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Abstract: Computer users receive millions of internet packets every day, some are regular normal usage packets, others are packets sent
by intruders for illegal purposes. With the increased numbers of users, regular countermeasure methods are no longer effective and Machine
Learning is a key tool to deal with this increase of user numbers and attack types. Three well-known datasets, KDD99, UNSW NBI15, and
CICIDS2017 are used as a framework for a comprehensive comparison study were the proposed models deployed for performances
measurements using a number of features reduction methods. Nine machine learning models that start with K-Nearest Neighbor, Logistic
Regression, Support Vector Machine-Linear, Stochastic Gradient Descent, Nave Bayes, Decision Trees, Random Forest, Gradient Boosting
to Adaboost are applied to the reduced features datasets of KDD99, UNSW NB15, and CICIDS2017. For a variety of features reductions,
the accuracy and F1 score metrics have been used to evaluate and analyze each model's performance. For KDD99, the achieved accuracy
and F1 scores are 99.9663% and 99.979%, respectively, and with the UNSW NB15, the values are 95.1968% and 96.2473%, respectively.
Finally, the CICIDS2017 dataset values of 99.7004% for accuracy and 99.7515% for F1 were obtained. Random forest classifier showed
the highest performances values using all the three datasets, and the innovative features reduction by 80% gave better outcomes of accuracy
and F1, surpassing other state-of-the-art surveyed researches.

Keywords: Binary Classifiers, Logistic Regression, Supervised Machine Learning Algorithms, Support Vector Machine (SVM).

1. Introduction In 2014, Mahmood et al. focused on a machine learning-
based intrusion detection system employing unsupervised
machine learning for binary detection. It has utilized the
unsupervised K-means clustering technique with k=2 to
label the data inputs into two classes: normal and
abnormal. The NSL- KDD dataset was used with 41
selected attributes, which were then reduced down to the
23 most important features using IG (Information Gain).

There are 60% training sets and 40% test sets in the

Sniffers and attackers are increasing by numbers and used
techniques. This means that regular techniques cannot
cope with this rise in numbers and attack types. IDSs
(Intrusion Detection Systems) were used a long time ago
to reduce risks of attacks, which are considered as
potential efforts to eliminate or reduce impact of these
imminent threats and attacks [1, 2]. Various techniques,
like cryptography, firewall, and access control were used

to improve the security of data networks, but attacks are proposed  approach - dataset. The research findings

demonstrated that the technique had a high TPR (True
Positive Rate) of 97.2% and a good accuracy of 97.22%,
with a low FPR (False Positive Rate) of 2.9%. When
compared to the scenario of employing all of the dataset's
input features, the method to improve with fewer features

always evolving both in quantity and versatility [3, 4].
Nowadays, machine learning based IDS gained a lot of
attention in the academic research community as well as
by well-known companies like Google, Facebook and
Intel, etc. which build a robust IDS capable of predicting,

detecting and analyzing attacks. The goal is to increase the
detection accuracy, minimize false alarms for both false
positive and false negative detections [5, 6, 7].
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required less processing time [8].

Almseidin et al. used different machine learning
algorithms, such as J48, RF (Random Forest), RT
(Random Tree), Decision Table, MLP (Multilayer
Perceptron), NB (Naive Bayes), and Bayes Network, in
2017 for the categorization of intrusion detection systems.
The models were carried out using the KDD dataset, with
an emphasis on metrics for FP (False Positive) and FN
(False Negative) rates. The decision table has a low FNR
(False Negative Rate) of 0.2% and a high FPR (False
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Positive Rate) of 7.3%, meaning that 7.3% of the data
packets were inaccurately classified as intrusions [9].

In 2018, Belouch et al. worked on improving efficiency
of detections. The IDS performance was evaluated for
four supervised classifiers, SVM (Support Vector
Machine), NB, DT (Decision Trees) and RF using Apache
Spark. The UNSW-NB15 dataset was used with all its
features and the obtained accuracy was 97.49 % using RF
classifier [10].

The year of 2018 had seen the proposal of Classical
machine learning methods and DNNs (Deep Neural
Networks) for network IDS in cyber security by
Vigneswaran et al. Both training and testing made use of
the KDD99 dataset. DNN algorithms were compared to
more established machine learning techniques, such as
binary classifiers Boost, DT, KNN (K-Nearest Neighbor),
Linear Regression, NB, RF, SVM-Linear, and SVM-rbf
(Radial Basis Function). Using 0.1 learning rate and 1,000
epochs, the DNN was applied to a variety of layers,
ranging from one to five layers. Best performance was
achieved by DNN with three hidden layers compared with
other used models [11].

