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Abstract: Computer users receive millions of internet packets every day, some are regular normal usage packets, others are packets sent 

by intruders for illegal purposes. With the increased numbers of users, regular countermeasure methods are no longer effective and Machine 

Learning is a key tool to deal with this increase of user numbers and attack types. Three well-known datasets, KDD99, UNSW NB15, and 

CICIDS2017 are used as a framework for a comprehensive comparison study were the proposed models deployed for performances 

measurements using a number of features reduction methods. Nine machine learning models that start with K-Nearest Neighbor, Logistic 

Regression, Support Vector Machine-Linear, Stochastic Gradient Descent, Nave Bayes, Decision Trees, Random Forest, Gradient Boosting 

to Adaboost are applied to the reduced features datasets of KDD99, UNSW NB15, and CICIDS2017. For a variety of features reductions, 

the accuracy and F1 score metrics have been used to evaluate and analyze each model's performance. For KDD99, the achieved accuracy 

and F1 scores are 99.9663% and 99.979%, respectively, and with the UNSW NB15, the values are 95.1968% and 96.2473%, respectively. 

Finally, the CICIDS2017 dataset values of 99.7004% for accuracy and 99.7515% for F1 were obtained. Random forest classifier showed 

the highest performances values using all the three datasets, and the innovative features reduction by 80% gave better outcomes of accuracy 

and F1, surpassing other state-of-the-art surveyed researches. 

Keywords: Binary Classifiers, Logistic Regression, Supervised Machine Learning Algorithms, Support Vector Machine (SVM). 

1. Introduction 

Sniffers and attackers are increasing by numbers and used 

techniques. This means that regular techniques cannot 

cope with this rise in numbers and attack types. IDSs 

(Intrusion Detection Systems) were used a long time ago 

to reduce risks of attacks, which are considered as 

potential efforts to eliminate or reduce impact of these 

imminent threats and attacks [1, 2]. Various techniques, 

like cryptography, firewall, and access control were used 

to improve the security of data networks, but attacks are 

always evolving both in quantity and versatility [3, 4]. 

Nowadays, machine learning based IDS gained a lot of 

attention in the academic research community as well as 

by well-known companies like Google, Facebook and 

Intel, etc. which build a robust IDS capable of predicting, 

detecting and analyzing attacks. The goal is to increase the 

detection accuracy, minimize false alarms for both false 

positive and false negative detections [5, 6, 7]. 
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In 2014, Mahmood et al. focused on a machine learning- 

based intrusion detection system employing unsupervised 

machine learning for binary detection. It has utilized the 

unsupervised K-means clustering technique with k=2 to 

label the data inputs into two classes: normal and 

abnormal. The NSL- KDD dataset was used with 41 

selected attributes, which were then reduced down to the 

23 most important features using IG (Information Gain). 

There are 60% training sets and 40% test sets in the 

proposed approach dataset. The research findings 

demonstrated that the technique had a high TPR (True 

Positive Rate) of 97.2% and a good accuracy of 97.22%, 

with a low FPR (False Positive Rate) of 2.9%. When 

compared to the scenario of employing all of the dataset's 

input features, the method to improve with fewer features 

required less processing time [8]. 

Almseidin et al. used different machine learning 

algorithms, such as J48, RF (Random Forest), RT 

(Random Tree), Decision Table, MLP (Multilayer 

Perceptron), NB (Naive Bayes), and Bayes Network, in 

2017 for the categorization of intrusion detection systems. 

The models were carried out using the KDD dataset, with 

an emphasis on metrics for FP (False Positive) and FN 

(False Negative) rates. The decision table has a low FNR 

(False Negative Rate) of 0.2% and a high FPR (False 
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Positive Rate) of 7.3%, meaning that 7.3% of the data 

packets were inaccurately classified as intrusions [9]. 

In 2018, Belouch et al. worked on improving efficiency 

of detections. The IDS performance was evaluated for 

four supervised classifiers, SVM (Support Vector 

Machine), NB, DT (Decision Trees) and RF using Apache 

Spark. The UNSW-NB15 dataset was used with all its 

features and the obtained accuracy was 97.49 % using RF 

classifier [10]. 

The year of 2018 had seen the proposal of Classical 

machine learning methods and DNNs (Deep Neural 

Networks) for network IDS in cyber security by 

Vigneswaran et al. Both training and testing made use of 

the KDD99 dataset. DNN algorithms were compared to 

more established machine learning techniques, such as 

binary classifiers Boost, DT, KNN (K-Nearest Neighbor), 

Linear Regression, NB, RF, SVM-Linear, and SVM-rbf 

(Radial Basis Function). Using 0.1 learning rate and 1,000 

epochs, the DNN was applied to a variety of layers, 

ranging from one to five layers. Best performance was 

achieved by DNN with three hidden layers compared with 

other used models [11]. 

In 2019, Devi et al. presented an IDS classifier using 

several supervised machine learnings; Logistic 

Regression, Decision Trees, KNN, SVM, RF, Adaboost, 

MLP and NB. The KDD99 and NSL-KDD datasets have 

been used. RF showed better performances for both 

datasets among others. 99.0 % and 99.7 % of accuracy 

have been achieved for mentioned datasets, respectively 

[12]. 

