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Abstract: With the escalating demand for food due to the burgeoning global population, the agricultural sector is under intense pressure 

to enhance productivity and yield predictability. Precision agriculture emerges as a pivotal approach, enabling real-time, accurate 

monitoring, and management of agricultural resources, fundamentally transforming smart agriculture scenarios. It leverages advanced 

technologies to optimize field-level management regarding crop farming. However, the effectiveness of precision agriculture is 

inherently contingent on the accuracy and timeliness of yield predictions. Current models for yield prediction have exhibited notable 

limitations, struggling with accuracy, precision, recall, and timeliness in yield predictions. These models predominantly operate on 

singular data modalities and exhibit a marked deficiency in leveraging multidomain features, which is imperative for holistic soil and 

crop analysis. The absence of a comprehensive approach integrating various data types like NPK sensor data, image data, and 

microscopic data limits the depth of analysis and subsequently, the predictive accuracy and precision. The proposed model amalgamates 

multidomain feature extraction methods, including Frequency, Cosine, Wavelet, and Convolutions, and deploys 1D CNN (Convolutional 

Neural Network) for NPK data, RNN (Recurrent Neural Network) for image data, and GNN (Graph Neural Network) for microscopic 

data samples to augment yield prediction efficiency levels. When implemented, the model demonstrates a substantial enhancement in the 

precision of yield prediction classification by 8.5%, accuracy by 10.4%, recall by 4.5%, and AUC by 2.9%, and concurrently manifests a 

reduction in the delay of yield prediction by 4.9% compared with existing models. This innovative approach offers a robust, 

comprehensive solution, enabling precise, timely yield predictions and is advantageous across varied use cases, from optimizing resource 

allocation to aiding in timely decision-making processes in agricultural practices. The proposed multidomain, multimodal deep learning 

model significantly advances the domain of precision agriculture. It addresses the prevalent limitations in existing models, offering 

improved accuracy, precision, and recall, and reducing delays in yield predictions. Its successful implementation across various 

agricultural scenarios underscores its potential to be a cornerstone in future smart agriculture, aiding in addressing global food security 

challenges and optimizing agricultural resource management  

Keywords: Multidomain Feature Engineering, Multimodal Deep Learning, NPK sensing,Precision Agriculture, Yield Prediction  

1. Introduction 

Agriculture is the backbone of human civilization, 

providing sustenance and shaping societies. The necessity 

for optimization within this sector is amplified in our 

contemporary scenario, marked by escalating food 

demands due to the burgeoning global population and 

exacerbated by the implications of climate change. This 

drives a pivotal transition toward precision agriculture, a 

paradigm focused on the enhancement of farming practices 

through meticulous management and informed decision-

making. The need for this work stems from the critical 

requirement to refine predictive analysis within agriculture, 

which would act as a catalyst in revolutionizing farming 

methodologies, thereby contributing significantly to 

addressing global food security concerns [1, 2, 3]. Which 

can be resolved via use of Interpretable Long Short-Term 

Memory Networks (ILSTM) operations. 

Precision agriculture leverages advanced technologies, 

allowing real-time monitoring, management, and 

optimization of field-level practices in crop farming. It holds 

the potential to drastically enhance resource utilization 

efficiency, crop yields, and subsequently, the economic 

viability of farming practices. The real-time impacts of 

advancements in this domain reverberate through smart 

agriculture scenarios, optimizing resource allocations, 

minimizing waste, and enabling more sustainable, 

environmentally friendly agricultural practices [4, 5, 6]. This 

can be further optimized via use of crop dual-learning 

generative adversarial network (Crop DGAN) operations. 

However, existing models and frameworks for yield 

prediction in precision agriculture have been markedly 

limited in their scope and efficacy. These models often lack 

the comprehensive integration of varied data modalities and 

predominantly operate in silos, focusing on singular aspects 
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of agricultural data. The prevalent methodologies struggle to 

assimilate and analyze diverse datasets, such as NPK sensor 

data, high-dimensional image data, and intricate microscopic 

data, which are integral for a nuanced, holistic understanding 

of soil health and crop conditions. This isolation leads to a 

significant loss in predictive accuracy and precision, limiting 

the real-world applicability and impact of these models. 

In this paper, we introduce an innovative approach aiming to 

overcome the constraints of existing models. Our approach is 

underpinned by the fusion of multidomain feature 

engineering and advanced deep learning models, leveraging 

1D CNN for NPK data analysis, RNN for image data 

processing, and GNN for microscopic data interpretation. 

This model seeks to amalgamate diverse data modalities and 

extract multidomain features, including Frequency, Cosine, 

Wavelet, and Convolutions, to enhance the robustness and 

reliability of yield predictions. 

The presented model exhibits significant improvements in 

predictive precision, accuracy, recall, and AUC, while 

concurrently reducing prediction delays, demonstrating an 

overall enhancement of 10.4% in accuracy and 8.5% in 

precision in comparison to existing models. This level of 

advancement has substantial implications for various 

agricultural scenarios, providing a more holistic and nuanced 

understanding of the soil-crop ecosystem. The ability to 

make more informed, timely decisions regarding crop 

management and resource allocation can be transformative, 

catalyzing the evolution of sustainable, efficient, and 

productive agricultural practices. 

This study is poised at the intersection of advanced 

computational models and agricultural sciences, seeking to 

bridge the existing gaps and propel the domain of precision 

agriculture forward. By addressing the limitations in current 

yield prediction models and introducing a comprehensive, 

nuanced approach, this research contributes to the ongoing 

endeavors to optimize agricultural practices, thereby playing 

a crucial role in shaping the future of global agriculture. The 

forthcoming sections will delve deeper into the 

methodologies, experiments, and results related to the 

proposed model, elucidating its potential to be a harbinger of 

change in precision agriculture. 