In 2019, Devi et al. presented an IDS classifier using
several supervised machine learnings; Logistic
Regression, Decision Trees, KNN, SVM, RF, Adaboost,
MLP and NB. The KDD99 and NSL-KDD datasets have
been used. RF showed better performances for both
datasets among others. 99.0 % and 99.7 % of accuracy
have been achieved for mentioned datasets, respectively
[12].

Also, an improved IDS classifier employing agent
clustering and KNN models on preliminary edge detection
was proposed by Sandosh et al. in 2019. In order to
remove undesirable outlier data instances, the KDD99
dataset was initially preprocessed. The K-means
clustering approach using an agent-based clustering
subgroup clusters the unlabeled data. KNN has launched
identification attacks to categorize the data received into
recognized normal data and suspicious attack data. The
enhanced intrusion detection system combining agent-
clustering and KNN models performed better than
conventional classifier models, according to empirical
findings. According to a separate metric, the suggested
model outperformed previous models in terms of
accuracy, achieving 92.23% and a FNR of 0.7% [13].

Meryem et al. in developed a method for a hybrid
intrusion detection system using machine learning
techniques. Misuse detection and typical pattern
signatures were coupled with NSL-KDD to enhance the
model's detection capability for both anomaly and
signature detections. K-means algorithm was used to
cluster unlabeled data with KNN in accordance with the

design. The KNN model has superior precision for all five
classes, according to experimental results, with 98.80%
accuracy, 99.80% precision, 98.80% recall, and a FPR of
0.9% [14].

Mohan et. al. focused on data mining classifications for
IDS in 2020. PCA (Principal Component Analysis) was
used to reduce the number of dimensional features and
choose the NSL-KDD dataset. They employed RF, NB,
Random Tree, and J48 as binary classifier models. The
empirical findings showed that the RF outperformed all
other classifiers in terms of performance, with an accuracy
of 99.78% and a FPR of 0.1% [15]. In the same year,
Abrar et al. sorted the data into five multi-classes using a
variety of machine learning classifiers, including KNN,
SVM, LR (Logistic Regression), MLP, NB, RF, DT, and
ETC (Extra-Tree Classifier): four for intrusive data and
one for regular data. The goal of the implementation was
to increase detection prediction rates by reducing the
number of very complicated features. The NSL-KDD
dataset is initially preprocessed utilizing four distinct sub-
groups of reduced dataset features. According to
experimental findings, RF, DT, and ETC all performed
with above 99% accuracy for all invasive classes in all
sub-groups [16].

In 2020, Fitni et al. employed ensemble learning and
feature selection techniques to improve an Anomaly-
Based IDS. They used different classifier models such as
Regression, DT and Gradient Boosting to detect intrusions
with selecting 23 features of CIC-IDS2017 dataset. The
accuracy of 98.8 % has been achieved by RF classifier
[17].

Additionally, Iman et al. proposed an enhancement to the
IDS in 2020 using the best Random Forest parameters to
resolve the Boruta algorithm's difficulty with infinite
loops. Entropy and Gini index were used as preprocessing
with the NSL-KDD dataset's estimated selected features.
The number of trees and various depth factors were
employed with the Random Forest classifier. The
experiment findings showed that the proposed design,
which had a depth parameter of 7 to alleviate the infinite
loop in the Boruta algorithm, and improved the running
time and the number of iterations [18]. Waskle et al. at
2020 also presented a method for IDS based on
unsupervised machine learning algorithm. They
employed PCA to reduce dataset dimensionality. The RF
classifier achieved accuracy of 96.78 % [19].

A hybrid IDS combining K-means, Random Forest, and
DL (Deep Learning) algorithms were proposed by LIU et
al. in 2021. They used a multi-stage architecture utilizing
the Spark platform's K-means clustered with Random
Forest binary classifier unsupervised machine learning
technique. The model was trained and tested using the
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NSL-KDD and CIC-IDS2017 datasets. To further classify
data that had been altered by the first and second phases
as normal or under attack, a deep learning stage was
introduced. The response was rapid, with a considerable
increase in accuracy. The study result demonstrated that
the proposed technique, with quick response and minimal
training time, obtained a high TPR for all different types
of attacks. With the NSL-KDD dataset, the proposed
model that is presented by Authors has achieved an
accuracy of 85.24% and 99.91% using NSL-KDD and
CIS-IDS2017 datasets, respectively [20]. SETH et al.
developed an intelligent IDS by the same year (2021),
employing numerous algorithms to identify various types
of intrusions. The training and testing parts of the model's
implementation employed the CIC-IDS2018 dataset.
Performance of various machine learning methods,
including RF, KNN, EGB (Extreme Gradient Boosting),
Histogram Based GB (Gradient Boosting), Light GBM,
DT and ETC, was assessed in terms of a number of
parameters. The results revealed that the model had high
invasive detection rates and a 97.4% accuracy rate [21].

