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Abstract: Effective waste detection and classification are crucial for addressing waste management challenges and 

promoting recycling and reuse of waste materials. The long-term environmental impacts of plastic, metal, and glass-based 

waste highlight the importance of proper identification, sorting, and utilization of these waste categories. Although various 

deep learning algorithms have been developed for waste detection, they often struggle to detect multiple garbage categories 

from a single input image. This research focuses on utilizing computer vision algorithms, specifically the YOLO (You Only 

Look Once) approach and its variant, which incorporates Convolutional Neural Network (CNN) models, for garbage 

detection and classification. The efficacy of these models is demonstrated through their impressive performance in waste 

management tasks. In summary, this research underscores the prowess of Tiny YOLOv4, not only amplifying waste 

detection capabilities but also envisioning its transformative role in advancing automated waste management practices. 
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1. Introduction 
The accumulation of non-biodegradable waste has a 

profound impact on the environment, necessitating the 

implementation of safe and resource-efficient waste 

disposal methods. Among these concerns, the management 

of Municipal Solid Waste (MSW) has emerged as a 

critical issue due to its association with environmental 

degradation, resource depletion, and health hazards arising 

from improper waste disposal practices. Of particular 

interest within the category of MSW is the dry waste 

segment, encompassing materials like metal, paper, 

plastic, and glass, which hold significant potential for 

reuse and recycling initiatives. Improper handling of dry 

waste not only contributes to environmental pollution but 

also squanders opportunities for resource conservation, 

thereby exacerbating carbon emissions. In this context, the 

establishment of an efficient garbage classification system 

for dry waste becomes imperative to promote sustainable 

waste management practices. Unfortunately, the current 

approach to waste inspection relies heavily on human 

intervention and is plagued by time-consuming processes. 

As exemplified by data released by the Central Pollution 

Control Board Delhi in 2021, India confronts a substantial 

challenge, generating a daily total of 160,038.9 tonnes of 

solid waste. While 95.4% of this waste is successfully 

collected at a rate of 152,749.5 tones, 50% undergoes 

treatment, and 18.4% is relegated to landfills. Alarmingly, 

a sizable proportion of 31.7% (equivalent to 50,655.4 

tonnes) remains unaccounted for [1]. The following table 

illustrates the per capita solid waste generation in India 

between 2015 and 2021. 

Table 1. Per Capita Solid Waste Generation in India from 

2015-2021[1] 

Year Annual Solid Waste Generation 

per Capita (grams per day) 

2015-16 118.68 

2016-17 132.78 

2017-18 98.79 

2018-19 121.54 

2019-20 119.26 

2020-21 119.07 

 

The proper segregation of waste is crucial regardless of 

waste generation trends. Waste collection and segregation 

often go hand in hand in India, making segregation a vital 
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step in determining the recyclable and reusable waste. 

Consequently, waste management has attracted 

researchers' attention, resulting in significant research on 

real-time waste detection. Computer Vision and Deep 

Learning, particularly using Convolutional Neural 

Networks (CNN), has gained recognition and commercial 

application. The need for precise object detection models 

has led to various approaches. Notable advancements have 

been made in object detection through influential models 

such as R-CNN [2], Fast R-CNN [3], Faster R-CNN [4], 

R-FCN [5], SSD [6], and YOLO [7]. These models have 

been extensively studied and evaluated in recent research 

[8, 9]. 

The paper's structure is outlined as follows: Section 2 

reviews pertinent literature, Section 3 details the dataset 

assembly methodology, Section 4 explains neural network 

training, Section 5 presents study findings, and Section 6 

concludes and suggests future research directions. 

2. Related Work 

Extensive research is being conducted to address the global 

impact of waste, focusing on developing approaches and 

techniques for effective waste management and sorting. A 

common design approach involves a two-stage process: 

generating object region proposals using traditional 

Computer Vision algorithms or deep networks, and 

performing object categorization through bounding-box 

regression based on extracted features. 

 

2.1 Deep Learning-based Object Detection Techniques 

 

In 2016, He et al. introduced the Residual Networks, 

or ResNet, are a type of deep neural network architecture 

in 2015, which won the ImageNet Large Scale Visual 

Recognition Competition (ILSVRC) on the ImageNet 

dataset, which utilize residual connections to enable 

efficient training of deep networks without introducing 

additional parameters or computational overhead [10].  