1.1. Motivation 

The endeavor to marry advanced technology with 

agricultural practices has become a paramount pursuit in 

contemporary research domains, motivated by the global 

urgency to optimize agricultural yield and sustain an ever-

growing human population. This urgency is further 

intensified by the looming challenges posed by climate 

change and the increasing unpredictability in weather 

patterns, impacting crop yields and consequently, food 

security. The current siloed approach in agricultural models 

significantly hampers the attainability of a holistic 

perspective, necessary for making informed and effective 

decisions in agricultural practices. The existing models, 

characterized by their singular focus on isolated data 

modalities, have proven to be inadequate in addressing the 

multifaceted nature of agricultural ecosystems. The lack of a 

comprehensive, integrated approach in analyzing diverse 

datasets has resulted in suboptimal yield predictions, thereby 

motivating the need for a revolutionary model capable of 

synergizing multifarious data types and offering nuanced, 

accurate insights. 

1.2 Objectives 

In light of the aforementioned motivation, this research 

seeks to accomplish the following objectives: 

1.2.1 Development of an Integrated Multimodal 

Framework:  

To design and implement a sophisticated framework that 

seamlessly integrates multiple data modalities, namely 

NPK sensing data, image data, and microscopic data, for a 

comprehensive analysis of agricultural ecosystems. 

1.2.2 Incorporation of Multidomain Feature 

Engineering: 

To employ advanced feature engineering techniques 

including Frequency, Cosine, Wavelet, and Convolutions 

to extract pertinent features from diverse datasets, enabling 

a deeper, more nuanced understanding of soil health and 

crop conditions. 

1.2.3 Implementation of Advanced Deep Learning 

Models: 

To develop and deploy cutting-edge deep learning models 

such as 1D CNN for NPK data, RNN for image data, and 

GNN for microscopic data, to enhance the precision and 

accuracy of yield predictions. 

1.2.4 Evaluation and Comparison with Existing 

Models: 

 To meticulously evaluate the proposed model’s 

performance across various agricultural scenarios and 

compare it with existing models, assessing improvements 

in predictive precision, accuracy, recall, AUC, and 

reduction in prediction delays. 

1.2.5 Real-World Applicability and Impact 

Assessment:  

To scrutinize the real-world implications and applicability 

of the proposed model in diverse agricultural settings, 

analyzing its potential to optimize resource allocations, 

minimize waste, and enhance overall agricultural 

sustainability and productivity. 

The pursuit of these objectives is aimed at addressing the 

glaring gaps in the current state of agricultural models. The 
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successful realization of the proposed integrated, 

multidomain, and multimodal approach is anticipated to 

contribute significantly to the evolution of precision 

agriculture. This research aspires to set new benchmarks in 

agricultural yield predictions, offering a model that is not 

only theoretically robust but also practically 

transformative, potentially reshaping agricultural practices 

and policies for a sustainable future. 

In conclusion, the motivation for this work is deeply rooted 

in the global need for optimized, sustainable agricultural 

practices and the inherent limitations in existing predictive 

models. The defined objectives aim to address these 

motivations by introducing innovative approaches and 

methodologies, hoping to make substantial contributions to 

both academic research and practical applications in 

precision agriculture. 

2. Literature Review 

Precision Agriculture (PA) is a modern farming 

management concept leveraging digital technologies to 

monitor and optimize field-level crop farming. This 

approach’s genesis is intertwined with the emergence of 

technologies allowing for real-time, dynamic management 

of agricultural resources, significantly impacting smart 

agriculture scenarios [7, 8, 9]. Within the academic and 

industrial spheres, substantial literature exists exploring the 

various facets of precision agriculture, delving into its 

methodologies, applications, impacts, and potential 

advancements. 

Yield prediction has been a cornerstone in agricultural 

research, with numerous studies exploring various models 

and techniques. Traditional models often relied on 

statistical and mathematical approaches, utilizing linear 

regression, and time-series analysis [10, 11, 12]. However, 

the advent of machine learning and deep learning has 

marked a paradigm shift in yield prediction models, with 

studies showcasing the potential of algorithms like Support 

Vector Machines, Neural Networks, and Decision Trees in 

providing more accurate, reliable yield forecasts. 

A significant volume of literature in precision agriculture 

primarily focuses on singular data modalities. Studies 

utilizing NPK sensors have highlighted the importance of 

real-time monitoring of soil nutrient levels in 

understanding and predicting crop yields [13, 14, 15]. 

Which can also be processed via use of 3D-Convolutional 

Neural Networks and Attention Convolutional LSTM 

operations (3DCNN ACLSTM). Separate strands of 

research have investigated the utility of image data, 

deploying techniques like image processing and computer 

vision to analyze crop conditions and predict yields. 

Moreover, microscopic data analysis in the literature has 

been pivotal in understanding soil health and its 

implications on yield levels. 

However, these singular approaches inherently lack a 

holistic perspective. The isolated analysis of different data 

types has been identified as a limitation, with scholars 

emphasizing the need for integrated models that can 

synergize diverse datasets to derive more comprehensive, 

nuanced insights for different scenarios [16, 17, 18]. 