Mohammed et al. in 2022 evaluated the performances of
many traditional machine learning classifier models,
KNN, SVM, NB, DT, RF, SGD (Stochastic Gradient
Descent), GB (Gradient Boosting) and AdaBoosting
models applied KDD99 dataset. The obtained accuracy
and F1 score were 99.96% and 99.97%, respectively by
Random Forest classifier [22].

This study aimed at developing reliable IDSs that are
efficient in predicting, identifying, and evaluating attacks.
Therefore, the objective reduces false alarms for both
false positive and false negative suspected cases while
also increasing the detection accuracy. Building an
effective intrusion detection model that requires minimal
training time and memory storage is challenging,
particularly for online networks where thousands of

Dataset

terabytes are transported via the networks. The features of
the input data necessary to train the model can be reduced
in an effective way to achieve the specified objective. The
input data is normalized using a standard equation to
provide the best performance, and the reduction of the
features has been utilized to decrease data attributes to 8
features, or a reduction of 80% of features per dataset. It
uses the KDD99, UNSW-NBI15, and CIC-IDS2017

datasets to assess the performance of several classifiers.
The use of feature selection and reduction highlights how
the importance of the features will vary depending on the
dataset. Online IDS, which are directly linked to the
internet, as a result, demand little processing and offer
speedy detection. There are two speed-up advantages
because there are only 8 features used and the information
is extracted from the packet's header rather than the
payload.

2. Methodology

The structural block diagram of the used scheme in this
work is shown in Fig.1, it comprises multiple blocks,
starting with the dataset, preprocessing, model training,
test set, IDS classifier, and performance assessment
blocks [23, 24]. The system works as follows: For each
dataset, the data is prepared using the data wrangling
preprocessing stage, which is essentially divided into two
components, the first is feature selection. The eight
highest ranks are utilized for each dataset after the most
informative features are ranked using the information gain
technique. Then, to improve the performance of the
classifier model, all numerical values of the datasets for
all samples are scaled to be between 0 and 1. Then, at a
ratio of 70% to 30%, the data was split into train and test
sets. The 30% test unseen data is then classified using the
suggested model. Each model's performance is
determined using a variety of indicators, including
accuracy and F1 score.

Training of
Model

IDS
Classifier

Performance
Evaluation

Test set

Figure 1. The used scheme
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2.1 Datasets

Three well-known popular semi-structural datasets have
been downloaded (on March 5%,2022) for preparation to
train and test the performance of the used models, as
follows:

2.1.1 KDD99 Dataset

Due to the requirement for a sizable reliable dataset for
intrusion detection systems, the KDD99 (Knowledge
Discovery and Data Mining) dataset is utilized. You can
obtain the well-known standard benchmark dataset below
to assess the effectiveness of machine learning-based IDS:

http:/
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

It has 5 million instances in the training dataset, 3 million
instances in the testing dataset, and 10% of those instances
are freely employed by the users. This translates to
494021 data points in the training set and 311029 data
points in the testing set. There are five types that make up
the KDD99 result or targeted labels. The first one is for
regular data, while the others are for attack data. The types
of attacks include Denial of Service, probing or port-
scanning, Root to Local, and User to Root. The test set
comprises 39 attack kinds, 17 of which are unknown
attacks, while the training set has 22 attack types [25, 26,
27]. There are 41 feature attributes in the KDD99 dataset,
nine of which contain discrete type features, and the
remaining 36 are continuous types [22].

2.1.2  UNSW_NBIS5 Dataset

The Australian Center for Cyber Security generated the
UNSW _NBI15 dataset in 2015. There are almost two
million records total with 49 features, ten classes, one
normal class, and the remaining attack classes [28, 29,
30].

2.1.3 CICIDS2017 Dataset

The Canadian Institute of Cyber Security (CIC) developed
the CICIDS2017 dataset in 2017. It consists of 15 classes.
One is normal and 14 are abnormal data classes [31].

