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Abstract: Accurate cost prediction is crucial for efficient project management due to the potential for delays and budget over runs. The 

present research presents a novel method for accurately estimating the price of software projects by combining fuzzy logic with machine 

learning. The technique incorporates pre-processing procedures, feature selection, and fuzzy rule building to make use of historical data 

from datasets including "Desharnais," "Kitchenham," and "Maxwell." An ensemble classifier is built up out of several methods (such as 

Linear Regression (LR), Support Vector Machine (SVM), Feed Forward Neural Network (FNN), and Recurrent Neural Networks 

(RNN)) and then evaluated using various standards. Prominent results include the SVM model achieving the highest R-squared error in 

the Desharnais dataset, whereas the Ensemble model excelled in the Kitchenham dataset, achieving the highest R-squared error at 

0.9307893, and the lowest Root Mean Squared Error at 0.2707119 among all models. In the Maxwell dataset, the LR model had the 

maximum R-squared error of 0.6073169, while the RNN model had the lowest R-squared error of 0.0237821. This method has the 

potential to improve software project planning in the actual world through accurate cost estimation. 
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1. Introduction 

The estimate of software development costs is a crucial 

step performed early in the process. The purpose of this 

method is to get a clearer picture of the project's 

development and objectives in the future. It is also 

important to have well-defined project parameters to help 

stakeholders manage the project's people, stuff, software, 

data, and even the feasibility study. The project manager's 

estimations of the project's cost, time, and resources or 

assets are greatly improved by accurate estimating findings 

[1]. However, errors in the project cost-estimating process 

might have a major impact on the timeliness and success of 

the project's completion. Inaccurate or incomplete project 

assessments could lead to delays or cost overruns in the 

delivery phase and problems with the quality and 

efficiency of the project's operations. As a result, software 

project cost estimate remains a challenging topic in the 

software engineering discipline [2]. To predict how much 

more accurately a project will cost, several models have 

been devised. Software cost estimates could be made with 

more precision if the right methods are used. In industrial 

economics, incorrect estimates of effort have been 

discovered to be quite hazardous logic. Cost estimation for 

software is a critical aspect of managing programs in 

production. The practice of anticipating software costs has 

advanced, although it is still imperfect. The ideal cost-

estimation approach proposes a way to increase the value 

of the projected software cost by disclosing uncertainty 2 

(in both comprehending the project and costing accuracy) 

and lowering the risk that the estimate will be far off from 

the real cost [3].  

Fuzzy logic is a widely used method of estimate and 

prediction and is one kind of soft computing. Multiple 

decision-making programs now in use rely heavily on 

fuzzy logic [5]. Predictions using fuzzy logic have been 

used in a variety of fields, including medicine, politics, 

sports, the economy, etc. [6]. 

1.1 Cost Estimation Technique 

The price of the software could be estimated in several 

ways [7]. One of the most important steps in creating new 

software is determining how much it will cost. This 

includes estimating the time frame, resources, and size of 

the project [8, 9]. It has been estimated that software 

project estimates might be off by as much as 40% [10]. 

These methods might be broken down into two broad 

categories: algorithmic and non-algorithmic approaches. In 

this part, the author details various methods and their 

relative merits and demerits so that one can make an 

informed decision about which approach is best [11]. 

Estimating how much a software project will cost is a 

crucial part of software engineering, one that may make or 

break a deal or a project. During the software development 

life cycle, determining how much work will be needed and 

how much it will cost is the primary focus of software cost 

and effort estimation [12]. 
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1.1.1 Non-algorithmic Techniques 

The estimating procedure of non-algorithmic methods is 

based on analogy and deduction. The team working on the 

software project needs background information on a 

comparable project that was completed in the past. Past 

software projects or data sets are examined to provide a 

foundation for estimates [13]. Some of the Non-

Algorithmic approaches are described in more depth 

below: 

Expert Judgement: Traditional methods of software cost 

assessment sometimes include the use of expert opinion 

throughout the planning and prototyping stages of software 

development. Due to the nature of the method, a 

professional cost estimator's knowledge and experience are 

crucial to its success [14]. The expert's subject expertise 

determines it. Because of their expertise, skilled estimators 

estimate software costs. EJ is a method for estimating 

software project costs by consulting with experts. EJ relies 

on expert experience, expertise, motives, the area's 

knowledge, and analyst-expert discussions. According to 

Cooke, EJ's most important instrument is reluctance. Even 

though non-cost estimators generally frown upon the usage 

of EJ in a parallel engineering setting, it is becoming 

increasingly commonplace [15]. Despite the lack of study 

on statistical gathering techniques, there is a widespread 

belief that the procedure must be mostly spontaneous and 

hence unfair and sensitive to political pressures [16]. 