ResNet was designed to solve accuracy problems that arise 

when deep neural networks become too complex. As layers 

are stacked to create deeper networks, training, and test 

errors often increase. The model effectively addressed this 

issue by introducing residual blocks, which allowed the 

creation of deep convolutional neural networks. These 

blocks consist of three convolutional layers, batch 

normalization, and a rectified linear unit (ReLU) activation 

function; going beyond the conventional stacking of 

convolutional layers [11].This connectivity structure 

facilitates smooth gradient flow, allowing for the 

successful training of networks with hundreds of layers. 

Building upon this idea, Huang et al. proposed DenseNet in 

2017[12]. The DenseNet architecture takes advantage of 

feature maps from all preceding layers as inputs, promoting 

feature reuse, enhancing feature propagation, and reducing 

the number of parameters. This approach effectively 

addresses the vanishing gradient problem and improves 

both training efficiency and accuracy. Another notable 

architecture is EfficientNet [13], incorporates modules 

designed using a neural architecture search procedure, 

which aims to optimize both floating-point operations 

(FLOPS) and model accuracy. EfficientNet achieves state-

of-the-art performance on a variety of applications while 

maintaining computational efficiency by carefully 

balancing network depth, width, and resolution. In 

summary, the ResNet family introduced residual 

connections for efficient training, DenseNet enhanced 

feature propagation and reuse, and EfficientNet leveraged 

neural architecture search to strike a balance between 

FLOPS and accuracy, resulting in highly effective and 

efficient deep learning models. 

Gary Thung used Support Vector Machine (SVM) and 

CNN algorithms in [8] to classify waste. By collecting 

photos of single pieces of trash from six different 

categories, CNN and SVM were the two methods used to 

train the models and assess their accuracy. The outcome 

showed that SVM offers greater accuracy than CNN. 

 

Table 2. Datasets for Solid Waste Classification and Detection with Dataset Information and Characteristics 

Name of Dataset No. of Images Size of Images Source of Images Classification Labels 

TrashNet [14] 2,534 512 x 384 Created by authors 6 (cardboard, glass, metal, 

paper, plastic, trash) 

D-SWASTE [15] 2,240 512 x 384 Collected from internet 5 (bio, glass, metal, paper, 

plastic) 

WASTE-CNN [16] 12,000 224 x 224 Collected from internet 2 (recyclable, non-recyclable) 

UEC FOOD 100 [17] 10,000 256 x 256 Collected from internet 100 food categories (for food 

waste) 

ResNet50 is a variation of the ResNet architecture that has 

been widely used for image classification tasks. Its input 

dimensions are 224 by 224 (Li et al., 2021). The use of 

ResNet50 in image classification tasks has shown better 

feature extraction compared to previous versions of the 

ResNet architecture, thanks to its deep structure and batch 

normalization between residual blocks [18].  

Author Chen et al [2] Suggested the fusion object 

detection approach based on Faster R-CNN. The RGB and 
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Depth data are input through two feature extraction 

modules in the two-stream fusion object identification 

network model that they designed. The two modules are 

combined after the FC layer at the ROI Pooling layer, 

where the fusion layer uses the concatenation layer to 

combine the CNN features and produce the detection 

result. The Faster R-CNN network uses the anchor box 

design and the VGG network framework; it does not use 

the additional stages of the candidate frame technique. As a 

result, when compared to previous approaches, their 

method can offer greater accuracy and greater speed. 

According to recent research (Li et al., 2021)[5], 

traditional machine learning methods such as histogram of 

directed gradients, scale-invariant feature transforms, and 

the Viola-Jones object detection algorithm were commonly 

used for object detection and classification before the rise 

of Deep Learning. These methods involved identifying 

recurring features in images and categorizing those using 

algorithms such as random forests and logistic regression. 

Some of the popular Deep Learning models used for image 

classification include AlexNet, VGG16, ResNet, 

MobileNet, Inception-ResNet, and DenseNet [5]. These 

architectures have been pre-trained using the COCO 

dataset, which is a popular dataset for object detection 

tasks [8]. 

2.2 Single-shot Object Detection  

Object detection techniques with only one stage are 

YOLO (2016) [19], SSD (2016), RetinaNet (2017) [21], 

YOLOv3 (2018) [22], YOLOv4 (2020) [23], and YOLOR 

(2021) [24]. One-stage detectors forecast bounding boxes 

over the pictures without a region proposal phase. It is 

possible to apply this process in real-time applications 

since it is faster. 

The supervised learning YOLO model requires object 

information to be passed during the training phase. So, for 

each image, the model requires an image and a text file 

containing bounding box details in a specific format. The 

Tiny YOLOv4 algorithm [25] is a lightweight object 

detection algorithm that is specifically designed for real-

time applications on low-power devices such as smart 

phones and embedded systems. It uses a grid-based 

approach to divide the input image into smaller cells and 

predicts bounding boxes for objects within each cell. 