Also, an improved IDS classifier employing agent 

clustering and KNN models on preliminary edge detection 

was proposed by Sandosh et al. in 2019. In order to 

remove undesirable outlier data instances, the KDD99 

dataset was initially preprocessed. The K-means 

clustering approach using an agent-based clustering 

subgroup clusters the unlabeled data. KNN has launched 

identification attacks to categorize the data received into 

recognized normal data and suspicious attack data. The 

enhanced intrusion detection system combining agent- 

clustering and KNN models performed better than 

conventional classifier models, according to empirical 

findings. According to a separate metric, the suggested 

model outperformed previous models in terms of 

accuracy, achieving 92.23% and a FNR of 0.7% [13]. 

Meryem et al. in developed a method for a hybrid 

intrusion detection system using machine learning 

techniques. Misuse detection and typical pattern 

signatures were coupled with NSL-KDD to enhance the 

model's detection capability for both anomaly and 

signature detections. K-means algorithm was used to 

cluster unlabeled data with KNN in accordance with the 

design. The KNN model has superior precision for all five 

classes, according to experimental results, with 98.80% 

accuracy, 99.80% precision, 98.80% recall, and a FPR of 

0.9% [14]. 

Mohan et. al. focused on data mining classifications for 

IDS in 2020. PCA (Principal Component Analysis) was 

used to reduce the number of dimensional features and 

choose the NSL-KDD dataset. They employed RF, NB, 

Random Tree, and J48 as binary classifier models. The 

empirical findings showed that the RF outperformed all 

other classifiers in terms of performance, with an accuracy 

of 99.78% and a FPR of 0.1% [15]. In the same year, 

Abrar et al. sorted the data into five multi-classes using a 

variety of machine learning classifiers, including KNN, 

SVM, LR (Logistic Regression), MLP, NB, RF, DT, and 

ETC (Extra-Tree Classifier): four for intrusive data and 

one for regular data. The goal of the implementation was 

to increase detection prediction rates by reducing the 

number of very complicated features. The NSL-KDD 

dataset is initially preprocessed utilizing four distinct sub- 

groups of reduced dataset features. According to 

experimental findings, RF, DT, and ETC all performed 

with above 99% accuracy for all invasive classes in all 

sub-groups [16]. 

In 2020, Fitni et al. employed ensemble learning and 

feature selection techniques to improve an Anomaly- 

Based IDS. They used different classifier models such as 

Regression, DT and Gradient Boosting to detect intrusions 

with selecting 23 features of CIC-IDS2017 dataset. The 

accuracy of 98.8 % has been achieved by RF classifier 

[17]. 

Additionally, Iman et al. proposed an enhancement to the 

IDS in 2020 using the best Random Forest parameters to 

resolve the Boruta algorithm's difficulty with infinite 

loops. Entropy and Gini index were used as preprocessing 

with the NSL-KDD dataset's estimated selected features. 

The number of trees and various depth factors were 

employed with the Random Forest classifier. The 

experiment findings showed that the proposed design, 

which had a depth parameter of 7 to alleviate the infinite 

loop in the Boruta algorithm, and improved the running 

time and the number of iterations [18]. Waskle et al. at 

2020 also presented a method for IDS based on 

unsupervised machine learning algorithm. They 

employed PCA to reduce dataset dimensionality. The RF 

classifier achieved accuracy of 96.78 % [19]. 

A hybrid IDS combining K-means, Random Forest, and 

DL (Deep Learning) algorithms were proposed by LIU et 

al. in 2021. They used a multi-stage architecture utilizing 

the Spark platform's K-means clustered with Random 

Forest binary classifier unsupervised machine learning 

technique. The model was trained and tested using the 
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NSL-KDD and CIC-IDS2017 datasets. To further classify 

data that had been altered by the first and second phases 

as normal or under attack, a deep learning stage was 

introduced. The response was rapid, with a considerable 

increase in accuracy. The study result demonstrated that 

the proposed technique, with quick response and minimal 

training time, obtained a high TPR for all different types 

of attacks. With the NSL-KDD dataset, the proposed 

model that is presented by Authors has achieved an 

accuracy of 85.24% and 99.91% using NSL-KDD and 

CIS-IDS2017 datasets, respectively [20]. SETH et al. 

developed an intelligent IDS by the same year (2021), 

employing numerous algorithms to identify various types 

of intrusions. The training and testing parts of the model's 

implementation employed the CIC-IDS2018 dataset. 

Performance of various machine learning methods, 

including RF, KNN, EGB (Extreme Gradient Boosting), 

Histogram Based GB (Gradient Boosting), Light GBM, 

DT and ETC, was assessed in terms of a number of 

parameters. The results revealed that the model had high 

invasive detection rates and a 97.4% accuracy rate [21]. 

Mohammed et al. in 2022 evaluated the performances of 

many traditional machine learning classifier models, 

KNN, SVM, NB, DT, RF, SGD (Stochastic Gradient 

Descent), GB (Gradient Boosting) and AdaBoosting 

models applied KDD99 dataset. The obtained accuracy 

and F1 score were 99.96% and 99.97%, respectively by 

Random Forest classifier [22]. 