Estimation Techniques: Expert-based cost estimates 

reflect the expertise of the experts who were consulted and 

are hence reliant on the projects in which they were used. 

Data collection and discovery could be hampered in 

several everyday situations. These are cases when the 

"expert judgment" approach works well [17]. It is the 

standard method of calculating how long a software project 

will take. The Wideband Delphi Method is one of the 

techniques used to estimate costs using expert opinion. 

There are two rounds of evaluation for these individuals. 

One other instance of expert opinion is the work 

breakdown structure [18]. 

Top-Down Estimating Method: The term "Macro Model" 

is often used to refer to the top-down estimation technique 

it describes. Using this technique, the overall software 

project cost estimate is determined from the project's 

global attributes, and then the project is broken down into 

its constituent low-level mechanisms or components. The 

Putnam model is a technique that takes this perspective. 

For preliminary cost calculation when only global 

parameters are available, the Top-Down approach is 

preferable. Due to a lack of specifics at the outset, top-

down approaches are ideal for estimating software costs. 

Bottom-up Estimating Method: A predicted total project 

cost is then calculated by adding the individual product 

costs determined using the base-up costing method. The 

goal of a bottom-up approach is to build a framework's 

gauge from data gathered about its constituent parts and 

how they interact. The point-by-point model used by 

COCOMO is the technique using this approach [19]. 

1.1.2 Algorithmic Techniques 

The goal of these techniques is to help with the calculation 

of software costs by providing some mathematical 

formulae. Inputs such as Source Lines of Code, the number 

of required functions, and cost drivers such as language, 

design approach, skill levels, risk assessments, etc. are 

used as the basis for these mathematical calculations, 

which are based on research and historical data [20]. The 

application of Algorithms created a plethora of models, 

including COCOMO, Putnam, and function point models. 

Constructive Cost Model (COCOMO): A new software 

development activity's time, money, and effort costs might 

be estimated using the COCOMO model. Lines of code are 

used as the dependent variable in the COCOMO model, 

which is a regression model. It is based on research into a 

variety of past projects' worth of data [21]. The three levels 

of COCOMO that Boehm proposed are Basic, 

Intermediate, and Detailed. The basic COCOMO project 

looked at how much work is related to program size [22]. 

The model's accuracy is low since it ignores the effect of 

several important variables. It was suggested that 

Intermediate COCOMO be made better by considering a 

group of 15 cost drivers depending on different aspects of 

software development. At each stage/module of the 

software development process, the comprehensive 

COCOMO evaluates all the cost-contributing elements 

listed in Intermediate COCOMO [23]. 

Putnam model: This model is based on the analysis and 

discovery of several completed projects, as well as the 

distribution of labor suggested by Rayleigh and Norden. 

The software equation, which is the central component of 

Putnam's model, is defined as: 

                                         (1)        

Here, td is the software delivery time, and E is the 

environmental element that duplicates the development 

skills that can be extracted from past data using software 

equations. The effort is measured in CY, while the 

magnitude of S is expressed in the line of code (LOC). 

Another fundamental connection first identified by Putnam 

is. 

                                                         (2)       

Here, D0 is a parameter for the size of the workforce, 

which could be anywhere from 8 (for brand-new software) 

to 27 (for heavily modified programs) [24]. Putnam’s 

model is often used in SLIM and for prepping. SLIM is a 

resource for workforce planning and estimating that is 
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based on Putnam's model [25]. 

Function Point-Based Analysis: Function point analysis 

(FPA) is a popular method for assessing software cost-

estimating frameworks. Each function is assessed by its 

functional complexity throughout the point-counting 

procedure that estimates an undertaking or application. 

Software must meet FPA requirements. These functions 

relate to information software uses and generation [26]. It 

compares a software's fourteen general system 

characteristics (GSCs) data input from external input, 

external inquiry, external output, and internal logical file 

(that is, the functionality needed by and provided to the 

end consumer) against the standard standards [27]. 

2. Literature Review 

This section examines the literature on a Hybrid Cost 

Estimation Method for Planning Software Projects using 

Fuzzy Logic and Machine Learning, discussing, and 

analyzing the relevant work by different authors. 

Butt et al., (2022) [28] provide a framework to deal with 

these variables and prevent unnecessary delays or extra 

expenses. The author used estimating methods in a variety 

of software industry case studies, with similar outcomes. 

The method calculates efforts independently. The author 

provides a software-based estimating method that takes 

team input and predicts project cost and time. The author 

observed that the cost-estimating technique minimized 

agile software project development difficulties and 

improved project estimation. The suggested estimate 

method provided a novel notion of estimation that helps 

clients, the software industry, and programmers all work 

together to satisfy clients, accommodate changes made 

during sprints, and complete projects on schedule and 

under budget. 

