier_lr, base_classifier_svm,

base_classifier_fnn, base_classifier_rnn

Fuzzy Logic-based Ensemble Approach

def fuzzy_logic_ensemble(base_outputs):

 ensemble_output =

combine_outputs_with_fuzzy_logic(base_outputs)

 return ensemble_output

Performance Evaluation and Comparison

def evaluate_classifier_performance(ensemble_output,

actual_costs):

 rmse = root_mean_squared_error(ensemble_output,

actual_costs)

def compare_performance_with_rf(ensemble_output,

actual_costs):

 rf_output = random_forest_classifier(dataset)

 return rf_rmse, fuzzy_logic_rmse

Cost Estimation

estimated_costs =

optimized_fuzzy_logic_classifier.predict(new_data)

 return estimated_costs.

5. Result and Discussion

This section provides a comprehensive and in-depth

examination of the results and discoveries that resulted

from the proposed methodology. The discussion

incorporates numerous crucial aspects, such as feature

extraction, feature selection, fuzzy logic rule formulation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 702

procedures, and performance evaluation. This analysis

highlights not only the successes of the hybrid method for

estimating software project costs but also its prospective

implications in actual planning scenarios. The results and

discussion section provides an in-depth summary of the

proposed Hybrid Cost Estimation Method for Planning

Software Projects utilizing Fuzzy Logic and Machine

Learning. This section describes the methodology's

essential stages and offers insight into the performance of

the proposed approach.

5.1 Feature Extraction and Selection for Cost

Estimation

The process of extracting features is a crucial step in the

technique that has been developed for predicting the costs

of software projects. In this part of the analysis, the method

of TF-IDF is used to extract relevant characteristics from

the datasets, namely Desharnais, Kitchenham, and

Maxwell, to add these characteristics into the procedure of

cost estimate. The TF-IDF technique is used to extract

features from the Desharnais, Kitchenham, and Maxwell

datasets, and those features are shown in Table 1 below.

Table 1. Extracted Features using TF-IDF

Dataset Extracted Features

Desharnais Project, TeamExp, ManagerExp, YearEnd,

Length Transactions, PointsNonAdjust,

Adjustment, PointsAjust, Effort

Maxwell Year, App, Har, T14, T06, Source, Nlan, T05,

T09, T15, Duration, Size, Time, Effort

Kitchenham Clientcode, Projecttype, Duration, Adjfp,

Estimate, Estimate method, Effort

Using the Lasso regression method, Table 2 provided a

summary of selected features gathered from various

datasets. Lasso is a technique used in regression analysis

for variable selection and regularization to prevent

overfitting. Each entry in the table represents a unique

dataset, and the columns provide information about the

designated features for each dataset. Here is an outline of

the table:

• Dataset: This column identifies the dataset for which

feature selection was conducted. There are three

mentioned datasets: Kitchenham, Maxwell, and

Desharnais.

• Selected Features: This column lists the features

(variables or attributes) selected using the Lasso

feature selection method for each dataset. These

characteristics are the most pertinent or instructive for

the analysis or modeling duties related to each

dataset.

Table 2. Selected Features using Lasso.

Dataset Selected Features

Desharnais Project, TeamExp, Transactions, Points

NonAdjust, PointsAjust, Effort

Maxwell App, Har, Year, Source, Nlan, T05, T09,

T15, Duration, Size, Time, Effort

Kitchenham Clientcode, Project type, Duration, Adjfp,

Estimate, Effort

5.2 Key Fuzzy Rules for Cost Estimation and Effort

Prediction

Fuzzy rules serve as a set of guidelines for predicting "cost

estimation" in the "Desharnais" dataset and "effort" in the

"Kitchenham" and "Maxwell" datasets, respectively. These

principles are intended to provide qualitative and

approximate predictions, making them particularly useful

in situations where the relationships between variables are

not precisely defined.

The provided fuzzy rules establish relationships between

distinct input variables and the resulting output variable,

"Effort," for three distinct datasets: "Desharnais,"

"Kitchenham," and "Maxwell." These rules are an integral

part of fuzzy logic systems, allowing for the formation of

well-informed decisions and forecasts in the face of

ambiguous or imprecise information. Tables 3, 4, and 5

contain these fuzzy rules, which play a crucial role in

utilizing fuzzy logic to manage situations characterized by

ambiguous or imprecise information.