Recognizing the limitations of single modality analysis, 

recent studies have begun exploring multimodal data 

integration in agriculture [19, 20]. The fusion of different 

data types, such as sensory data, image data, and 

microscopic data, is seen as a promising avenue for 

enhancing predictive accuracy and precision in agricultural 

models [21, 22, 23]. Various techniques and 

methodologies have been proposed to amalgamate data 

from different sources, with early results indicating 

substantial improvements in predictive performance 

compared to single modality models. 

Deep Learning has emerged as a transformative force in 

numerous domains, including agriculture. The literature 

elucidates the deployment of Convolutional Neural 

Networks (CNN) for image data analysis, Recurrent 

Neural Networks (RNN) for sequential data, and Graph 

Neural Networks (GNN) for structured or graph data in 

agriculture. These advanced models have demonstrated 

superior capabilities in handling high-dimensional, 

complex data, providing more accurate, reliable 

predictions [24, 25]. 

In yield prediction, the integration of deep learning models 

has been a focal point of contemporary research. Several 

studies have evidenced the benefits of employing deep 

learning models in contrast to traditional machine learning 

algorithms, showcasing enhanced predictive accuracy, 

precision, and reliability in diverse agricultural scenarios. 

Incorporating advanced feature engineering techniques has 

been another evolving trend in agricultural research. The 

extraction of pertinent features using methods like 

Frequency, Cosine, Wavelet, and Convolutions has been 

explored in several studies. This multidomain feature 

engineering approach enables the models to grasp the 

nuanced characteristics of diverse datasets, thus enriching 

the analysis and subsequently improving the prediction 

outcomes. Despite the advancements in multimodal data 

integration, deep learning models, and multidomain feature 

engineering, the existing literature signifies the presence of 

challenges, primarily related to the seamless integration of 

varied data types and the optimal extraction of features. 

The academic discourse underlines imperative need for 

more innovative approaches that can overcome these 

challenges, providing robust, comprehensive solutions for 

yield prediction in precision agriculture. 
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In conclusion, work on precision agriculture, yield 

prediction models, single modality analysis, multimodal 

data integration, deep learning approaches, and 

multidomain feature engineering presents a multifaceted 

view of the ongoing trends, challenges, and opportunities 

in this domain. The prevailing limitations in existing 

models, primarily stemming from the isolated analysis of 

diverse data types and the suboptimal extraction of 

features, have motivated the need for more advanced, 

integrated approaches. In conclusion, work on precision 

agriculture, yield prediction models, single modality 

analysis, multimodal data integration, deep learning 

approaches, and multidomain feature engineering presents 

a multifaceted view of the ongoing trends, challenges, and 

opportunities in this domain. The prevailing limitations in 

existing models, primarily stemming from the isolated 

analysis of diverse data types and the suboptimal 

extraction of features, have motivated the need for more 

advanced, integrated approaches. 

3. Proposed design of an Efficient Model for 

Advancing Precision Agriculture through 

Multidomain Feature Engineering and 

Multimodal Deep Learning for Enhanced 

Yield Predictions 

As per the review of existing models used for enhancing 

efficiency of precision agriculture applications, it can be 

observed that most of these models either have higher 

complexity, or cannot be scaled to real-time scenarios due to 

their lower efficiency under multiclass scenarios. To 

overcome these issues, this section discusses design of an 

efficient Model for advancing Precision Agriculture through 

Multidomain Feature Engineering and Multimodal Deep 

Learning for Enhanced Yield Predictions. As per figure 1, 

the proposed model uses multidomain feature extraction 

operations along with 1D CNN for NPK data, RNN for 

image data, and GNN for microscopic data samples to 

augment yield prediction efficiency levels. 

Based on figure 1, it can be observed that the proposed 

model initially collects multimodal data samples, and 

converts them into multidomain features. These include 

Frequency Features via Fourier Transforms, Cosine Features 

via Discrete Cosine Transform, Wavelet Features via Haar 

Wavelet Transforms, and Convolution Features. These 

features are extracted for NPK Data, Image Data & 

Microscopic Image Data Samples via equations 1, 2, 3, 4, 5 

& 6 as follows, 

 

Where,  represents collected data samples, while  

are total number of collected data samples.  

 

 

 

 

Fig 1 Design of proposed model for prediction of yield 

levels 

 

Where,  are the pre-set sizes for different 

convolutional windows & strides, while  is the 

activation function which applies Leaky Rectified Linear 

Unit operations via equation 4, 

 

Where,  is an iterative constant which assists in retaining 

positive feature sets. 

 

 

All these features are fused to create an Iterative Yield 

Feature Vector (IYFV) which is used to train an efficient 

set of deep learning models. Each of these models serve a 

different purpose, where 1D CNN is used to classify NPK 

samples, RNN is used to classify image data samples, 

while GNN is used to classify microscopic data samples. 

Design of the 1D CNN Model is depicted in figure 2, 

where different layers & their configurations can be 

observed as follows, 
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Fig. 2 Design of the Proposed 1D CNN Model Process 

The model converts the  Vector into multilevel 

convolutional components, and each of these components 

are passed through Max Pooling & Drop Out layers. At the 

end of final drop out layer, the model uses an efficient 

SoftMax based Fully Connected Neural Network (FCNN) 

to estimate output yield class via equation 7 as follows 

 

Where,  represents final convolutional features 

extracted by 1D CNN,  represent their individual 

weights & biases for  Features, while  is the 

output yield level estimated by the data processed by NPK 

sensors. 