Dashti et al., (2022) [29] examined how the Learnable 

Evolution Model (LEM) algorithm affected feature 

weighting optimization and presented an alternative 

approach. The performance of this approach is evaluated in 

this study using the Desharnais and Maxwell datasets. The 

suggested technique has been tested and compared to 

various evolutionary algorithms using the mean magnitude 

of Relative Error (MMRE), Percentage of Predictions 

(PRED (0.25)), and Median Magnitude of the Relative 

Error (MdMRE) criteria. When applied to software cost 

estimates, the suggested technique shows significant 

improvement. The suggested model outperforms the 

attribute-based encryption (ABE) model across all three 

metrics (MMRE, MdMRE, and PRED (0.25) with an 

average improvement of 86%, 79%, and 64%, 

respectively; however, this does not reveal the breadth of 

the test set.  

Abdulmajeed et al., (2021) [30]  use a new model based 

on machine learning to determine how much a software 

engineering project will cost. The Elman Neural Network 

(ENN), Cascade Neural Network (CNN), and K-Nearest 

Neighbors (KNN) algorithms were used to forecast the 

expenses associated with creating software projects. NASA 

project data was used to evaluate the models, and the 

results were compared to those obtained using KNN, CNN, 

and ENN. As shown by the findings, the KNN was the 

most effective method for cost estimation and prediction, 

while the based model achieved the best results in terms of 

MMRE, RMSE, and Balanced Relative Error (BRE) 

(0.101, 0.547, and 0.205, respectively). The suggested 

approach was shown to be accurate to the tune of 90.238% 

when the necessary calculations were made. This indicates 

that the system is very accurate and displays little variance 

using the KNN method for cost prediction. 

Karimi and Gandomani (2021) [31] Introduce a novel 

model built on a combination of ANFIS (Adaptive 

Network-Based Fuzzy Inference System) and DE 

(Differential Evolution). The goal of this model is to 

improve upon earlier research by providing a more precise 

estimate of the time and effort required to build software. 

The suggested technique improved accuracy by up to 7% 

as measured by the MMRE and Prediction (PRED) (0.25) 

criterion, outperforming existing optimization algorithms 

adapted from the genetic algorithm, evolutionary 

algorithm, meta-heuristic algorithm, and neuro-fuzzy-

based optimization algorithm. 

Priya et al., (2021) [32]  provided a method for estimating 

software development time utilizing an array of methods, 

including machine learning and deep neural networks. 

Ensemble methods involve combining numerous 

independent models. The estimate strategies of averaging, 

weighted averaging, bagging, boosting, and stacking were 

classified as ensemble approaches. The generalized linear 

model, the decision tree, the support vector machine, and 

the random forest were among the stacking models 

explored and compared. For the Albrecht, China, 

Desharnais, Kemerer, Maxwell, Kitchenham, and 

Cocomo81 datasets, the RF model stacking presented 

yielded values of 0.9357274, 0.9839643, 0.65561700, 

0.7520435, 0.8120214, 0.9246614, and 0.8667750. 

Ullah et al., (2020) [33] provide a contrast between two 

algorithmic approaches, the Baily-Base d model, and 

Constructive Cost Models (COCOMO-II). Both Turkish 

and NASA data sets are used in the simulation. The 

following findings demonstrate that COCOMO-II 

outperforms Bailey Basili in MMRE (Mean Magnitude of 

Relative Error). 

Qiao et al., (2020) [34] suggest a new method for 

estimating software flaws, one that makes use of deep 

learning. The evaluation findings show that the suggested 

method is reliable and can outperform existing methods. 

The mean square error is reduced by over 14% on average, 
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and the squared correlation coefficient is increased by over 

8% when using the proposed strategy. 

Asheeri et al., (2019) [35] built a machine learning-based 

software price prediction model. To make an early-stage 

software cost prediction, a variety of machine learning 

methods are used on two publicly available datasets. In this 

study, the author employed the Root Relative Squared 

Error (RRSE), the Relative Absolute Error (RAE), the 

Mean Absolute Error (MAE), and the square root of the 

RMAE as assessment metrics. The suggested model's goal 

is to try prediction using the features of the dataset, then to 

compare the predicted and real efforts and evaluate the 

inaccuracy using various metrics. In this case, a higher R2 

value indicates a better outcome, but lower values indicate 

a better result for the other metrics. The results 

demonstrate the efficacy of using machine learning 

techniques for software price forecasting.  

Mojeed et al., (2019) [36]  introduce a memetic method to 

the issue of calculating when programmers should work 

extra. Overtime hours, project completion time, and overall 

budget are the three objectives of this optimization issue. 