Table 3. The fuzzy rule for the “Desharnais” dataset

No. Rule

1. IF TeamExp is Low AND ManagerExp is Low

THEN CostEstimation is High

2. IF TeamExp is Low AND ManagerExp is Medium

THEN CostEstimation is Medium

3. IF TeamExp is Low AND ManagerExp is High

THEN CostEstimation is Medium

4. IF TeamExp is Medium AND ManagerExp is Low

THEN CostEstimation is Medium

5. IF TeamExp is Medium AND ManagerExp is

Medium THEN CostEstimation is Medium

6. IF TeamExp is Medium AND ManagerExp is High

THEN CostEstimation is Low

7. IF TeamExp is High AND ManagerExp is Low

THEN CostEstimation is Low

8. IF TeamExp is High AND ManagerExp is Medium

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 703

THEN CostEstimation is Low

9. IF TeamExp is High AND ManagerExp is High

THEN CostEstimation is Low

Table 4. The fuzzy rule for the “Kitchenham” dataset

No. Rule

1. IF Project Type is 'A' OR 'D' AND Duration is long

AND Estimate method is 'A' OR 'CAE' THEN

Effort is High.

2. IF Project Type is 'P' AND Adjusted function points

are large AND Estimate method is 'C' OR 'EO'

THEN Effort is Very High.

3. If the Project Type is 'U' Duration is short AND the

Estimate method is 'W' THEN Effort is Low.

4. IF Client code is 1 AND Adjusted function points are

small AND Estimate method is 'EO' THEN Effort

is Low.

5. IF Client code is 6 AND Duration is medium AND

Estimate method is 'A' THEN Effort is Medium

Table 5. The fuzzy rule for the “Maxwell” dataset

No. Rule

1. If App is InfServ and Har is PC Dba is GUI and

UI_Source is Outsrced, then Effort is Low.

2. If App is TransPro and Har is Mainfrm Dba is TextUI

and UI_Source is Inhouse, then Effort is Medium.

3. If App is CustServ and Har is Multi Dba is TextUI and

UI_Source is Outsrced, then Effort is High.

4. If App is MIS Har is Network Dba is GUI and

UI_Source is Inhouse, then Effort is Very High.

5. If Telonuse is yes and Nlan is 1, then Effort is Low.

6. If Telonuse is no and Nlan is 4, then Effort is High.

7. If T01 is between 1 and 3, then Effort is Low.

8. If T01 is between 2 and 4, then Effort is Medium.

9. If T01 is between 3 and 5, then Effort is High.

10. If T02 is between 1 and 2, then Effort is Low.

These fuzzy rules are essentially a set of conditional

statements that make predictions or classifications using

linguistic variables (e.g., low, medium, high). They are

derived from databases using an inference system based on

fuzzy logic. The principles can be used to estimate costs or

efforts based on specific project attributes or

characteristics.

5.3 Performance Evaluation

Table 6 displays the performance metrics of various

machine learning models (LR, SVM, FNN, RNN, and

Ensemble) on the Desharnais dataset. The table contains

different kinds of errors (R-squared error, Root Mean

Squared Error, and Mean Absolute Error) calculated for

each model.

• R-squared error (RE) is a statistical measure that

indicates the proportion of the variance in the

dependent variable that can be predicted by the

independent variables.

• Root Mean Squared Error (RMSE) quantifies the

average difference between predicted and actual

values. It indicates the typical magnitude of error by

giving greater weight to significant errors.

• Mean Absolute Error (MAE) is another method for

calculating the average deviation between predicted

and actual values. Contrary to RMSE, it considers all

errors equally, irrespective of their magnitude.

There are corresponding values for each error metric for

each model (LR, SVM, FNN, RNN, and Ensemble) in the

Desharnais dataset. These values indicate how well each

model performed relative to the error metric in question.