Similar to this 1D CNN Process, the proposed model also 

uses LSTM based Recurrent Neural Networks (RNN) to 

process images collected by normal cameras. This model 

converts the collected images into LSTM features via 

equations 8, 9, 10, 11, 12 & 13 as follows, 

 

 

 

 

 

 

Where,  represent constants of LSTM process, 

while  is an initial unity matrix which is updated via 

equation 13, and used to re-evaluate LSTM outputs until 

the process converges. The convergence process is 

represented via equation 14, 

 

Where,  is set empirically to maximize 

variance level of the extracted features. Once this process 

is converged then an iterative Purely Linear Activation 

function is used to identify yield level via equation 15, 

 

Where,  represents total number of LSTM features. The 

results of this process are fused with the results from NPK 

and microscopic imagery to obtain final yield levels via 

equation 16, 

 

Where,  represents accuracy of the  classification 

process. The output yield class from microscopic (MS) 

images is estimated using an efficient Graph Neural 

Network (GNN) process. For each microscopic soil image, 

we represent it as a graph where nodes represent different 

regions or patches within the image sets. Initialize node 

features for each patch based on IYFV features. Initialize 

edge features to capture relationships between neighboring 

patches. For each node in the graph, calculate an 

aggregated message from its neighboring nodes and edges 

via equation 17, 

 

Where, hv(k) represents the node features of node v at 

iteration k, IYFV(k) is the learnable feature function that 

combines features from neighboring nodes and edges. 

After this, Update the node features based on the 

aggregated messages via equation 18, 

 

Where, g(k) represents the LSTM process that updates the 

node features. Aggregate the final node features to obtain a 

graph-level representation via equation 19, 

 

where, K represents the number of message-passing 

iterations for different samples. Use the graph-level 

representation hgraph to predict crop yield levels via 

equation 20, 

 

Where, W and b are learnable parameters, and the softmax 

function ensures that the output represents a probability 

distribution over different yield level which is estimated 

via GNN operations. In this architecture, the input consists 
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of microscopic soil images, which are converted into a 

graph structure using IYFV features. The GNN then 

iteratively updates node features by aggregating 

information from neighboring nodes and edges. Finally, it 

computes a graph-level representation that is used to 

predict crop yield levels. Efficiency of this integrated 

process is estimated in terms of different performance 

metrics, and compared with existing models in the next 

section of this text. 

4. Result Analysis 

The proposed model, MFMDLYP (Multidomain Feature 

Engineering and Multimodal Deep Learning for Enhanced 

Yield Predictions), represents a transformative approach in 

the realm of precision agriculture. In response to the 

pressing need for precise and timely crop yield predictions, 

MFMDLYP introduces a groundbreaking framework that 

integrates multidomain feature extraction methods 

encompassing Frequency, Cosine, Wavelet, and 

Convolutions. This novel approach capitalizes on diverse 

data sources, including NPK sensor data, image data, and 

microscopic data, to holistically analyze soil and crop 

conditions. MFMDLYP deploys specialized deep learning 

models, including a 1D Convolutional Neural Network 

(CNN) for NPK data, a Recurrent Neural Network (RNN) 

for image data, and a Graph Neural Network (GNN) for 

microscopic data samples. The integration of these 

multimodal techniques significantly enhances the 

precision, accuracy, recall, and timeliness of yield 

predictions, thereby addressing the limitations inherent in 

existing models. MFMDLYP emerges as a comprehensive 

solution with the potential to revolutionize precision 

agriculture, offering a powerful tool for optimizing 

resource allocation and facilitating informed decision-

making in agricultural practices across diverse real-world 

scenarios. 

The experimental setup for the research presented in this 

paper is designed to demonstrate the effectiveness of the 

proposed model in improving crop yield predictions. This 

section outlines the key components of the experimental 

setup, including data collection, preprocessing, and 

parameter configurations. 

4.1. Data collection and preprocessing 

4.1.1 Data sources 

• NPK Sensor Data: Nutrient levels (Nitrogen, 

Phosphorus, and Potassium) were collected using NPK 

sensors placed in the fields. 

• Image Data: High-resolution aerial and ground images 

of the crops were captured using drones and on-site 

cameras. 

• Microscopic Data: Microscopic images of soil and crop 

samples were collected in the laboratory. 

4.1.2 Data Integration 

• All data sources were synchronized and timestamped to 

ensure alignment. 

• Kalman Filters were applied to reduce noise and 

enhance data quality. This involved: 

• Sensor Data Smoothing: The NPK sensor data was 

smoothed using Kalman Filters to remove outliers and 

irregularities. 

• Image Enhancement: Image data underwent 

preprocessing with Kalman Filters to correct for 

variations in lighting and atmospheric conditions. 

Microscopic Data Calibration: The microscopic data was 

calibrated using Kalman Filters to correct for distortion 

and imperfections 

4.1.3 Data Splitting 

• The dataset was split into training, validation, and 

testing sets, with a ratio of 70:15:15. 

• Cross-validation techniques were employed to ensure 

robust model training. 

4.1.4 Parameter Configurations: 

i) Model Architecture: 

Multidomain Feature Extraction: The feature extraction 

methods included Frequency, Cosine, Wavelet, and 

Convolutions for different data domains. 

Deep Learning Models: 

NPK data was processed using a 1D Convolutional Neural 

Network (CNN). 

Image data was processed using a Recurrent Neural 

Network (RNN). 

Microscopic data samples were processed using a Graph 

Neural Network (GNN). 

ii) Hyperparameters: 

The following hyperparameters were configured: 

• Learning Rate: 0.001 

• Batch Size: 64 

• Epochs: 100 

• Optimizer: Adam 

• Loss Function: Mean Squared Error (MSE) for 

regression tasks and Binary Cross-Entropy for 

classification tasks. 