The issue is solved by using the Multi-Objective Shuffled 

Frog-Leaping Algorithm (MOSFLA), an algorithm 

developed for overtime scheduling. The author employed 

three popular multi-objective quality indicators to conduct 

empirical assessment studies on six real-world software 

project datasets. Contribution (IC) values of 0.0118, Hyper 

volume (IHV) values of 0.0102, and Generational Distance 

(IGD) values of 0.0102 were achieved by MOSFLA, 

showing that it considerably exceeded the current typical 

overtime management solutions in software engineering 

projects.  

Ullah et al., (2019) [37] suggest utilizing a typical Turkis 

industry dataset in conjunction with a Flower Pollination 

Algorithm (FPA) to optimize the parameters of a 

Constructive Cost Model II (COCOMO-II). According to 

the experimental results, the suggested method provides a 

more accurate estimation than the Bat algorithm and the 

original COCOMO-II in terms of the Manhattan distance 

(MD) and the mean magnitude of relative errors (MMRE). 

Jha et al., (2019) [38] apply deep learning to forecast 

software maintainability indicators using several data sets. 

Offers indicators that may be utilized for software 

maintenance forecasting, and the suggested deep learning 

model is more effective than any of the other approaches 

studied. Furthermore, the experimental outcomes validate 

the effectiveness of the proposed deep learning model for 

software maintainability prediction. 

Saljoughinejad et al., (2018) [39] purpose to boost the 

COCOMO model's precision in cost estimation. We use 

meta-heuristic methods to examine the key factors in costs. 

In this approach, COCOMO is enhanced in a 

distinguishable fashion through careful selection of 

coefficients and reconstruction. Using data from actual 

software development projects, researchers found that the 

IWO-PSO hybrid model yielded the most precise 

outcomes. 

Puspaningrum (2017) [40] presented a combination of the 

cuckoo search and the harmony search method to fine-tune 

the values of the four COCOMO-II parameters for 

maximum accuracy. The suggested method is tested on the 

NASA 93 dataset and analyzed with the Mean Absolute 

Error (MAE) and the Mean Squared Error (MSSE). The 

suggested technique outperforms COCOMO-II and the 

cuckoo search algorithm in estimating the time and effort 

required to complete a software project, as shown by the 

experiments. 

Miandoab et al., (2016) [41] proposed a hybrid approach 

that is utilized, which takes the best features of the COA-

Cuckoo optimization process and the K-Nearest Neighbors 

(KNN) algorithm. Composition algorithms are tested on 

six distinct datasets using eight distinct metrics. Estimated 

costs were shown to be more accurate because of these 

analyses. Based on the findings, the typical relative error 

for the COCOMO model is the corresponding numbers for 

the genetic algorithm and the firefly method are 38.31 and 

30.34, respectively. In the compositional model, this value 

is equal to 22.53. 

Yadav et al., (2015) [42] implement the most important 

criteria for dependability at each stage of the software 

development life cycle (SDLC), and a fuzzy logic-based 

phase-wise software defect prediction model is provided. 

Defect density indication is forecasted across the phases of 

requirement analysis, design, coding, and testing with the 

use of nine software metrics. Twenty sets of data from 

actual software projects are used to verify the proposed 

model's prediction accuracy. There are no major issues 

with the validation. The average relative error and the 

balanced mean relative error are two measures that tend to 

improve with software project size. 

Gharehchopogh et al., (2015) [43] investigated SCE by 

combining the Meta-Heuristic Search Techniques of the 

Genetic Algorithm (GA) and the Artificial Bee Colony 

(ABC). The MRE error levels for the suggested model, 

GA, and ABC algorithms are all lower than those of the 

COCOMO model, as shown by the test results. The 

convergence of the hybrid model is superior to that of the 

GA and ABC algorithms. 

Dizaji et al., (2015) [44] suggested using meta-heuristic 

methods to calculate software project costs. In this work, 

we apply the Ant Colony Optimization (ACO) and Lorentz 

transformation as a Chaos Optimization Algorithm (COA) 

using datasets from NASA for both development and 

evaluation. The suggested technique is compared and 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 |  700 

evaluated with the COCOMO model using MARE, and the 

findings reveal a decrease in MARE to 0.078%. 

Du et al., (2015) [45] estimate the software costs, and a 

neuro-fuzzy model has been developed, which combines a 

neural network model with a fuzzy model.  According to 

the obtained data, the suggested model can enhance the 

estimation accuracy by 18% using the Mean Magnitude of 

Relative Error (MMRE) criteria. 