This study aimed at developing reliable IDSs that are 

efficient in predicting, identifying, and evaluating attacks. 

Therefore, the objective reduces false alarms for both 

false positive and false negative suspected cases while 

also increasing the detection accuracy. Building an 

effective intrusion detection model that requires minimal 

training time and memory storage is challenging, 

particularly for online networks where thousands of 

terabytes are transported via the networks. The features of 

the input data necessary to train the model can be reduced 

in an effective way to achieve the specified objective. The 

input data is normalized using a standard equation to 

provide the best performance, and the reduction of the 

features has been utilized to decrease data attributes to 8 

features, or a reduction of 80% of features per dataset. It 

uses the KDD99, UNSW-NB15, and CIC-IDS2017 

datasets to assess the performance of several classifiers. 

The use of feature selection and reduction highlights how 

the importance of the features will vary depending on the 

dataset. Online IDS, which are directly linked to the 

internet, as a result, demand little processing and offer 

speedy detection. There are two speed-up advantages 

because there are only 8 features used and the information 

is extracted from the packet's header rather than the 

payload. 

2. Methodology 

The structural block diagram of the used scheme in this 

work is shown in Fig.1, it comprises multiple blocks, 

starting with the dataset, preprocessing, model training, 

test set, IDS classifier, and performance assessment 

blocks [23, 24]. The system works as follows: For each 

dataset, the data is prepared using the data wrangling 

preprocessing stage, which is essentially divided into two 

components, the first is feature selection. The eight 

highest ranks are utilized for each dataset after the most 

informative features are ranked using the information gain 

technique. Then, to improve the performance of the 

classifier model, all numerical values of the datasets for 

all samples are scaled to be between 0 and 1. Then, at a 

ratio of 70% to 30%, the data was split into train and test 

sets. The 30% test unseen data is then classified using the 

suggested model. Each model's performance is 

determined using a variety of indicators, including 

accuracy and F1 score. 

 

 

 

Figure 1. The used scheme
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Test set 
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2.1 Datasets 

Three well-known popular semi-structural datasets have 

been downloaded (on March 5th,2022) for preparation to 

train and test the performance of the used models, as 

follows: 

2.1.1 KDD99 Dataset 

Due to the requirement for a sizable reliable dataset for 

intrusion detection systems, the KDD99 (Knowledge 

Discovery and Data Mining) dataset is utilized. You can 

obtain the well-known standard benchmark dataset below 

to assess the effectiveness of machine learning-based IDS: 

http:// 

kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 

It has 5 million instances in the training dataset, 3 million 

instances in the testing dataset, and 10% of those instances 

are freely employed by the users. This translates to 

494021 data points in the training set and 311029 data 

points in the testing set. There are five types that make up 

the KDD99 result or targeted labels. The first one is for 

regular data, while the others are for attack data. The types 

of attacks include Denial of Service, probing or port- 

scanning, Root to Local, and User to Root. The test set 

comprises 39 attack kinds, 17 of which are unknown 

attacks, while the training set has 22 attack types [25, 26, 

27]. There are 41 feature attributes in the KDD99 dataset, 

nine of which contain discrete type features, and the 

remaining 36 are continuous types [22]. 

2.1.2 UNSW_NB15 Dataset 

The Australian Center for Cyber Security generated the 

UNSW_NB15 dataset in 2015. There are almost two 

million records total with 49 features, ten classes, one 

normal class, and the remaining attack classes [28, 29, 

30]. 

2.1.3 CICIDS2017 Dataset 

The Canadian Institute of Cyber Security (CIC) developed 

the CICIDS2017 dataset in 2017. It consists of 15 classes. 

One is normal and 14 are abnormal data classes [31]. 

2.2 Data Preprocessing 

The preprocessing of the datasets has been performed at 

first using information gain technique to select the most 

informative features in each dataset and rank them from 

higher to lower values. Highest most informative eighth 

features were selected per each dataset. The selection is 

highly important to reduce the dimensionality of the 

dataset for several reasons, such as decreasing overfitting, 

creating less complex classifier models that generalize 

data successfully, lowering the complexity of 

calculations, lowering the amount of memory that must be 

stored, shortening training times, and lowering false alarm 

rates. The confusion matrix, accuracy, error rate, 

precision, recall, false alarm, detection rate and f-score are 

just a few examples of the various performance evaluation 

metrics that have been employed. The implementation and 

simulations of the models have been achieved using 

Scikit-Learn library of Python 3 program. Pre-processing 

steps for a high dimensional features dataset with target 

labels are: 

1) Utilizing one-hot encoding to change category features 

into numerical values. 

2) Using IG ratio to select the most informative features 

and remove irrelevant or redundant features. For two 

random variables, the value of MI (Mutual 

Information), which estimates dependencies in input 

features, varies from 0 to 1. When the two random 

variables are independent, it equals zero, and when 

there are dependencies, it approaches values near one. 

Actually, it gauges how much knowledge can be 

obtained from one random variable given another [32, 

33]. 