Table 6. Desharnais dataset

Error

s

LR

SVM

FNN

RNN

Ensembl

e

RE 0.777686

0

0.803775

1

0.736884

9

0.6715072

9

0.798123

8

RMSE 0.352839

6

0.222194

6

0.293201

5

0.3319024 0.241177

2

MAE 0.262898

2

0.331490

4

0.383854

7

0.4289008 0.336230

0

Fig 2 is a graphical representation of performance metrics

for several machine learning models (LR, SVM, FNN,

RNN, and Ensemble) applied to the Desharnais dataset. R-

squared error, Root Mean Squared Error, and Mean

Absolute Error were computed for each model and are

depicted in the figure.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 704

Fig.2. Performance metrics comparison

Error metrics for multiple machine learning models on the

Maxwell dataset appear to be summarized in Table 7.

Table 7. Maxwell Dataset

Error

s

LR

SVM

FNN

RNN

Ensembl

e

RE 0.607316

9

0.446928

3

0.239508

2

0.023782

1

0.507857

0

RMSE 0.588140

1

0.537250

2

0.668786

5

0.685722

3

0.521362

1

MAE 0.483902

8

0.697992

3

0.818478

7

0.927327

9

0.658423

8

Error values for multiple machine learning models on the

Maxwell dataset are graphically shown in Fig 3. Error

metrics for many models are compared to provide light on

how effectively each performs on the dataset, as seen in the

image.

Fig.3. Error Values for Different Models

Metrics for each model's performance on R-squared error,

root mean squared error, and mean absolute error are

shown in Table 8. The table below displays the results of

several models in terms of various error metrics. Error

metrics for each model on the Kitchenham dataset are

shown in the cells.

Table 8. Kitchenham dataset

Error

s

LR

SVM

FNN

RNN

Ensembl

e

RE 0.928729

8

0.928879

3

0.910007

0

0.858328

8

0.930789

3

RMSE 0.274710

1

0.274421

8

0.308691

7

0.387312

6

0.270711

9

MAE 0.200920

7

0.202157

5

0.249333

9

0.306725

2

0.194153

4

Error scores for several machine learning models applied

to the Kitchenham dataset are graphically shown in Fig 4.

This visual representation of error metrics allows for quick

comparison between models, yielding useful insights into

how they perform on the dataset.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 705

Fig.4 Performance Metrics Comparison

6. Conclusion

The paper presents a hybrid approach, incorporating fuzzy

logic and machine learning, for precise cost estimation of

software projects. Effective project management requires

accurate cost estimation. Inaccuracy can cause delays and

cost increases. This paper examines both algorithmic and

non-algorithmic techniques for cost estimation,

highlighting their advantages and disadvantages. The paper

also provides a literature review on this hybrid approach,

with an emphasis on its potential impact on software

project planning. The suggested approach to cost estimate

employs a hybrid of fuzzy logic and machine learning,

drawing on the results of previous calculations performed

on datasets such as "Desharnais," "Kitchenham," and

"Maxwell." An ensemble classifier based on LR, SVM,

FNN, and RNN is developed, and the author details the

pre-processing stages, feature selection, and fuzzy rule

generation that led to this outcome. This model is

evaluated using multiple indicators to determine its

relevance to real-world software project planning. The

result and discussion section details the fuzzy logic and

machine learning software project cost estimating

approach. It covers essentials including feature extraction,

selection, fuzzy logic rule development, and performance

evaluation. Datasets like Desharnais, Kitchenham, and

Maxwell are used to show how extracted attributes affect

cost estimation. The section emphasizes fuzzy rules' role in

approximation and qualitative predictions from unclear

data. On each dataset, R-squared error, Root Mean Squared

Error, and Mean Absolute Error are used to evaluate

machine learning models (LR, SVM, FNN, RNN, En-

semble). These indicators show the models' performance

and applicability for real-world software project planning.

The results show that the SVM model achieved the

maximum R-squared error of 0.8037751 in the Desharnais

dataset, while the RNN model obtained the minimum at

0.67150729. For the Maxwell dataset, the LR model

exhibited the highest R-squared error of 0.6073169, while

the RNN model achieved the lowest value at 0.0237821.