Shepperd et al., (2014) [46] attempt to decipher the 

seemingly contradictory experimental findings and identify 

the variables most responsible for variation in predicting 

accuracy. To identify the characteristics that affect 

predictive ability, authors undertake a meta-analysis of all 

applicable, high-quality primary studies of defect 

prediction. Surprisingly, authors discover that the classifier 

selection has a minor effect on performance (1.3%), 

whereas the largest (31%). Researchers themselves serve 

as an explanatory variable. Who does a task is more 

important than the task itself. 

Attarzadeh et al., (2010) [47] aim to increase precision in 

software project estimates by putting out a novel realistic 

model based on fuzzy logic. The primary goal of this study 

was to examine how the fuzzy logic method, by describing 

input parameters with a two-sided Gaussian function that 

provided a superior transition from one interval to another, 

may enhance the precision with which effort estimates are 

made. The results obtained by applying COCOMO II and 

the proposed model based on fuzzy logic to the NASA 

dataset and the artificial dataset created for comparison 

revealed that the proposed model was performing better 

than ordinary COCOMO II and that the achieved results 

were closer to the actual effort.  

Attarzadeh et al., (2010) [48] introduce a novel fuzzy 

logic model to address the estimated inaccuracy introduced 

by the COCOMO model's dependence on input data. The 

primary goals of this study are to examine how applying 

fuzzy logic to the model results in more precise software 

effort estimations and to identify the impact of crisp inputs 

and fuzzification approaches on the accuracy of the 

system's output. The empirical results indicated that the 

MMRE and the Pred (0.25) for projects with a relative 

error of less than or equal to 0.25 were both marginally 

reduced when using fuzzy logic for software effort 

estimations. 

3. Proposed Methodology 

This section shows the working principle of A Hybrid Cost 

Estimation Method for Planning Software Projects using 

Fuzzy Logic and Machine Learning [49]. Below is the 

step-by-step description of the proposed methodology and 

Fig 1 shows the flow diagram. 

The suggested approach for estimating the cost of software 

projects makes use of datasets with the names 

"Desharnais", “Kitchenham", and "Maxwell". These 

statistics provide historical data about software projects. 

Some of the topics included in this data are project size and 

complexity, as well as team experience and real expenses. 

To get the data ready for use, several pre-processing 

activities such as addressing missing values and scaling 

features are carried out. To determine which characteristics 

should be extracted for use in cost estimating, the author 

uses the TF-IDF. Lasso is used for feature selection to zero 

in on relevant characteristics. The terms "low", "medium" 

and "high" for project size are examples of the linguistic 

variables used in the development of fuzzy rules, which are 

in turn based on expert knowledge and historical data. The 

AND, OR, and NOT operators are used to combine these 

fuzzy rules to form fuzzy inference rules. 

Then, the defuzzification process is used on the hazy 

output memberships to provide precise numbers for use in 

the cost-estimating process. The suggested method makes 

use of a multi-model ensemble classifier that draws from 

LR, SVM, Feed FNN, and RNN techniques. An ensemble 

classifier is created by combining the results of many 

individual classifiers using fuzzy logic. The performance 

of the ensemble classifier is measured in terms of metrics 

like Mean Absolute Error (MAE), Mean Squared Error 

(MSE), and Root Mean Squared Error (RMSE) [50], and 

compared to other classifiers like Random Forest (RF). 

When it comes to real-world software project planning, the 

optimum cost-estimating model based on fuzzy logic is 

used. Before being used for real-world cost prediction in 

software projects, the final ensemble classifier is verified 

on fresh, unseen software project data to guarantee its 

generalizability and reliability. 
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Fig.1. Architectural Structure of Methodology 

4. Proposed Algorithm 

 

Algorithm: Pseudocode of proposed Cost Estimation 

Method for Planning Software Projects using Fuzzy 

Logic and Machine Learning 

Data Preprocessing 

def preprocess_data(dataset): 

preprocessed_datasets = preprocess(datasets) 

return preprocessed_datasets 

Feature Extraction: 

def extract_features_with_tfidf(dataset): 

tfidf_vectorizer = TfidfVectorizer() 

tfidf_features = tfidf_vectorizer.fit_transform(dataset) 

return tfidf_features 

Feature Selection: 

def select_features_with_Lasso(dataset): 

selected_features = select_features(dataset) 

lasso_model.fit(dataset, selected_features) 

return selected_features 

Fuzzy Logic Rule Development 

def develop_fuzzy_rules(dataset): 

fuzzy_rules = create_fuzzy_rules(dataset) 

return fuzzy_rules 

Defuzzification 

def defuzzify_output(fuzzy_output): 

crisp_output = defuzzification_process(fuzzy_output) 

return crisp_output. 