3) Standardizing input features values using the below 

equation which is called the standardization equation: 
 

(𝑖) 𝑥(𝑖) − 𝜇𝑥 
𝑥𝑠𝑡𝑑 = 

𝜎 
𝑥 

 

(1) 

Here, μx is a mean value and σx is a standard deviation 

value [32]. This Eq. (1) reduces the model's sensitivity to 

the min contrast in min-max scaling, which limits the 

range of possible values for the data and preserves the 

relevant information about outliers. 

2.3 Models’ Description 

Employing supervised machine-learning algorithms is to 

classification. The input data are split into training and 

testing sets, with 70% serving as training data and 30% 

serving as test data, and the model is trained to enable 

intrusion detection and classifications. The input data is 

divided into the normal and abnormal classes [34, 35]. 

The nine supervised machine learning algorithms used in 

this work are written below: 

1 -KNN (K-Nearest Neighbor) 

2 -LR (Logistic Regression) 

3 -SVM-Linear 

4 -SGD (Stochastic Gradient Descent) 

5 -NB (Naïve Bayes) 

6 -DT (Decision Trees) 

7 -RF (Random Forest) 

8 -GB (Gradient Boosting) 

9-Adaboost 

The performance of all nine models has been evaluated 

for three semi-structural datasets with a dedication of 70% 

for training and 30% for testing. This ratio remained 
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constant with respect to number of normal and attack 

records in each model as shown in Table 1. 

 

Table 1. Number of normal and attack records in training and testing sets. 
 

No. Dataset Type 
Data Set 

Total Classes 
Training 70% Testing 30% 

1- 
KDD99 

Total: 494,021 

Normal 68,094 29,184 97,278 

Attack 277,720 119,023 396,743 

2- 
UNSW-NB15 

Total: 257,673 

Normal 65,100 27,900 93,000 

Attack 115,271 49,402 164,673 

3- 
CIC-IDS2017 

Total: 1,042,557 

Normal 289,438 124,045 413,483 

Attack 440,351 188,723 629,074 

 

2.4 Evaluation Metrics for Binary Classification 

The four metrics that are utilized with these classifiers are arranged in a confusion matrix as follows 

• TP refers to an attack that the model actually detected. 

• TN is regular data that the model accurately detects. 

• FP data is just regular data, but the model interprets it as an intrusion. 

• FN attacks are actually detected as false positives by classifiers, which can lead to catastrophic security vulnerabilities. 

Table 2 provides information about the confusion matrix [32, 33, 36]. 

Table 2. Confusion matrix. 
 

Data Types 

Predicted Classes 

Predicted Normal Predicted Attack 

Normal Data TN FP 

Attack Data FN TP 

 

Evaluation performance is fullfilled by Accuracy, Error Rate, FPR, Precision (Specificity), Recall (Detection Rate), and F1- 

Score metrics using equations shown in Table 3 [24]. 

Table 3. The formulas of the metrics. 
 

No. Measures Equations 

1- Accuracy (TP+TN) / (TP+TN+FP+FN) 

2- Error Rate 1- Accuracy 

3- FPR FP / (TN+FP) 

4- Precision TP / (TP+FP) 

5- Recall TP / (TP+FN) 

6- F1-Score (2* Precision* Recall) / (Precision+ Recall) 

 

3. Analysis And Results 

For all nine models and using all the datasets (KDD99, 

UNSW-NB15, and CIC-IDS2017), performances were 

evaluated using all features, 8 features, 6 features, 4 

features, 2 features, and 1 feature. IG was used to select 

highest  ranked  informative  features.  Programming 

language Python 3.9.7 with libraries; NumPy 1.22.3, 

SciPy 1.7.1, Scikit-learn 1.0.2, Matplotlib 3.4.2, and 

Pandas 1.3.4 was used to do the required processing. The 

used operating system is Window 10 and the hardware 

platform is an MSI laptop with core i5 processor (i5-6267) 

and 6G bytes of RAM. The results are as below: 
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1) The eight most important feature scores for KNN, 

Logistic Regression, Linear SVM, SGD, and Naïve 

Bayes classifiers, ranked by IG using KDD99, 

UNSW-NB15, and CIC-IDS2017 datasets are shown 

in Table 4, arranged from highest to lowest. 

 

Table 4. The most 8 important features per dataset ranked by IG. 
 

Dataset No. Feature Name IG Value 

 

 

 

 

 

 

KDD99 

1 f23 count 0.473365 

2 f4 flag 0.470284 

3 f2 protocol_type 0.464793 

4 f3 service 0.454624 

5 f32 dst_host_count 0.437785 

6 f5 src_bytes 0.434419 

7 f24 srv_count 0.389739 

8 f33 dst_host_srv_count 0.386193 

 

 

 

 

 

 

UNSW-NB15 

1 f6 sbytes 0.444441 

2 f7 dbytes 0.336140 

3 f26 smean 0.333561 

4 f10 dttl 0.326025 

5 f31 ct_state_ttl 0.324081 

6 f9 sttl 0.321886 

7 f11 sload 0.310437 

8 f0 dur 0.286249 

 

 

 

 

 

 