• Four descriptors are employed to characterize each 

bounding box: 

• Width (bw): This descriptor represents the horizontal 

extent of the bounding box. 

• Height (bh): It denotes the vertical extent of the 

bounding box. 

• Center coordinates (bx, by): These descriptions 

indicate the position of the bounding box's center. 

• Class representation (c): The class of the specific 

object is denoted by the value assigned to this    

descriptor, such as cardboard, glass, plastic, metal, 

trash, etc. 

 The backbone network of convolutional layers 

extracts features maps from the input image, which are 

then processed by detection heads to make predictions 

about the location and class of objects within each cell. 

 

Fig.1. Block Diagram for Object Detection using Darknet CSP Architecture 
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To improve the accuracy of the predictions, the 

algorithm employs anchor boxes and feature pyramid 

networks (FPN). Anchor boxes are pre-defined bounding 

boxes that guide the algorithm's predictions, while FPN 

helps detect objects at different scales. Furthermore, the 

Tiny YOLOv4 algorithm incorporates several 

optimizations, such as shortcut connections and channel-

wise convolutional layers, to improve its speed and 

efficiency. These optimizations enable the algorithm to 

achieve state-of-the-art performance on real-time object 

detection tasks while using fewer computational resources 

than other object detection algorithms. In summary, the 

Tiny YOLOv4 algorithm is a powerful and efficient object 

detection algorithm suitable for low-power devices, 

making it an ideal choice for real-time applications. Here’s 

a table showing different versions of YOLO models and 

their improvements: 

Table 3. YOLO Architectures 

YOLO Version Year Backbone 

Architecture 

Improvements 

YOLOv1 [19] 2016 DarkNet-19 The first version of YOLO, achieved real-time object detection 

YOLOv2 [20] 2017 DarkNet-19      

DarkNet-53 

Introduced anchor boxes, batch normalization, and increased speed and 

accuracy 

YOLOv3 [22] 2018 DarkNet-53 Feature pyramid network (FPN), multiple input sizes, and improved 

accuracy 

YOLOv4 [23] 2020 CSPDarkNet-53 Introduced spatial pyramid pooling, path aggregation network (PAN), 

and Mish activation function, achieving state-of-the-art performance 

Tiny YOLOv4[25] 2020 CSPDarkNet-53 Introduced scaled-yolov4 backbone architecture, and optimizations for 

speed and efficiency, while maintaining high accuracy 

 

2.3 Performance Metric of Object Detection Methods 

As depicted in Figure 1, the output of a detector 

typically includes a list of bounding boxes, corresponding 

confidence levels, and class labels for detected objects. 

Object detection methodologies heavily rely on the 

concepts of precision (P) and recall (R). Precision refers to   

the model's capacity to accurately identify only the relevant 

objects in the scene. It is quantified as the percentage of 

correct positive predictions, indicating how precise the 

model's detections are. 

Recall is a term that describes a model's ability to 

locate all relevant cases. It's the percentage of positive 

predictions that are right based on all given ground 

realities. 

Mean Average Precision (mAP) is a prevalent performance 

metric in target detection. It involves computing the area 

under Precision-Recall (P-R) curves for various object 

categories and then averaging across all categories. This 

comprehensive evaluation considers individual class 

average precision (AP) values and combines them for an 

overall assessment. 

 

            n 

mΑΡ =1/n Σ ΑΡi 

              i=1 

3. Experimental setup 
To prepare a dataset for classification using the 

YOLO algorithm, the following steps are required. 

 

 

 

Collect images and annotate them: Gather a collection of 

images that represent the various objects you want to 

detect. Annotate each image by drawing bounding boxes 

around the objects of interest and labeling them with the 

appropriate class. To prepare a dataset for our analysis, we 

utilized the TrashNet dataset. Additionally, we utilized 

image augmentations such as collages of images to 

increase the size and diversity of our dataset. All 

experiments were performed on a single environment with 

access to a Tesla K80 GPU with 12GB of VRAM.  

Fig.2. Data Preparation Process for Object 

Figure 2 illustrates the data preparation process for object 

detection algorithms. To label the images, a range of tools 

are accessible, and in this research, the dataset was 

meticulously annotated using the Roboflow image 

annotation tool [26]. 