2.2 Data Preprocessing

The preprocessing of the datasets has been performed at
first using information gain technique to select the most
informative features in each dataset and rank them from
higher to lower values. Highest most informative eighth
features were selected per each dataset. The selection is
highly important to reduce the dimensionality of the
dataset for several reasons, such as decreasing overfitting,
creating less complex classifier models that generalize
data  successfully, lowering the complexity of
calculations, lowering the amount of memory that must be
stored, shortening training times, and lowering false alarm

rates. The confusion matrix, accuracy, error rate,
precision, recall, false alarm, detection rate and f-score are
just a few examples of the various performance evaluation
metrics that have been employed. The implementation and
simulations of the models have been achieved using
Scikit-Learn library of Python 3 program. Pre-processing
steps for a high dimensional features dataset with target
labels are:

1) Utilizing one-hot encoding to change category features
into numerical values.

2) Using IG ratio to select the most informative features
and remove irrelevant or redundant features. For two
random variables, the value of MI (Mutual
Information), which estimates dependencies in input
features, varies from 0 to 1. When the two random
variables are independent, it equals zero, and when
there are dependencies, it approaches values near one.
Actually, it gauges how much knowledge can be
obtained from one random variable given another [32,
33].

3) Standardizing input features values using the below
equation which is called the standardization equation:

o x\W — U

std =g (1)

std
Here, 11« is a mean value and oy is a standard deviation
value [32]. This Eq. (1) reduces the model's sensitivity to
the min contrast in min-max scaling, which limits the
range of possible values for the data and preserves the
relevant information about outliers.

2.3 Models’ Description

Employing supervised machine-learning algorithms is to
classification. The input data are split into training and
testing sets, with 70% serving as training data and 30%
serving as test data, and the model is trained to enable
intrusion detection and classifications. The input data is
divided into the normal and abnormal classes [34, 35].
The nine supervised machine learning algorithms used in
this work are written below:

1 -KNN (K-Nearest Neighbor)

2 -LR (Logistic Regression)

3 -SVM-Linear

4 -SGD (Stochastic Gradient Descent)

5 -NB (Naive Bayes)

6 -DT (Decision Trees)

7 -RF (Random Forest)

8 -GB (Gradient Boosting)

9-Adaboost

The performance of all nine models has been evaluated
for three semi-structural datasets with a dedication of 70%
for training and 30% for testing. This ratio remained
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constant with respect to number of normal and attack
records in each model as shown in Table 1.

Table 1. Number of normal and attack records in training and testing sets.

No Dataset Type Data Set Total Classes
' P Training 70% Testing 30%

KDD99 Normal 68,094 29,184 97,278

1-
Total: 494,021 Attack 277,720 119,023 396,743
UNSW-NBI15 Normal 65,100 27,900 93,000

2-
Total: 257,673 Attack 115,271 49,402 164,673
CIC-IDS2017 Normal 289,438 124,045 413,483

3.
Total: 1,042,557 Attack 440,351 188,723 629,074

2.4  Evaluation Metrics for Binary Classification

The four metrics that are utilized with these classifiers are arranged in a confusion matrix as follows

* TP refers to an attack that the model actually detected.

* TN is regular data that the model accurately detects.

+ FP data is just regular data, but the model interprets it as an intrusion.

+ FN attacks are actually detected as false positives by classifiers, which can lead to catastrophic security vulnerabilities.
Table 2 provides information about the confusion matrix [32, 33, 36].

Table 2. Confusion matrix.

Predicted Classes
Data Types Predicted Normal Predicted Attack
Normal Data TN FP
Attack Data FN TP

Evaluation performance is fullfilled by Accuracy, Error Rate, FPR, Precision (Specificity), Recall (Detection Rate), and F1-
Score metrics using equations shown in Table 3 [24].

Table 3. The formulas of the metrics.

No. | Measures Equations
I- | Accuracy (TP+TN) / (TP+TN+FP+FN)
2- | Error Rate 1- Accuracy
3- FPR FP / (TN+FP)
4- | Precision TP / (TP+FP)
5- Recall TP / (TP+FN)
6- | F1-Score | (2* Precision* Recall) / (Precision+ Recall)

3. Analysis And Results

For all nine models and using all the datasets (KDD99,
UNSW-NBI15, and CIC-IDS2017), performances were
evaluated using all features, 8 features, 6 features, 4
features, 2 features, and 1 feature. IG was used to select
highest ranked informative features. Programming

language Python 3.9.7 with libraries; NumPy 1.22.3,
SciPy 1.7.1, Scikit-learn 1.0.2, Matplotlib 3.4.2, and
Pandas 1.3.4 was used to do the required processing. The
used operating system is Window 10 and the hardware
platform is an MSI laptop with core i5 processor (i5-6267)
and 6G bytes of RAM. The results are as below:
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1) The eight most important feature scores for KNN,
Logistic Regression, Linear SVM, SGD, and Naive
Bayes classifiers, ranked by IG using KDD99,

Table 4. The most 8 important features per dataset ranked by IG.