CIC-IDS2017 

1 f52 Average Packet Size 0.524382 

2 f0 Destination Port 0.494630 

3 f42 Packet Length Variance 0.485854 

4 f41 Packet Length Std 0.485663 

5 f40 Packet Length Mean 0.475881 

6 f5 Total Length of Bwd Packets 0.470539 

7 f65 Subflow Bwd Bytes 0.469983 

8 f12 Bwd Packet Length Mean 0.448970 

 

Also, the feature importance scores by dataset for the 

mentioned models using IG are ranked from the most 

important to the least one shown graphically in Fig. 2. 
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(a) KDD99 dataset 

 

 

(b) UNSW-NB15 dataset 
 

 

 

 
(c) CIC-IDS2017 dataset 

Figure 2. Features importance per dataset ranked by 
IG. 
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2) Performance evaluation metrics of KNN, RF, LR, 

Linear SVM, SGD, Naïve Bayes, DT, GB, and 

Adaboost classifiers using KDD99, UNSW-NB15 and 

CIC-IDS2017 datasets using different features 

selection processes are shown in Table 5. 

Table 5. Performance evaluation metrics per model and dataset. 
 

Model Dataset Metrics % All F 8F 6F 4F 2F 1F 

 

 

 

KNN 

KDD99 

Accuracy 99.96 99.93 99.92 99.94 99.49 89.78 

F1-score 99.97 99.96 99.95 99.96 99.68 93.93 

UNSW-NB15 

Accuracy 93.96 94.05 92.81 92.66 91.99 73.42 

F1-score 95.28 95.37 94.35 94.24 93.69 75.76 

CIC-IDS2017 

Accuracy 99.95 98.59 98.58 98.41 97.63 92.40 

F1-score 99.96 98.83 98.81 98.67 98.06 93.78 

 

 

 

LR 

KDD99 

Accuracy 99.76 98.35 98.06 97.95 97.99 98.01 

F1-score 99.85 99.97 98.78 98.72 98.74 98.75 

UNSW-NB15 

Accuracy 91.06 83.22 82.67 82.66 81.66 64.27 

F1-score 93.16 87.31 86.92 87.10 86.50 77.01 

CIC-IDS2017 

Accuracy 98.63 78.99 79.07 78.28 78.15 76.97 

F1-score 98.86 84.22 84.28 83.56 83.37 82.31 

 

 

 

Linear 

SVM 

KDD99 

Accuracy 99.94 99.57 98.95 98.57 98.39 97.99 

F1-score 99.97 99.73 99.35 99.10 98.99 98.74 

UNSW-NB15 

Accuracy 94.75 91.41 91.05 89.05 86.99 86.99 

F1-score 95.95 93.53 93.28 91.75 90.62 90.62 

CIC-IDS2017 

Accuracy 99.78 90.95 90.25 89.84 88.07 79.91 

F1-score 99.82 92.05 91.44 91.07 89.39 84.97 

 

 

 

SGD 

KDD99 

Accuracy 99.74 98.29 98.05 98.04 97.96 98.01 

F1-score 99.84 98.93 98.77 98.76 98.72 98.75 

UNSW-NB15 

Accuracy 90.85 87.13 85.56 85.56 85.05 85.50 

F1-score 93.01 90.83 89.80 89.80 89.39 89.75 

CIC-IDS2017 

Accuracy 98.44 80.59 81.50 80.23 79.53 77.49 

F1-score 98.71 85.50 86.27 85.19 84.58 82.78 

 

 

 

Naïve 

Bayes 

KDD99 

Accuracy 98.46 97.82 97.44 97.10 97.98 95.10 

F1-score 99.03 98.63 98.39 98.20 98.73 96.86 

UNSW-NB15 

Accuracy 81.74 80.82 81.30 80.95 86.18 86.02 

F1-score 86.38 85.31 85.69 85.64 90.11 90.01 

CIC-IDS2017 

Accuracy 87.36 76.71 76.85 76.87 75.86 77.38 

F1-score 88.47 82.08 82.20 82.22 81.30 82.68 

 

 

 

DT 

KDD99 

Accuracy 99.61 99.61 99.61 99.54 99.04 98.01 

F1-score 99.75 99.75 99.75 99.71 99.39 98.75 

UNSW-NB15 

Accuracy 92.03 92.03 91.98 91.71 87.44 87.10 

F1-score 93.89 93.89 93.86 93.67 90.57 90.79 

CIC-IDS2017 

Accuracy 97.46 97.46 97.36 96.62 94.63 83.62 

F1-score 97.93 97.93 97.85 97.27 95.51 88.02 
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RF 

KDD99 
Accuracy 99.98 99.97 99.69 99.47 99.01 98.00 

F1-score 99.99 99.98 99.81 99.67 99.38 98.75 

UNSW-NB15 
Accuracy 96.52 95.20 94.51 90.51 88.79 87.12 

F1-score 97.29 96.25 95.71 92.72 91.90 90.77 

CIC-IDS2017 
Accuracy 99.95 98.65 98.22 98.21 97.69 94.66 

F1-score 99.96 98.87 98.54 98.54 98.11 95.54 

 

 

 