Finally, for the Mean Absolute Error, the RNN model

exhibited the maximum value of 0.3067252 in the

Kitchenham dataset, while the Ensemble model

demonstrated the minimum at 0.1941534. The Ensemble

model achieved a maximum R-squared error of 0.9307893

in the Kitchenham dataset and had a Root Mean Squared

Error of 0.2707119, which was the lowest among all

models. An improvement in machine learning algorithms

and computational capacity may result in cost estimation

models that are even more accurate and efficient. This

hybrid approach has the potential to have a substantial

impact on software project planning, making it an

intriguing area for future research and development.

Conflicts of interest

The author(s) declared no potential conflicts of interest

concerning this article's research, authorship, and

publication.

References

[1] R. R. Sinha and R. K. Gora, "Software effort

estimation using machine learning techniques,"

Advances in Information Communication Technology

and Computing: Proceedings of AICTC 2019, pp. 65-

79, 2021.

[2] S. Kumari and S. Pushkar, "Cuckoo search based

hybrid models for improving the accuracy of software

effort estimation," Microsystem Technologies, vol.

24, no. 12, pp. 4767-4774, 2018.

[3] R. Aziz, "Development of Simple Effort Estimation

Model based on Fuzzy Logic using Bayesian

Networks."

[4] S. M. R. Chirra and H. Reza, "A survey on software

cost estimation techniques," Journal of Software

Engineering and Applications, vol. 12, no. 6, p. 226,

2019.

[5] I. Maleki, L. Ebrahimi, S. Jodati, and I. Ramesh,

"Analysis of software cost estimation using fuzzy

logic," International Journal in Foundations of

Computer Science & Technology (IJFCST), vol. 4,

no. 3, pp. 27-41, 2014.

[6] R. P. S. Bedi and A. Singh, "Software Cost

Estimation using Fuzzy Logic," Indian Journal of

Science and Technology, vol. 10, p. 3, 2017.

[7] P. Pandey, "Analysis of the techniques for software

cost estimation," in 2013 Third International

Conference on Advanced Computing and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 706

Communication Technologies (ACCT), 2013: IEEE,

pp. 16-19.

[8] P. Sharma and J. Singh, "Systematic literature review

on software effort estimation using machine learning

approaches," in 2017 International Conference on

Next Generation Computing and Information

Systems (ICNGCIS), 2017: IEEE, pp. 43-47.

[9] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,

"Systematic literature review of machine learning

based software development effort estimation

models," Information and Software Technology, vol.

54, no. 1, pp. 41-59, 2012.

[10] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan,

H. Gallis, A. C. Lien, and S. Hove, "A survey on

software estimation in the Norwegian industry," in

10th International Symposium on Software Metrics,

2004. Proceedings., 2004: IEEE, pp. 208-219.

[11] S. Shekhar and U. Kumar, "Review of various

software cost estimation techniques," International

Journal of Computer Applications, vol. 141, no. 11,

pp. 31-34, 2016.

[12] R. Tripathi and P. Rai, "Comparative study of

software cost estimation technique," International

Journal of Advanced Research in Computer Science

and Software Engineering, vol. 6, no. 1, 2016.

[13] N. Balaji, N. Shivakumar, and V. V. Ananth,

"Software cost estimation using function point with

non-algorithmic approach," Global Journal of

Computer Science and Technology Software & Data

Engineering, vol. 13, no. 8, pp. 1-4, 2013.

[14] Z. B. Mansor, Z. M. Kasirun, N. H. H. Arshad, and S.

Yahya, "E-cost estimation using expert judgment and

COCOMO II," in 2010 International Symposium on

Information Technology, 2010, vol. 3: IEEE, pp.

1262-1267.

[15] C. Rush and R. Roy, "Expert judgement in cost

estimating: Modelling the reasoning process,"

Concurrent Engineering, vol. 9, no. 4, pp. 271-284,

2001.

[16] B. Khan, W. Khan, M. Arshad, and N. Jan, "Software

cost estimation: Algorithmic and non-algorithmic

approaches," Int. J. Data Sci. Adv. Anal, vol. 2, no. 2,

pp. 1-5, 2020.