• Dropout Rate: 0.2 (for regularization) 
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• Activation Functions: ReLU for hidden layers, Sigmoid 

for output layers. 

• Graph Convolution Layers: 2 layers with 64 units each 

for GNN. 

4.1.5 Hardware and Software: 

• Experiments were conducted on a high-performance 

computing cluster equipped with NVIDIA GPUs to 

accelerate deep learning computations. 

• Software frameworks included TensorFlow and 

Keras for model development and PyTorch for GNN 

implementations. 

• Data preprocessing and analysis were performed 

using Python libraries such as NumPy and OpenCV. 

Parameter Values for Deep Learning Operations: 

• Learning Rate: 0.001 

• Batch Size: 64 

• Epochs: 100 

• Optimizer: Adam 

• Loss Function: MSE (for regression) 

• Dropout Rate: 0.2 

• Activation Functions: ReLU (hidden layers), Sigmoid 

(output layers) 

• Number of Graph Convolution Layers (GNN): 2 

• Units per GNN Layer: 64 

The described experimental setup ensures that the data 

collected from various sources are synchronized, 

preprocessed with Kalman Filters for quality enhancement, 

and then used to train and evaluate the MFMDLYP model 

with well-defined hyperparameters. This setup enables 

rigorous testing and validation, ultimately demonstrating 

the model's effectiveness in enhancing crop yield 

predictions in precision agriculture scenarios.  

Based on this setup, equations 18, 19, and 20 were used to 

assess the precision (P), accuracy (A), and recall (R), 

levels based on this technique, while equations 21 & 22 

were used to estimate the overall precision (AUC) & 

Specificity (Sp) as follows, 

 

 

 

 

 

There are three different kinds of test set predictions: True 

Positive (TP) (number of events in test sets that were 

correctly predicted as positive), False Positive (FP) (number 

of instances in test sets that were incorrectly predicted as 

positive), and False Negative (FN) (number of instances in 

test sets that were incorrectly predicted as negative; this 

includes Normal Instance Samples). The documentation for 

the test sets makes use of all these terminologies. To 

determine the appropriate TP, TN, FP, and FN values for 

these scenarios, we compared the projected Yield likelihood 

to the actual Yield status in the test dataset samples using 

the ILSTM [2], Crop DGAN [6], and 3DCNN ACLSTM 

[13] techniques. As such, we were able to predict these 

metrics for the results of the suggested model process. The 

precision levels based on these assessments are displayed as 

follows  

 

Fig 3. Observed Precision during prediction of crop yield 

levels 

The observed precision during the prediction of crop yield 

levels, as measured by Precision (P%) and based on 

different numbers of test samples (NTS), reveals significant 

performance improvements with the proposed MFMDLYP 

model compared to the existing models, ILSTM [2], Crop 

DGAN [6], and 3DCNN ACLSTM [13]. 

At NTS 448k, the MFMDLYP model achieves an 

impressive precision of 96.06%, surpassing the other 

models: ILSTM at 86.44%, Crop DGAN at 85.58%, and 

3DCNN ACLSTM at 84.92%. This 8.5% improvement in 

precision demonstrates the effectiveness of the proposed 

model in making more accurate predictions. 

As the number of test samples increases to 832k, 1088k, 

and beyond, MFMDLYP consistently outperforms the other 

models. For instance, at NTS 832k, MFMDLYP achieves a 

precision of 96.72%, while the nearest competitor, 3DCNN 
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ACLSTM, lags behind at 89.55%. This substantial 7.17% 

improvement highlights the robustness of MFMDLYP in 

handling larger datasets and enhancing precision. 

Even at higher NTS values such as 1920k, 2240k, and 

2496k, the MFMDLYP model maintains its lead. At NTS 

2496k, it achieves a precision of 95.76%, while the closest 

competitor, ILSTM, reaches 90.64%. This 5.12% difference 

underscores the model's ability to consistently provide more 

accurate yield predictions. 

When evaluating performance across the entire range of 

NTS values, it is evident that MFMDLYP consistently 

outperforms the other models in terms of precision. This is 

attributed to its innovative approach of amalgamating 

multidomain feature extraction methods, including 

Frequency, Cosine, Wavelet, and Convolutions, as well as 

deploying 1D CNN for NPK data, RNN for image data, and 

GNN for microscopic data samples. This comprehensive 

approach enables MFMDLYP to capture and leverage 

diverse data modalities, leading to superior precision in 

yield predictions. 

In summary, the observed precision results clearly 

demonstrate that the MFMDLYP model excels in precision 

agriculture by consistently providing higher precision 

percentages across various numbers of test samples. Its 

multidomain, multimodal deep learning approach 

outperforms existing models, ensuring more accurate and 

reliable yield predictions, which are crucial for optimizing 

resource allocation and aiding timely decision-making in 

agricultural practices. Similar to that, accuracy of the 

models was compared in Figure 4 . 

The observed accuracy during the prediction of crop yield 

levels, denoted as Accuracy (A%) and measured across 

different numbers of test samples (NTS), reveals the 

superiority of the proposed MFMDLYP model compared to 

existing models: ILSTM [2], Crop DGAN [6], and 3DCNN 

ACLSTM [13]. 

At NTS 448k, the MFMDLYP model achieves an accuracy 

of 91.96%, significantly outperforming the other models. In 

comparison, ILSTM, Crop DGAN, and 3DCNN ACLSTM 

achieve 85.39%, 84.72%, and 84.82% accuracy, 

respectively. The MFMDLYP model's 7.14% improvement 

in accuracy underscores its ability to make more precise 

crop yield predictions. 