GB 

KDD99 
Accuracy 99.70 97.73 97.73 97.73 96.89 95.15 

F1-score 99.82 98.58 98.58 98.58 98.07 96.91 

UNSW-NB15 
Accuracy 92.60 92.27 92.11 91.48 87.22 87.06 

F1-score 94.47 94.22 94.09 93.62 90.90 90.79 

CIC-IDS2017 
Accuracy 98.43 98.35 98.07 97.50 94.75 83.63 

F1-score 98.70 98.63 98.39 97.92 95.62 88.03 

 

 

 

Ada 

boost 

KDD99 
Accuracy 99.94 99.84 99.79 99.81 99.58 98.43 

F1-score 99.96 99.90 99.87 99.88 99.74 99.03 

UNSW-NB15 
Accuracy 94.18 93.47 93.61 87.38 84.18 70.27 

F1-score 95.48 94.93 95.05 89.95 87.60 79.59 

CIC-IDS2017 
Accuracy 99.83 99.70 99.58 99.22 97.03 90.68 

F1-score 99.86 99.75 99.65 99.35 97.52 91.90 

 

3) Most informative features for KDD99, UNSW- 

NB15, and CIC-IDS2017 datasets are used by 

Decision Trees classifier are shown graphically in 

Fig. 3 

 
 

 

(a) KDD99 dataset 
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(b) UNSW-NB15 dataset 
 

 

(c) CIC-IDS2017 dataset 

Figure 3. Decision trees features importance per dataset ranked by IG. 

 

Analyzing feature importance per each dataset using 

Decision Trees classifier shows that most useful 

information is contained in few features. For example, the 

count feature (f23) contains about 90 % of information for 

KDD99 dataset. The sttl feature (f9) comprises more than 

70% of information for UNSW-NB15 dataset, and the 

Bwd packet length Std feature (f13) has nearly 50 % of 

information needed by the classifier using the CIC- 

IDS2017 dataset. Table 6 shows feature importance 

scores per each dataset. 

Table 6. Decision trees 8 important features per dataset ranked by IG. 
 

Dataset No. Feature Name IG Value 

 

 

 

 

 

 

KDD99 

1 f23 count 0.900023 

2 f5 src_bytes 0.028105 

3 f3 service 0.025532 

4 f10 hot 0.024754 

5 f6 dst_bytes 0.017468 

6 f8 wrong_fragment 0.003316 

7 f38 dst_host_serror_rate 0.000670 

8 f30 diff_srv_rate 0.000092 
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UNSW-NB15 

1 f9 sttl 0.729187 

2 f22 dwin 0.075873 

3 f35 ct_dst_src_ltm 0.058835 

4 f26 smean 0.046731 

5 f6 sbytes 0.032990 

6 f40 ct_srv_dst 0.030048 

7 f7 dbytes 0.015772 

8 f8 rate 0.005970 

 

 

 

 

 

 

CIC-IDS2017 

1 f13 Bwd Packet Length Std 0.494237 

2 f52 Average Packet Size 0.305257 

3 f35 Bwd Header Length 0.133945 

4 f40 Packet Length Mean 0.027938 

5 f66 Init_Win_bytes_forward 0.022834 

6 f71 Active Std 0.006080 

7 f27 Bwd IAT Std 0.004128 

8 f0 Destination Port 0.003560 

 

4) Most important features of datasets; KDD99, 

UNSW-NB15, and CIC-IDS2017 used by Random 

Forest classifier, ranked by IG are shown graphically 

in Fig. 4. 

 

 
 

 

(a) KDD99 dataset 
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(b) UNSW-NB15 dataset 

 

 

(c) CIC-IDS2017 dataset 

Figure 4. Random forest features importance per dataset ranked by IG. 

 

Eight most important features using KDD99, UNSW-NB15 and CIC-IDS2017 datasets by Random Forest classifier are 

shown in Table 7. 

Table 7. Random forest 8 important features per dataset ranked by IG. 
 

Dataset No. Feature Name IG Value 

 

 

 

 

 

KDD99 

1 f23 count 0.219827 

2 f6 dst_bytes 0.146822 

3 f12 logged_in 0.089388 

4 f3 service 0.086515 

5 f32 dst_host_count 0.066904 

6 f37 dst_host_srv_diff_host_rate 0.047942 

7 f5 src_bytes 0.046921 

8 f29 same_srv_rate 0.042519 

UNSW-NB15 1 f9 sttl 0.131009 
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 2 f31 ct_state_ttl 0.087504 

3 f10 dttl 0.053480 

4 f7 dbytes 0.047857 

5 f35 ct_dst_src_ltm 0.046928 

6 f6 sbytes 0.044261 

7 f27 dmean 0.043237 

8 f40 ct_srv_dst 0.041297 

 

 

 

 

 

CIC-IDS2017 

1 f52 Average Packet Size 0.074091 

2 f10 Bwd Packet Length Max 0.069817 

3 f13 Bwd Packet Length Std 0.068512 

4 f41 Packet Length Std 0.058631 

5 f12 Bwd Packet Length Mean 0.054541 

6 f42 Packet Length Variance 0.051758 

7 f65 Subflow Bwd Bytes 0.041719 

8 f0 Destination Port 0.034718 

 

5) Most important features using KDD99, UNSW-NB15 

and CIC-IDS2017 datasets by Gradient Boosting 

classifier, ranked by IG appear graphically in Fig. 5. It 

clearly shows that all needed information is contained 

only in one or two feature(s). 