Divide the dataset into training and validation sets: The 

dataset is divided into two distinct groups: a training set 

and a validation set. The training set is used exclusively for 

training the YOLO model, enabling it to learn from the 

data. Conversely, the validation set is employed to assess 

the performance of the trained model, providing insights 

into its effectiveness. This division ensures a systematic 

approach to model development, allowing for accurate 

evaluation and fine-tuning as necessary. 
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Convert annotations to YOLO format: Convert the 

annotations for each image into YOLO format. In YOLO 

v4 tiny format, each annotation file contains one row for 

each object in the corresponding image, with the class label 

and normalized coordinates of the object's bounding box 

(center_x, center_y, width,  height) listed in that order, 

separated by spaces as shown in figure 3. 

 

Type of Object: Glass 

Label Number: 1 

Ground Truth 

Coordinates: 

0.6057692 

0.5096153 

0.7848557 

0.9711538 

 

Fig. 3. Examples of waste image and its Ground truth box 

coordinates 

Fig.4. Average Loss and mAP YOLOv4-tiny iteration 

1000 – 6000 

Create YOLO configuration files: Create the YOLO 

configuration files, which define the YOLO model's 

architecture, the number of classes, the anchors (default 

box sizes), and other parameters. 

Train the YOLO model: Train the YOLO model on the 

training set utilizing the generated configuration files. This 

entails adjusting the model's weights to minimize the loss 

function. Figure 4 illustrates the progression of Average 

Loss and mAP for YOLOv4-tiny across iterations 1000 to 

6000. 

Evaluate the YOLO model: The performance of the YOLO 

model on the validation set is assessed by calculating key 

metrics, including mean average precision (mAP) and 

intersection over union (IoU). These metrics provide 

valuable insights into the accuracy and robustness of the 

model's object detection capabilities. The mAP metric 

measures the precision and recall trade-off, indicating how 

well the model detects objects across various categories. 

On the other hand, IoU measures the overlap between 

predicted bounding boxes and ground truth annotations, 

providing a measure of the model's spatial accuracy. By 

evaluating the YOLO model using these metrics, a 

comprehensive assessment of its performance on the 

validation set can be obtained. 
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Fig.5. Example YOLO -v4-tiny predictions for TrashNet waste datasets 

Use the YOLO model for object detection: Once the 

YOLO model has been trained and validated, it can be used 

to detect objects in new images. Figure 5 displays several 

illustrative predictions made by YOLOv4-tiny on the 

TrashNet waste dataset. 

Dataset used: Collage-based TrashNet dataset 

Image size: 512 x 384 pixels, with a file  

size of approximately 14.4 KB per image 

Total number of images: 4180 

Number of images used for training: 3762 

Number of images used for testing: 418 

The utilization of a GPU during the neural network training 

process in our experiment has significantly expedited the 

convergence of the network. To evaluate the performance 

of the model, we conducted a comparative analysis of the 

precision rate, recall rate, average precision rate, and 

average detection time before and after implementing 

improvements to the model. This evaluation was performed 

on the test set, allowing us to assess the effectiveness of the 

model enhancements and gain insights into its overall 

performance.                                                                                                            

1. YOLO Algorithm: 

Notations used: 

X= {x1,x2,x3…..xn} // n number of images 

a= {a1,a2,a3…..an} // text file containing Labels and bounding box of each object in an image sample 

 Training Dataset: X Train = {(x1, a1), (x2,a2),….(xm, am)} 

 Testing Dataset: X Test = {(x1), (x2),..(xn)} 

Input: Read the Input image I,  

          C: Classes of Waste C= {Cardboard, Glass, Metal, Paper, Plastic, Trash} 
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          B: Number of Bounding Boxes 

Output: Processed image along with bounding box and class of object 

Begin 

    for each input image I from X 

  Ig= Divide image I into n grids of equal size (s x s); 

   for each Ig in Image-grid set 

    Predict B bounding boxes; 

    Find vector Yi= {Pc, Bx, By, Bh, Bw, Cardboard, Glass, Metal, Paper, Plastic, Trash}; 

                 // Yith bounding box for selected grid 

                //Pc is the objectiveness score  

end for 

for each predicted bounding box PBs do 

     if (Pc ==1)  

                Calculate IoU for each Predicted box with the Actual box(Ground truth box); 

                                        

                       // Delete noninteresting PBs using Non-Max Suppression. 