 

 

 

 

  

Fig 4. Observed Accuracy during prediction of crop yield 

levels 

As the number of test samples increases, the MFMDLYP 

model consistently maintains its lead in accuracy. For 

instance, at NTS 832k, it achieves an accuracy of 92.15%, 

surpassing the nearest competitor, 3DCNN ACLSTM, by 

4.86%. This improvement in accuracy is attributed to the 

model's ability to harness multidomain feature extraction 

methods and multimodal deep learning techniques, 

allowing it to better capture complex relationships in the 

data. 

Even at higher NTS values, such as 2496k and 4864k, the 

MFMDLYP model continues to demonstrate superior 

accuracy. At NTS 2496k, it achieves an accuracy of 

94.38%, while the nearest competitor, ILSTM, achieves 

88.08%. This substantial 6.3% difference showcases the 

model's consistency in providing accurate yield predictions 

across varying dataset sizes. 

When examining the overall trend across different NTS 

values, it becomes evident that the MFMDLYP model 

consistently outperforms other models in terms of accuracy. 

This is due to its holistic approach, which leverages 

multiple data modalities and advanced deep learning 

techniques to extract valuable insights from the data. 

In summary, the observed accuracy results highlight the 

MFMDLYP model's excellence in precision agriculture. It 

consistently provides higher accuracy percentages across 

different numbers of test samples, demonstrating its 

superior capability in making accurate crop yield 

predictions. The incorporation of multidomain feature 

extraction methods and multimodal deep learning 

significantly contributes to the model's accuracy 

improvements, making it a valuable tool for optimizing 

agricultural practices and addressing global food security 

challenges. Similar to this, the recall levels are represented 

in Figure 5 as follows 
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Fig 5. Observed Recall during prediction of crop yield 

levels 

The observed recall during the prediction of crop yield 

levels, denoted as Recall (R%) and evaluated across various 

numbers of test samples (NTS), underscores the remarkable 

performance of the proposed MFMDLYP model in 

comparison to existing models: ILSTM [2], Crop DGAN 

[6], and 3DCNN ACLSTM [13]. 

At NTS 448k, the MFMDLYP model exhibits a substantial 

recall of 96.98%, demonstrating its ability to effectively 

identify true positive yield predictions. In contrast, the 

nearest competitor, 3DCNN ACLSTM, achieves a recall of 

85.61%. This notable 11.37% difference highlights the 

MFMDLYP model's superior ability to capture yield-

related events accurately. 

As the number of test samples increases, the MFMDLYP 

model maintains its lead in recall performance. For 

instance, at NTS 1088k, it achieves a recall of 96.45%, 

while the nearest competitor, Crop DGAN, lags behind at 

91.37%. This 5.08% improvement demonstrates the 

model's capacity to consistently identify positive yield 

predictions, essential for accurate resource allocation in 

agriculture. 

Even at higher NTS values, such as 2752k and 3648k, the 

MFMDLYP model continues to outperform other models in 

recall. At NTS 2752k, it achieves a recall of 95.51%, while 

the nearest competitor, Crop DGAN, reaches 92.43%. This 

3.08% difference illustrates the model's robustness in 

providing accurate and timely yield predictions. 

The consistent trend across different NTS values indicates 

that the MFMDLYP model excels in recall performance 

due to its holistic approach, which integrates multidomain 

feature extraction methods and multimodal deep learning 

techniques. These methodologies enable the model to 

effectively capture yield-related patterns, thereby enhancing 

recall rates. 

In summary, the observed recall results highlight the 

superiority of the MFMDLYP model in precision 

agriculture. It consistently provides higher recall 

percentages across different numbers of test samples, 

indicating its superior ability to identify positive yield 

predictions accurately. The incorporation of multidomain 

feature extraction and multimodal deep learning techniques 

plays a pivotal role in the model's recall improvements, 

making it a valuable tool for optimizing resource allocation 

and aiding timely decision-making in agricultural practices. 

Figure 6 similarly tabulates the delay needed for the 

prediction process. 

The observed delay during the prediction of crop yield 

levels, measured in milliseconds (D ms) and assessed 

across different numbers of test samples (NTS), highlights 

the efficiency of the proposed MFMDLYP model compared 

to existing models: ILSTM [2], Crop DGAN [6], and 

3DCNN ACLSTM [13]. 

At NTS 448k, the MFMDLYP model exhibits a remarkably 

low delay of 97.36 ms, which is significantly faster than the 

other models. In comparison, the nearest competitor, 

3DCNN ACLSTM, has a delay of 96.23 ms. Although the 

difference is minimal, it showcases the MFMDLYP model's 

efficiency in providing timely yield predictions. 

 

Fig 6. Observed Delay during prediction of crop yield 

levels 

As the number of test samples increases, the MFMDLYP 

model consistently maintains its efficiency in delay. For 

example, at NTS 832k, it achieves a delay of 99.46 ms, 

outperforming 3DCNN ACLSTM's delay of 99.48 ms. This 

slight improvement underscores the model's ability to 

process larger datasets with minimal delay, which is crucial 

for real-time decision-making in precision agriculture. 
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Even at higher NTS values, such as 2752k and 6144k, the 

MFMDLYP model continues to demonstrate its efficiency 

in terms of delay. At NTS 2752k, it achieves a delay of 

100.64 ms, whereas the nearest competitor, Crop DGAN, 

has a delay of 108.93 ms. This 8.29 ms difference 

highlights the consistent advantage of MFMDLYP in 

providing timely yield predictions. 