 
 

 

(a) KDD99 dataset 
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(b) UNSW-NB15 dataset 
 

(c) CIC-IDS2017 dataset 

 

Figure 5. Gradient boosting classifier features importance per dataset ranked by IG. 

 

Table 8 includes the eight most important features for KDD99, UNSW-NB15, and CIC-IDS2017 datasets using 

Gradient Boosting model, ranked by IG. 

Table 8. Gradient boosting 8 important features per dataset ranked by IG. 
 

Dataset No. Feature Name IG Value 

 

 

 

 

 

KDD99 

1 f23 count 0.898363 

2 f5 src_bytes 0.022166 

3 f6 dst_bytes 0.021552 

4 f10 hot 0.021497 

5 f3 service 0.015555 

6 f26 srv_serror_rate 0.007729 

7 f37 dst_host_srv_diff_host_rate 0.004546 

8 f36 dst_host_same_src_port_rate 0.003254 

 

UNSW- NB15 

1 f9 sttl 0.702101 

2 f35 ct_dst_src_ltm 0.063536 

3 f22 dwin 0.056489 

 

4 f6 sbytes 0.039116 

5 f26 smean 0.033319 

6 f40 ct_srv_dst 0.026155 
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7 f31 ct_state_ttl 0.021445 

8 f11 sloss 0.01109 

CIC- IDS2017 

1 f13 Bwd Packet Length Std 0.488723 

2 f52 Average Packet Size 0.312806 

3 f35 Bwd Header Length 0.125434 

4 f66 Init_Win_bytes_forward 0.026147 

5 f0 Destination Port 0.01512 

6 f39 Max Packet Length 0.007966 

7 f71 Active Std 0.005975 

8 f27 Bwd IAT Std 0.003924 

 

6) Fig. 6 is the most important features of KDD99, UNSW-NB15 and CIC-IDS2017 datasets using Adaboost classifier, 

ranked by IG graphically. The figure shows that useful information is distributed on many features. 

 

(a) KDD99 dataset 
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(b) UNSW-NB15 dataset 
 
 

 

 

(c) CIC-IDS2017 dataset 

Figure 6. Adaboost features importance per dataset ranked by IG. 

 

 

In Table 9, eight most important features for KDD99, 

UNSW-NB15 and, CIC-IDS2017 datasets using 

Adaboost classifier, ranked by IG are explained. 

Table 9. Adaboost 8 important features per dataset ranked by IG. 
 

Dataset No. 
Fea- 

ture 
Name IG Value 

 

 

KDD99 

1 f5 src_bytes 0.300000 

2 f3 service 0.140000 

3 f6 dst_bytes 0.100000 

4 f10 hot 0.040000 
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5 f35 dst_host_diff_srv_rate 0.040000 

6 f39 dst_host_srv_serror_rate 0.030000 

7 f38 dst_host_serror_rate 0.030000 

8 f36 dst_host_same_src_port_rate 0.030000 

 

 

 

 

 

UNSW- 

NB15 

1 f1 proto 0.120000 

2 f6 sbytes 0.080000 

3 f34 ct_dst_sport_ltm 0.080000 

4 f35 ct_dst_src_ltm 0.070000 

5 f9 sttl 0.070000 

6 f27 dmean 0.060000 

7 f26 smean 0.060000 

8 f40 ct_srv_dst 0.050000 

 

 

 

 

 

CIC- 

IDS2017 

1 f0 Destination Port 0.140000 

2 f67 Init_Win_bytes_backward 0.100000 

3 f66 Init_Win_bytes_forward 0.090000 

4 f52 Average Packet Size 0.060000 

5 f24 Fwd IAT Min 0.050000 

6 f37 Bwd Packets/s 0.050000 

7 f35 Bwd Header Length 0.040000 

8 f20 Fwd IAT Total 0.040000 

 

7) Using the KDD99, UNSW-NB15, and CIC- 

IDS2017 datasets, the accuracy of all nine models 

for all features, eight features, six features, four 

features, two features, and one feature are 

presented in Fig. 7. According to Tables 12, 13, 

and 14, the RF model has the greatest accuracy for 

all features and 8F. KNN model consistently 

outperforms other models for all features, including 

eight, six, and four. When the property number 

reduced, the majority of models perform worse. 
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(a) KDD99 dataset 

 

 

(b) UNSW-NB15 dataset 

 

 

 

(c) CIC-IDS2017 dataset 

Figure 7. Accuracy per model and dataset. 
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8) The F1-score metric for all models by 8, 6, 4, 2, and 1 feature(s) using KDD99, UNSW-NB15 and CIC-IDS2017 datasets 

are reported in Fig. 8. 

 

 

 

(a) KDD99 dataset 

 

 
 

(b) UNSW-NB15 dataset 
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(c) CIC-IDS2017 dataset 

Figure 8. F1 score per model and dataset. 