[17] A. Saeed, W. H. Butt, F. Kazmi, and M. Arif, "Survey

of software development effort estimation

techniques," in Proceedings of the 2018 7th

International Conference on software and computer

applications, 2018, pp. 82-86.

[18] P. P. Win, W. W. Myint, H. P. P. Mon, and W. Thu,

"Review on Algorithmic and Non-Algorithmic

Software Cost Estimation Techniques," International

Journal of Trend in Scientific Research and

Development (ijtsrd), pp. 890-895, 2019.

[19] K. Shweta, S. Duraismy, and T. LathaMaheswari,

"Comparative Analysis of Algorithmic, Non

Algorithmic and Machine Learning Models For

Software Cost Estimation: A Survey," IRJMETS

ISSN, pp. 2515-8260.

[20] L. Nerkar and P. Yawalkar, "Software cost estimation

using algorithmic model and non-algorithmic model a

review," Int J Comput App, vol. 2, pp. 4-7, 2014.

[21] A. Trendowicz and R. Jeffery, "Software project

effort estimation," Foundations and Best Practice

Guidelines for Success, Constructive Cost Model–

COCOMO pags, vol. 12, pp. 277-293, 2014.

[22] P. Brar and D. Nandal, "A Systematic Literature

Review of Machine Learning Techniques for

Software Effort Estimation Models," in 2022 Fifth

International Conference on Computational

Intelligence and Communication Technologies

(CCICT), 2022: IEEE, pp. 494-499.

[23] U. K. Christopher and A. C. Izuchukwu, "Trends and

Techniques of Software Cost and Performance

Measurement," International Journal of Software

Computing and Testing, vol. 8, no. 1, pp. 6-12, 2022.

[24] T. Sharma, A. Bhardwaj, and A. Sharma, "A

Comparative study of COCOMO II and Putnam

models of Software Cost Estimation," vol, vol. 2, pp.

1-3, 2011.

[25] J. Rashid, S. Kanwal, M. Wasif Nisar, J. Kim, and A.

Hussain, "An Artificial Neural Network-Based Model

for Effective Software Development Effort

Estimation," Computer Systems Science and

Engineering, vol. 44, no. 2, 2022.

[26] A. Yadav and A. Sharma, "Function point based

estimation of effort and cost in agile software

development," in Proceedings of 3rd international

conference on internet of things and connected

technologies (ICIoTCT), 2018, pp. 26-27.

[27] K. Zhang, X. Wang, J. Ren, and C. Liu, "Efficiency

improvement of function point-based software size

estimation with deep learning model," IEEE Access,

vol. 9, pp. 107124-107136, 2020.

[28] S. A. Butt et al., "A software-based cost estimation

technique in scrum using a developer's expertise,"

Advances in Engineering Software, vol. 171, p.

103159, 2022.

[29] M. Dashti, T. J. Gandomani, D. H. Adeh, H. Zulzalil,

and A. B. M. Sultan, "LEMABE: a novel framework

to improve analogy-based software cost estimation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 | 707

using learnable evolution model," PeerJ Computer

Science, vol. 8, p. e800, 2022.

[30] A. A. Abdulmajeed, M. A. Al-Jawaherry, and T. M.

Tawfeeq, "Predict the required cost to develop

Software Engineering projects by Using Machine

Learning," in Journal of Physics: Conference Series,

2021, vol. 1897, no. 1: IOP Publishing, p. 012029.

[31] A. Karimi and T. J. Gandomani, "Software

development effort estimation modeling using a

combination of fuzzy-neural network and differential

evolution algorithm," International Journal of

Electrical and Computer Engineering, vol. 11, no. 1,

p. 707, 2021.

[32] P. V. AG, A. K. K, and V. Varadarajan, "Estimating

software development efforts using a random forest-

based stacked ensemble approach," Electronics, vol.

10, no. 10, p. 1195, 2021.

[33] M. Ullah, R. Ali, M. Ahmad, T. Khan, and F. U.