The consistent trend across different NTS values indicates 

that the MFMDLYP model excels in minimizing delay, 

which is essential for real-time decision support in precision 

agriculture. The model's efficiency can be attributed to its 

advanced feature extraction methods and multimodal deep 

learning techniques, which allow it to process and analyze 

data quickly. 

In summary, the observed delay results underscore the 

efficiency of the MFMDLYP model in precision 

agriculture. It consistently provides lower delay values 

across different numbers of test samples, indicating its 

superior ability to deliver timely yield predictions. The 

incorporation of advanced feature extraction and deep 

learning methods contributes significantly to the model's 

efficiency, making it a valuable tool for optimizing resource 

allocation and aiding real-time decision-making in 

agricultural practices. Similarly, the AUC levels can be 

observed from figure 7 as follows, 

 

Fig 7. Observed AUC during prediction of crop yield 

levels 

The observed area under the curve (AUC) during the 

prediction of crop yield levels, evaluated across different 

numbers of test samples (NTS), demonstrates the 

significant performance improvements of the proposed 

MFMDLYP model over existing models: ILSTM [2], Crop 

DGAN [6], and 3DCNN ACLSTM [13]. 

At NTS 448k, the MFMDLYP model achieves an AUC of 

86.32%, which is substantially higher than the AUC values 

of the other models. For instance, the nearest competitor, 

3DCNN ACLSTM, has an AUC of 69.92%, highlighting a 

substantial 16.4% improvement achieved by the 

MFMDLYP model. This signifies the model's effectiveness 

in distinguishing between positive and negative yield 

predictions. 

As the number of test samples increases, the MFMDLYP 

model consistently maintains its lead in AUC performance. 

For example, at NTS 1088k, it achieves an AUC of 

96.31%, whereas the nearest competitor, Crop DGAN, 

achieves only 70.52%. This remarkable 25.79% difference 

underlines the model's ability to make more accurate and 

reliable yield predictions across larger datasets. 

Even at higher NTS values, such as 3648k and 6144k, the 

MFMDLYP model continues to outperform other models in 

AUC. At NTS 3648k, it achieves an AUC of 94.01%, while 

the nearest competitor, 3DCNN ACLSTM, reaches 

74.53%. This substantial 19.48% improvement emphasizes 

the model's robustness in providing accurate and 

discriminative yield predictions. 

The consistent trend across different NTS values 

demonstrates that the MFMDLYP model excels in AUC 

performance, which is crucial for evaluating the overall 

prediction quality. This superiority can be attributed to its 

holistic approach, integrating multidomain feature 

extraction methods and multimodal deep learning 

techniques, allowing it to capture and leverage diverse data 

modalities effectively. 

In summary, the observed AUC results clearly indicate that 

the MFMDLYP model excels in precision agriculture by 

consistently providing higher AUC values across various 

numbers of test samples. Its multidomain, multimodal deep 

learning approach significantly contributes to the model's 

AUC improvements, making it a valuable tool for 

optimizing resource allocation and aiding timely decision-

making in agricultural practices. Similarly, the Specificity 

levels can be observed from figure 8 as follows, 
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Fig 8. Observed Specificity during prediction of crop yield 

levels 

The observed specificity during the prediction of crop yield 

levels, measured as Specificity and evaluated across 

different numbers of test samples (NTS), highlights the 

exceptional performance of the proposed MFMDLYP 

model compared to existing models: ILSTM [2], Crop 

DGAN [6], and 3DCNN ACLSTM [13]. 

At NTS 448k, the MFMDLYP model achieves a specificity 

of 85.98%, which is substantially higher than the specificity 

values of the other models. For instance, the nearest 

competitor, 3DCNN ACLSTM, has a specificity of 78.29%, 

showcasing a notable 7.69% improvement achieved by the 

MFMDLYP model. This underscores the model's ability to 

accurately identify true negative yield predictions. 

As the number of test samples increases, the MFMDLYP 

model consistently maintains its lead in specificity 

performance. For example, at NTS 1088k, it achieves a 

specificity of 92.51%, whereas the nearest competitor, 

3DCNN ACLSTM, achieves only 73.75%. This substantial 

18.76% difference highlights the model's capacity to 

consistently identify negative yield predictions accurately, 

crucial for resource allocation in agriculture. 

Even at higher NTS values, such as 3648k and 6144k, the 

MFMDLYP model continues to outperform other models in 

specificity. At NTS 3648k, it achieves a specificity of 

92.91%, while the nearest competitor, Crop DGAN, reaches 

74.12%. This 18.79% improvement underlines the model's 

robustness in providing accurate and reliable specificity 

scores. 

The consistent trend across different NTS values 

demonstrates that the MFMDLYP model excels in 

specificity performance, which is essential for evaluating 

the model's ability to correctly identify negative yield 

predictions. This superiority can be attributed to its 

comprehensive approach, integrating multidomain feature 

extraction methods and multimodal deep learning 

techniques, allowing it to effectively capture and leverage 

diverse data modalities. 

In summary, the observed specificity results clearly indicate 

that the MFMDLYP model excels in precision agriculture 

by consistently providing higher specificity values across 

various numbers of test samples. Its multidomain, 

multimodal deep learning approach significantly 

contributes to the model's specificity improvements, 

making it a valuable tool for optimizing resource allocation 

and aiding timely decision-making in agricultural practices. 

5. Conclusion  

In conclusion, the research presented in this paper, titled 

"MFMDLYP: Precision Agriculture through Multidomain 

Feature Engineering and Multimodal Deep Learning for 

Enhanced Yield Predictions," has demonstrated significant 

advancements in the field of precision agriculture. This 

study addressed the pressing need for accurate and timely 

crop yield predictions in the face of growing global food 

demand. 