                                       Non-Max Suppression (PBs); 

                    end if 

            end for 

     end for 

end 

 

Non-maximum suppression (NMS) is a technique used in 

object detection to filter out redundant bounding box 

detections. It compares the IoU among bounding boxes 

and removes those with lower confidence scores. NMS 

ensures that only the highly confident and non-

overlapping bounding boxes are retained, improving the 

accuracy and efficiency of object detection models. If the 

IoU exceeds a predefined threshold Tlimit (e.g., 0.5), 

remove the bounding box with the lower confidence score 

as it likely represents the same object. 

2. Non-Max Suppression Algorithm  

Input: PBs= Predicted Bounding Boxes/Anchor Boxes 

       Tlimit = Threshold Limit 

       Pc = Objectiness Score of predicted boxes 

Output: Final Predicted Bounding Box for Each Object in an image 

begin   

  for each PBs from set of Predicted Boxes 

       if (Pc is below Threshold) 

             Delete the boxes; 

      end if 

 end for 

 Sort PBs in decreasing order of Pcs; 

 FinalBB=Select First box (Highest PC score) 

 for each PBs from remaining Boxes 

     repeat 

     Calculate IoU of FinalBB with PB;      

     if(IoU > Tlimit) 

          Delete the box; 

      End if 

      until (all the boxes (PBs) have either been selected or compressed) 

 end for 

end 
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Fig.6. Example YOLO -v4-tiny predictions for random grid images on the internet 

Figure 6 presents the results obtained from the YOLOv4-

tiny model applied to random grid images of the TrashNet 

dataset found on the internet. The outcome reveals that the 

model tends to learn from the background, leading to 

incorrect predictions. Removing the background could 

prove beneficial in improving the model's performance.  

Fig.7. Results of Object Tracking and Background Learning for sample images 

The outcomes achieved from the model are depicted in 

figure 7. The model demonstrates the capability to track 

composite objects by systematically lowering the 

confidence scores while simultaneously increasing the 

threshold for overlap, known as the Intersection over 

Union. This strategy allows the model to effectively 

monitor objects that are composed of multiple components. 

Moreover, during the learning process, the model tends to 

gather information from the background, leading to 

instances where background elements are misidentified as 

objects. For example, certain cases illustrate background 

objects being misinterpreted as pieces of paper. 

Additionally, performing a grayscale transformation on 

highly transparent images can aid in their identification. 

4. Interpretation of Result 

The evaluation of the model has yielded remarkable 

results, showcasing its exceptional proficiency in object 

detection and classification tasks. The model achieved an 

impressive accuracy rate of 98.39%, indicating its high 

level of precision in identifying objects within images. This 

accuracy rate demonstrates the model’s ability to recognise 
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and classify a wide range of items included in the visual input. 

Fig.8. Loss and mAP results after training the YOLO tiny V4 model 

 

 

 

 

 

 

 

 

Fig.9. Average precision by different classes of waste 

In addition to its exceptional performance metrics, the 

model also excels in terms of efficiency. With a detection 

time of merely 1 second, it showcases impressive speed in 

analyzing and identifying objects within images. This rapid 

processing capability enhances its practicality and usability 

in real-time applications, enabling swift and accurate 

detection even in time-sensitive scenarios. Figure 8 

illustrates the outcomes of the training process for the 

YOLO Tiny V4 model, displaying the recorded Loss 

values and the calculated mAP. In Figure 9, the distribution 

of Average Precision across distinct waste classes is 

presented, providing insights into the model's performance 

for each waste category 

5. Conclusion 

In conclusion, the proposed work establishes a solid 

foundation for future research on garbage identification 

and classification. The impressive precision achieved in 

locating litter across various scenarios demonstrates the 

potential of neural networks for trash monitoring in cities 

or detecting illegal dumpsites in natural areas, using 

technologies such as drones. This breakthrough opens 

doors to automate environmental monitoring, enabling the 

measurement of the degree of pollution automatically. 

Inaccessible and highly contaminated areas can be 

efficiently cleaned with the aid of specialized robots 

equipped with garbage detection and classification 
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modules, effectively reducing the cost of maintaining 

cleanliness in our surroundings. 

The experimental results strongly support the effectiveness 

of the YOLOv4 and its tiny version model when applied to 

the waste dataset. In conclusion, the results of our 

investigation into the performance of Tiny YOLOv4 have 

demonstrated a noteworthy advantage in terms of detection 

speed when compared to its counterparts. The architectural 

optimizations and design choices made in the development 

of Tiny YOLOv4 have proven to be highly effective in 

achieving efficient object detection while maintaining a 

remarkable level of accuracy.  The integration of robotic 

arms into future waste management facilities could greatly 

benefit from the model's capabilities, automating the 

sorting process and enabling the distinction between 

various object classes without human intervention.  
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