Mulk, "Software cost estimation–a comparative study

of COCOMO-II and Bailey-Basili Models," in 2019

International Conference on Advances in the

Emerging Computing Technologies (AECT), 2020:

IEEE, pp. 1-5.

[34] L. Qiao, X. Li, Q. Umer, and P. Guo, "Deep learning

based software defect prediction," Neurocomputing,

vol. 385, pp. 100-110, 2020.

[35] M. M. Al Asheeri and M. Hammad, "Machine

learning models for software cost estimation," in

2019 International Conference on Innovation and

Intelligence for Informatics, Computing, and

Technologies (3ICT), 2019: IEEE, pp. 1-6.

[36] H. A. Mojeed, A. O. Bajeh, A. O. Balogun, and H.

Adeleke, "Memetic approach for multi-objective

overtime planning in software engineering projects,"

2019.

[37] A. Ullah, B. Wang, J. Sheng, J. Long, M. Asim, and

F. Riaz, "A Novel Technique of Software Cost

Estimation Using Flower Pollination Algorithm," in

2019 International Conference on Intelligent

Computing, Automation and Systems (ICICAS),

2019: IEEE, pp. 654-658.

[38] S. Jha, R. Kumar, M. Abdel-Basset, I. Priyadarshini,

R. Sharma, and H. V. Long, "Deep learning approach

for software maintainability metrics prediction," Ieee

Access, vol. 7, pp. 61840-61855, 2019.

[39] R. Saljoughinejad and V. Khatibi, "A new optimized

hybrid model based on COCOMO to increase the

accuracy of software cost estimation," Journal of

Advances in Computer Engineering and Technology,

vol. 4, no. 1, pp. 27-40, 2018.

[40] A. Puspaningrum and R. Sarno, "A hybrid cuckoo

optimization and harmony search algorithm for

software cost estimation," Procedia Computer

Science, vol. 124, pp. 461-469, 2017.

[41] E. E. Miandoab and F. S. Gharehchopogh, "A novel

hybrid algorithm for software cost estimation based

on cuckoo optimization and k-nearest neighbors

algorithms," Engineering, Technology & Applied

Science Research, vol. 6, no. 3, pp. 1018-1022, 2016.

[42] H. B. Yadav and D. K. Yadav, "A fuzzy logic based

approach for phase-wise software defects prediction

using software metrics," Information and Software

Technology, vol. 63, pp. 44-57, 2015.

[43] F. S. Gharehchopogh, I. Maleki, and A. Talebi,

"Using hybrid model of artificial bee colony and

genetic algorithms in software cost estimation," in

2015 9th International Conference on Application of

Information and Communication Technologies

(AICT), 2015: IEEE, pp. 102-106.

[44] Z. A. Dizaji and F. S. Gharehchopogh, "A hybrid of

ant colony optimization and chaos optimization

algorithms approach for software cost estimation,"

Indian Journal of science and technology, vol. 8, no.

2, p. 128, 2015.

[45] W. L. Du, L. F. Capretz, A. B. Nassif, and D. Ho, "A

hybrid intelligent model for software cost

estimation," arXiv preprint arXiv:1512.00306, 2015.

[46] M. Shepperd, D. Bowes, and T. Hall, "Researcher

bias: The use of machine learning in software defect

prediction," IEEE Transactions on Software

Engineering, vol. 40, no. 6, pp. 603-616, 2014.

[47] I. Attarzadeh and S. H. Ow, "A novel algorithmic cost

estimation model based on soft computing

technique," Journal of computer science, vol. 6, no. 2,

p. 117, 2010.

[48] I. Attarzadeh and S. H. Ow, "Improving the accuracy

of software cost estimation model based on a new

fuzzy logic model," World applied sciences Journal,

vol. 8, no. 2, pp. 177-184, 2010.

[49] S. Malathi and S. Sridhar, "A classical fuzzy approach

for software effort estimation on machine learning

technique," arXiv preprint arXiv:1112.3877, 2011.

[50] T. O. Hodson, "Root-mean-square error (RMSE) or

mean absolute error (MAE): When to use them or

not," Geoscientific Model Development, vol. 15, no.

14, pp. 5481-5487, 2022.