Ensemble Classifier Construction 

def train_base_classifiers(dataset): 

base_classifier_lr = train_linear_regression(dataset) 

base_classifier_svm = 

train_support_vector_machine(dataset) 

base_classifier_fnn = 

train_feed_forward_neural_network(dataset) 

base_classifier_rnn = train_re-

current_neural_network(dataset) 

return base_classifier_lr, base_classifier_svm, 

base_classifier_fnn, base_classifier_rnn 

Fuzzy Logic-based Ensemble Approach 

def fuzzy_logic_ensemble(base_outputs): 

   ensemble_output = 

combine_outputs_with_fuzzy_logic(base_outputs) 

   return ensemble_output 

Performance Evaluation and Comparison 

def evaluate_classifier_performance(ensemble_output, 

actual_costs): 

   rmse = root_mean_squared_error(ensemble_output, 

actual_costs) 

def compare_performance_with_rf(ensemble_output, 

actual_costs): 

   rf_output = random_forest_classifier(dataset)  

    return rf_rmse, fuzzy_logic_rmse 

Cost Estimation 

estimated_costs = 

optimized_fuzzy_logic_classifier.predict(new_data) 

   return estimated_costs. 

5. Result and Discussion 

This section provides a comprehensive and in-depth 

examination of the results and discoveries that resulted 

from the proposed methodology. The discussion 

incorporates numerous crucial aspects, such as feature 

extraction, feature selection, fuzzy logic rule formulation 
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procedures, and performance evaluation. This analysis 

highlights not only the successes of the hybrid method for 

estimating software project costs but also its prospective 

implications in actual planning scenarios. The results and 

discussion section provides an in-depth summary of the 

proposed Hybrid Cost Estimation Method for Planning 

Software Projects utilizing Fuzzy Logic and Machine 

Learning. This section describes the methodology's 

essential stages and offers insight into the performance of 

the proposed approach. 

5.1 Feature Extraction and Selection for Cost 

Estimation 

The process of extracting features is a crucial step in the 

technique that has been developed for predicting the costs 

of software projects. In this part of the analysis, the method 

of TF-IDF is used to extract relevant characteristics from 

the datasets, namely Desharnais, Kitchenham, and 

Maxwell, to add these characteristics into the procedure of 

cost estimate. The TF-IDF technique is used to extract 

features from the Desharnais, Kitchenham, and Maxwell 

datasets, and those features are shown in Table 1 below. 

Table 1. Extracted Features using TF-IDF 

Dataset Extracted Features 

Desharnais Project, TeamExp, ManagerExp, YearEnd, 

Length Transactions, PointsNonAdjust, 

Adjustment, PointsAjust, Effort 

Maxwell Year, App, Har, T14, T06, Source, Nlan, T05, 

T09, T15, Duration, Size, Time, Effort 

Kitchenham Clientcode, Projecttype, Duration, Adjfp, 

Estimate, Estimate method, Effort 

 

Using the Lasso regression method, Table 2 provided a 

summary of selected features gathered from various 

datasets. Lasso is a technique used in regression analysis 

for variable selection and regularization to prevent 

overfitting. Each entry in the table represents a unique 

dataset, and the columns provide information about the 

designated features for each dataset. Here is an outline of 

the table: 

• Dataset: This column identifies the dataset for which 

feature selection was conducted. There are three 

mentioned datasets: Kitchenham, Maxwell, and 

Desharnais. 

• Selected Features: This column lists the features 

(variables or attributes) selected using the Lasso 

feature selection method for each dataset. These 

characteristics are the most pertinent or instructive for 

the analysis or modeling duties related to each 

dataset. 

Table 2. Selected Features using Lasso. 

Dataset Selected Features 

Desharnais Project, TeamExp, Transactions, Points 

NonAdjust, PointsAjust, Effort 

Maxwell App, Har, Year, Source, Nlan, T05, T09, 

T15, Duration, Size, Time, Effort 

Kitchenham Clientcode, Project type, Duration, Adjfp, 

Estimate, Effort 

 

5.2 Key Fuzzy Rules for Cost Estimation and Effort 

Prediction 

Fuzzy rules serve as a set of guidelines for predicting "cost 

estimation" in the "Desharnais" dataset and "effort" in the 

"Kitchenham" and "Maxwell" datasets, respectively. These 

principles are intended to provide qualitative and 

approximate predictions, making them particularly useful 

in situations where the relationships between variables are 

not precisely defined. 

The provided fuzzy rules establish relationships between 

distinct input variables and the resulting output variable, 

"Effort," for three distinct datasets: "Desharnais," 

"Kitchenham," and "Maxwell." These rules are an integral 

part of fuzzy logic systems, allowing for the formation of 

well-informed decisions and forecasts in the face of 

ambiguous or imprecise information. Tables 3, 4, and 5 

contain these fuzzy rules, which play a crucial role in 

utilizing fuzzy logic to manage situations characterized by 

ambiguous or imprecise information. 