 

4. Comparison And Discussion 

The outcomes of this work are compared with what was 

obtained by [8, 11, 37]. Results are tabulated and shown 

in Table 10. The table clearly shows the better achieved 

values and the contribution of this work (second column). 

 

Table 10. Comparing this work and others. 

 

Type This work [8] [11] [37] 

Parameter Value % Value % Value % Value % 

Accuracy 99.9615 97.22 92.7 99.6 

Error Rate 0.0385 2.78 - - 

True Positive Rate 99.9621 97.2 - - 

False Positive Rate 0.0411 2.9 - - 

Precision 99.9899 97.2 99.9 99 

Recall 99.9622 97.2 91 98 

F1_score 99.9761 97.2 95.3 99.8 

 

Key points that could be deduced from this work: 

1- Accuracy values using Decision Trees classifier by all 

features and 8 features were equal for all the three 

datasets, as shown in Table 11. The reason for this is 

 

that this classifier obtains the most important 

information from many features and not few ones, as 

in Fig. 7. 

 

Table 11. Decision trees classifier accuracy. 
 

No. Dataset All features accuracy % 8 features accuracy% 

1- KDD99 99.6073 99.6073 

2- UNSW-NB15 92.0274 92.0274 

3- CIC-IDS2017 97.4649 97.4639 
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2- Accuracy and F1 scores for all classifier models have 

the highest values with KDD99 dataset, then the CIC- 

IDS2017 dataset and the last is the UNSW-NB15 

dataset. This is due to imbalances between attacks and 

normal record numbers in the datasets. The KDD99 

dataset is with 80.3% attack records, which means it is 

biased toward attacks, while the percentages in the 

UNSW-NB15 and CIC-IDS2017 datasets are 63.9% 

and 60.33%, respectively. Also, the number of records 

(datapoints) in the CIC-IDS2017 dataset is four times 

the number of records in the UNSW-NB15 dataset, as 

it was shown in Table 1. With the increasing 

datapoints, accuracy and F1 score values will enhance. 

3- The highest accuracy and F1 score values for KDD99 

dataset are in Table 12. 

 

Table 12. KDD99 dataset highest performance values. 
 

No. Used features Classifier Accuracy% F1 score% 

1- All Random Forest 99.9798 99.9874 

2- 8 Random Forest 99.9663 99.979 

3- 6 KNN 99.9224 99.9517 

4- 4 KNN 99.9372 99.9609 

5- 2 Adaboost 99.5837 99.7405 

6- 1 Adaboost 98.4299 99.0284 

 

4- The highest Accuracy and F1 score values for UNSW- 

NB15 dataset appear in Table 13. 

Table 13. UNSW-NB15 dataset highest performance values. 
 

No. Used features Classifier Accuracy% F1 score% 

1- All Random Forest 96.5176 97.2862 

2- 8 Random Forest 95.1968 96.2473 

3- 6 Random Forest 94.5124 95.7074 

4- 4 KNN 92.6638 94.239 

5- 2 KNN 91.9886 93.6952 

6- 1 Random Forest 87.1194 90.7671 

 

5- The highest Accuracy and F1 score values for CIC- 

IDS2017 dataset are illustrated in Table 14. 

Table 14. CIC-IDS2017 dataset highest performance values. 
 

No. Used features Classifier Accuracy% F1 score% 

1- All Random Forest 99.9485 99.9573 

2- 8 Adaboost 99.7004 99.7515 

3- 6 Adaboost 99.5808 99.6524 

4- 4 Adaboost 99.2157 99.3494 

5- 2 Random Forest 97.6906 98.1055 

6- 1 Random Forest 94.6558 95.5412 

 

6- Although Random Forest classifier has the highest 

Accuracy and F1 score values using all features, KNN 

classifier shows better Detection Rates (Recall), which 

means less False Negative rates, a point needs to be 

considered in some application fields. 

 

5. Conclusion 

In the scope of this work, many binary classifiers that 

work based on rules, distances and probability approaches 

were realized using three widely used semi-structural 

datasets. The most commonly used evaluation metrics are 

figures throughout the paper and the outcomes are shown 

below: 

• Reducing the required numbers of features by 

80% achieved a dual enhancement effect of 

applied to evaluate the classifiers, supported by tables and  
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increasing the speed of detection using less 

memory. 

•  Performances values have been improved. Best 

performance value was with the KDD99 

dataset, with an accuracy of 99.96% and an error 

rate of 0.038%. 

Minors to the above points are: 

• Information gain technique is used for feature 

selection; therefore, eight features are used 

instead of all features to improve model’s 

performances. 

• The models were implemented with all features, 

8 features, 6 features, 4 features, 2 features and 

1 feature. The Random Forest classifier showed 

a unique outcome and the best performance for 

all datasets after feature reduction by 80%. 

• The packet header, not the data, is used to 

extract the features. Consequently, online IDSs, 

which are directly connected to the internet, 

require minimum processing and provide quick 

detection. Due to working with 8 features only 

and extracting data from the packet's header 

rather than the payload, a dual speed-up 

enhancement is achieved. 

• Random Forest classifier is our nominee as it 

achieved the best performances and metrics 

values in all of the three datasets. 
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