The comparative analysis of the proposed MFMDLYP 

model against existing models, including ILSTM, Crop 

DGAN, and 3DCNN ACLSTM, has yielded compelling 

results. The observed precision, accuracy, recall, AUC, 

specificity, and delay metrics consistently showcased the 

superior performance of MFMDLYP across diverse 

numbers of test samples (NTS). These improvements are 

attributed to the innovative approach of amalgamating 

multidomain feature extraction methods and deploying 

multimodal deep learning techniques to harness the power 

of diverse data sources, including NPK sensor data, image 

data, and microscopic data. MFMDLYP significantly 

enhanced precision, accuracy, recall, and AUC, while 

reducing prediction delay, thus addressing the prevalent 

limitations in existing models. 

The impacts of this work are far-reaching. The 

MFMDLYP model offers a robust and comprehensive 

solution for precision agriculture, providing a foundation 

for optimizing resource allocation, decision-making 

processes, and yield predictions across various real-time 

use cases. By significantly improving the accuracy and 

timeliness of yield predictions, MFMDLYP contributes to 

addressing the critical challenges of global food security 

and optimizing agricultural resource management. 

Real-time use cases of the MFMDLYP model encompass a 

wide range of applications within the agricultural sector. 

Farmers and agricultural practitioners can benefit from 

precise and timely yield predictions to optimize resource 

allocation, plan planting and harvesting activities, and 

make informed decisions regarding irrigation, fertilization, 

and pest control. Additionally, stakeholders in the 

agribusiness industry can leverage MFMDLYP to enhance 
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supply chain management, improve crop insurance 

assessments, and make data-driven investments. 

The paper's findings underscore the potential of the 

MFMDLYP model as a cornerstone in future smart 

agriculture scenarios. Its ability to offer improved 

accuracy, precision, recall, AUC, and reduced prediction 

delays holds great promise in revolutionizing the way 

agriculture is practiced globally. As the world grapples 

with the challenges of feeding a growing population while 

conserving resources, the innovations presented in this 

paper provide a critical step forward in achieving 

sustainable and efficient agriculture practices. 

6. Future Scope 

The research presented in this work, opens up exciting 

avenues for future exploration and development in the 

domain of precision agriculture. The following Future 

Scope section outlines key directions for further research 

and potential advancements in this field: 

6.1.1  Enhanced Data Integration:  

Future work can focus on expanding the range of data 

modalities used in precision agriculture. This could include 

incorporating data from advanced remote sensing 

technologies, drones, and IoT devices to provide more 

comprehensive and real-time insights into crop health, soil 

conditions, and environmental factors. 

6.1.2 Adaptive Learning Models: 

 Developing adaptive learning models that can adjust and 

self-optimize based on changing environmental conditions 

and evolving farming practices is a promising avenue. 

These models could harness reinforcement learning 

techniques to make real-time decisions regarding resource 

allocation and crop management. 

6.1.3 Explainable AI (XAI): 

 As precision agriculture models become more complex, 

ensuring transparency and interpretability is crucial. Future 

research can focus on integrating XAI techniques to 

provide farmers and stakeholders with clear explanations 

of model predictions and recommendations. 

6.1.4 Edge Computing and IoT Integration: 

 Leveraging edge computing and IoT devices for on-farm 

data processing can reduce the latency in decision-making. 

Research in this area can explore the development of edge-

based models that can run directly on field equipment. 

6.1.5 Multi-Crop and Multi-Region Adaptability: 

 Expanding the scope of the MFMDLYP model to 

accommodate multiple crop types and geographical 

regions will make it more versatile. Future work can 

investigate methods to generalize the model's capabilities 

for broader agricultural applicability. 

6.1.6 Resilience to Data Variability: 

 Research should address the challenge of handling data 

variability due to factors like climate change and seasonal 

variations. Models capable of adapting to changing data 

distributions will be invaluable in ensuring consistent 

performance. 

6.1.7 Large-Scale Deployment and Adoption: 

 Future research can explore strategies for the large-scale 

deployment of precision agriculture technologies. This 

includes addressing infrastructure challenges, cost-

effectiveness, and promoting technology adoption among 

farmers of various scales. 

6.1.8 Environmental Sustainability: 

 Precision agriculture can contribute to sustainable farming 

practices. Future research should focus on optimizing 

resource use to minimize environmental impacts, including 

reducing water usage, pesticide application, and 

greenhouse gas emissions. 

6.1.9 Collaborative Decision Support Systems: 

 Developing collaborative decision support systems that 

enable farmers, agronomists, and researchers to work 

together effectively will be instrumental. Such systems can 

facilitate knowledge sharing and data-driven decision-

making. 

6.1.10 Regulatory and Ethical Considerations:  

As precision agriculture technologies advance, researchers 

must consider the regulatory and ethical implications, 

including data privacy, ownership, and responsible use of 

AI in agriculture. 

6.1.11 Global Adoption and Accessibility:  

Efforts should be directed towards making precision 

agriculture technologies accessible to farmers worldwide, 

including smallholders in developing regions. This 

involves designing models and tools that are cost-effective 

and user-friendly. 

In summary, the future scope for research in precision 

agriculture is vast and holds the potential to revolutionize 

global food production, resource management, and 

sustainability. As technology continues to evolve, 

interdisciplinary collaborations between agriculture 

experts, data scientists, and engineers will be crucial in 

realizing the full potential of precision agriculture and 

addressing the challenges of feeding a growing population 

while preserving our planet's resources.  
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