Table 3. The fuzzy rule for the “Desharnais” dataset 

No. Rule 

1. IF TeamExp is Low AND ManagerExp is Low 

THEN CostEstimation is High 

2. IF TeamExp is Low AND ManagerExp is Medium 

THEN CostEstimation is Medium 

3. IF TeamExp is Low AND ManagerExp is High 

THEN CostEstimation is Medium 

4. IF TeamExp is Medium AND ManagerExp is Low 

THEN CostEstimation is Medium 

5. IF TeamExp is Medium AND ManagerExp is 

Medium THEN CostEstimation is Medium 

6. IF TeamExp is Medium AND ManagerExp is High 

THEN CostEstimation is Low 

7. IF TeamExp is High AND ManagerExp is Low 

THEN CostEstimation is Low 

8. IF TeamExp is High AND ManagerExp is Medium 
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THEN CostEstimation is Low 

9. IF TeamExp is High AND ManagerExp is High 

THEN CostEstimation is Low 

 

Table 4. The fuzzy rule for the “Kitchenham” dataset 

No. Rule 

1. IF Project Type is 'A' OR 'D' AND Duration is long 

AND Estimate method is 'A' OR 'CAE' THEN 

Effort is High. 

2. IF Project Type is 'P' AND Adjusted function points 

are large AND Estimate method is 'C' OR 'EO' 

THEN Effort is Very High. 

3. If the Project Type is 'U' Duration is short AND the 

Estimate method is 'W' THEN Effort is Low. 

4. IF Client code is 1 AND Adjusted function points are 

small AND Estimate method is 'EO' THEN Effort 

is Low. 

5. IF Client code is 6 AND Duration is medium AND 

Estimate method is 'A' THEN Effort is Medium 

 

Table 5. The fuzzy rule for the “Maxwell” dataset 

No. Rule 

1. If App is InfServ and Har is PC Dba is GUI and 

UI_Source is Outsrced, then Effort is Low. 

2. If App is TransPro and Har is Mainfrm Dba is TextUI 

and UI_Source is Inhouse, then Effort is Medium. 

3. If App is CustServ and Har is Multi Dba is TextUI and 

UI_Source is Outsrced, then Effort is High. 

4. If App is MIS Har is Network Dba is GUI and 

UI_Source is Inhouse, then Effort is Very High. 

5. If Telonuse is yes and Nlan is 1, then Effort is Low. 

6. If Telonuse is no and Nlan is 4, then Effort is High. 

7. If T01 is between 1 and 3, then Effort is Low. 

8. If T01 is between 2 and 4, then Effort is Medium. 

9. If T01 is between 3 and 5, then Effort is High. 

10. If T02 is between 1 and 2, then Effort is Low. 

These fuzzy rules are essentially a set of conditional 

statements that make predictions or classifications using 

linguistic variables (e.g., low, medium, high). They are 

derived from databases using an inference system based on 

fuzzy logic. The principles can be used to estimate costs or 

efforts based on specific project attributes or 

characteristics. 

5.3 Performance Evaluation 

Table 6 displays the performance metrics of various 

machine learning models (LR, SVM, FNN, RNN, and 

Ensemble) on the Desharnais dataset. The table contains 

different kinds of errors (R-squared error, Root Mean 

Squared Error, and Mean Absolute Error) calculated for 

each model. 

• R-squared error (RE) is a statistical measure that 

indicates the proportion of the variance in the 

dependent variable that can be predicted by the 

independent variables. 

• Root Mean Squared Error (RMSE) quantifies the 

average difference between predicted and actual 

values. It indicates the typical magnitude of error by 

giving greater weight to significant errors. 

• Mean Absolute Error (MAE) is another method for 

calculating the average deviation between predicted 

and actual values. Contrary to RMSE, it considers all 

errors equally, irrespective of their magnitude. 

There are corresponding values for each error metric for 

each model (LR, SVM, FNN, RNN, and Ensemble) in the 

Desharnais dataset. These values indicate how well each 

model performed relative to the error metric in question. 

Table 6. Desharnais dataset 

 

Error

s 

 

LR 

 

SVM 

 

 

FNN 

 

 

RNN 

 

 

Ensembl

e 

RE 0.777686

0 

0.803775

1 

0.736884

9 

0.6715072

9 

0.798123

8 

 

RMSE 0.352839

6 

0.222194

6 

0.293201

5 

0.3319024 0.241177

2 

 

MAE 0.262898

2 

0.331490

4 

0.383854

7 

0.4289008 0.336230

0 

 

 

Fig 2 is a graphical representation of performance metrics 

for several machine learning models (LR, SVM, FNN, 

RNN, and Ensemble) applied to the Desharnais dataset. R-

squared error, Root Mean Squared Error, and Mean 

Absolute Error were computed for each model and are 

depicted in the figure. 
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Fig.2. Performance metrics comparison 

Error metrics for multiple machine learning models on the 

Maxwell dataset appear to be summarized in Table 7. 

Table 7. Maxwell Dataset 

 

Error

s 

 

LR 

 

SVM 

 

 

FNN 

 

 

RNN 

 

 

Ensembl

e 

RE 0.607316

9 

0.446928

3 

0.239508

2 

0.023782

1 

0.507857

0 

RMSE 0.588140

1 

0.537250

2 

0.668786

5 

0.685722

3 

0.521362

1 

MAE 0.483902

8 

0.697992

3 

0.818478

7 

0.927327

9 

0.658423

8 

 

Error values for multiple machine learning models on the 

Maxwell dataset are graphically shown in Fig 3. Error 

metrics for many models are compared to provide light on 

how effectively each performs on the dataset, as seen in the 

image. 

 

Fig.3. Error Values for Different Models 

Metrics for each model's performance on R-squared error, 

root mean squared error, and mean absolute error are 

shown in Table 8. The table below displays the results of 

several models in terms of various error metrics. Error 

metrics for each model on the Kitchenham dataset are 

shown in the cells. 

Table 8. Kitchenham dataset 

 

Error

s 

 

LR 

 

SVM 

 

 

FNN 

 

 

RNN 

 

 

Ensembl

e 

RE 0.928729

8 

0.928879

3 

0.910007

0 

0.858328

8 

0.930789

3 

 

RMSE 0.274710

1 

0.274421

8 

0.308691

7 

0.387312

6 

0.270711

9 

 

MAE 0.200920

7 

0.202157

5 

0.249333

9 

0.306725

2 

0.194153

4 

 

 

Error scores for several machine learning models applied 

to the Kitchenham dataset are graphically shown in Fig 4. 

This visual representation of error metrics allows for quick 

comparison between models, yielding useful insights into 

how they perform on the dataset. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(1), 696–707 |  705 

 

Fig.4 Performance Metrics Comparison 

6. Conclusion 

The paper presents a hybrid approach, incorporating fuzzy 

logic and machine learning, for precise cost estimation of 

software projects. Effective project management requires 

accurate cost estimation. Inaccuracy can cause delays and 

cost increases. This paper examines both algorithmic and 

non-algorithmic techniques for cost estimation, 

highlighting their advantages and disadvantages. The paper 

also provides a literature review on this hybrid approach, 

with an emphasis on its potential impact on software 

project planning. The suggested approach to cost estimate 

employs a hybrid of fuzzy logic and machine learning, 

drawing on the results of previous calculations performed 

on datasets such as "Desharnais," "Kitchenham," and 

"Maxwell." An ensemble classifier based on LR, SVM, 

FNN, and RNN is developed, and the author details the 

pre-processing stages, feature selection, and fuzzy rule 

generation that led to this outcome. This model is 

evaluated using multiple indicators to determine its 

relevance to real-world software project planning. The 

result and discussion section details the fuzzy logic and 

machine learning software project cost estimating 

approach. It covers essentials including feature extraction, 

selection, fuzzy logic rule development, and performance 

evaluation. Datasets like Desharnais, Kitchenham, and 

Maxwell are used to show how extracted attributes affect 

cost estimation. The section emphasizes fuzzy rules' role in 

approximation and qualitative predictions from unclear 

data. On each dataset, R-squared error, Root Mean Squared 

Error, and Mean Absolute Error are used to evaluate 

machine learning models (LR, SVM, FNN, RNN, En-

semble). These indicators show the models' performance 

and applicability for real-world software project planning. 

The results show that the SVM model achieved the 

maximum R-squared error of 0.8037751 in the Desharnais 

dataset, while the RNN model obtained the minimum at 

0.67150729. For the Maxwell dataset, the LR model 

exhibited the highest R-squared error of 0.6073169, while 

the RNN model achieved the lowest value at 0.0237821. 

Finally, for the Mean Absolute Error, the RNN model 

exhibited the maximum value of 0.3067252 in the 

Kitchenham dataset, while the Ensemble model 

demonstrated the minimum at 0.1941534. The Ensemble 

model achieved a maximum R-squared error of 0.9307893 

in the Kitchenham dataset and had a Root Mean Squared 

Error of 0.2707119, which was the lowest among all 

models. An improvement in machine learning algorithms 

and computational capacity may result in cost estimation 

models that are even more accurate and efficient. This 

hybrid approach has the potential to have a substantial 

impact on software project planning, making it an 

intriguing area for future research and development. 
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