UNSW-NBI15, and CIC-IDS2017 datasets are shown
in Table 4, arranged from highest to lowest.

Dataset No. | Feature Name IG Value
1 3 count 0.473365

2 fa flag 0.470284

3 £ protocol _type 0.464793

f3 service 0.454624

KDD99

5 &) dst_host_count 0.437785

6 f5 src_bytes 0.434419

7 4 srv_count 0.389739

8 33 dst_host_srv_count 0.386193

1 fs sbytes 0.444441

2 f7 dbytes 0.336140

3 fae smean 0.333561

4 fio dttl 0.326025

UNSW-NBI15

5 31 ct_state ttl 0.324081

6 fo sttl 0.321886

7 fi1 sload 0.310437

8 fo dur 0.286249

1 15 Average Packet Size 0.524382

2 fo Destination Port 0.494630

3 fi Packet Length Variance 0.485854

4 fa Packet Length Std 0.485663

CIC-IDS2017

5 fa0 Packet Length Mean 0.475881

6 f5 Total Length of Bwd Packets | 0.470539

7 fos Subflow Bwd Bytes 0.469983

8 fi2 Bwd Packet Length Mean | 0.448970

Also, the feature importance scores by dataset for the
mentioned models using IG are ranked from the most
important to the least one shown graphically in Fig. 2.
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2) Performance evaluation metrics of KNN, RF, LR, CIC-IDS2017 datasets using different features
Linear SVM, SGD, Naive Bayes, DT, GB, and selection processes are shown in Table 5.
Adaboost classifiers using KDD99, UNSW-NB15 and
Table 5. Performance evaluation metrics per model and dataset.

Model Dataset Metrics % | AllF 8F 6F 4F 2F 1F
Accuracy | 99.96 | 99.93 | 99.92 | 99.94 | 99.49 | 89.78

KDD9 Flscore | 99.97 | 99.96 | 99.95 | 99.96 | 99.68 | 93.93
Accuracy | 93.96 | 94.05 | 92.81 | 92.66 | 91.99 | 73.42
UNSW-NBIS | g1 geore | 95.28 | 9537 | 94.35 | 94.24 | 93.69 | 75.76
KNN Accuracy | 99.95 | 98.59 | 98.58 | 98.41 | 97.63 | 92.40
CIC-IDS2017 | Bl gcore | 99.96 | 98.83 | 98.81 | 98.67 | 98.06 | 93.78
Accuracy | 99.76 | 98.35 | 98.06 | 97.95 | 97.99 | 98.01
KDD99 Fl-score | 99.85 | 99.97 | 98.78 | 98.72 | 98.74 | 98.75
Accuracy | 91.06 | 83.22 | 82.67 | 82.66 | 81.66 | 64.27
UNSW-NBIS | g1 score | 93.16 | 8731 | 86.92 | 87.10 | 86.50 | 77.01

LR

Accuracy | 98.63 | 78.99 | 79.07 | 78.28 | 78.15 | 76.97
Fl-score | 98.86 | 84.22 | 84.28 | 83.56 | 83.37 | 82.31
Accuracy | 99.94 | 99.57 | 98.95 | 98.57 | 98.39 | 97.99
Fl-score | 99.97 | 99.73 | 99.35 | 99.10 | 98.99 | 98.74
Accuracy | 94.75 | 91.41 | 91.05 | 89.05 | 86.99 | 86.99
Linear | UNSW-NBIS | g1 goore | 9595 | 93.53 | 9328 | 91.75 | 90.62 | 90.62
SVM Accuracy | 99.78 | 90.95 | 90.25 | 89.84 | 88.07 | 79.91
CIC-IDS2017 | g gcore | 99.82 | 92.05 | 91.44 | 91.07 | 89.39 | 84.97
Accuracy | 99.74 | 98.29 | 98.05 | 98.04 | 97.96 | 98.01
Fl-score | 99.84 | 98.93 | 98.77 | 98.76 | 98.72 | 98.75
Accuracy | 90.85 | 87.13 | 85.56 | 85.56 | 85.05 | 85.50
UNSW-NBIS | g1 score | 93.01 | 90.83 | 89.80 | 89.80 | 89.39 | 89.75
Accuracy | 98.44 | 80.59 | 81.50 | 80.23 | 79.53 | 77.49
Fl-score | 98.71 | 85.50 | 86.27 | 85.19 | 84.58 | 82.78
Accuracy | 98.46 | 97.82 | 97.44 | 97.10 | 97.98 | 95.10
Fl-score | 99.03 | 98.63 | 9839 | 98.20 | 98.73 | 96.86
Accuracy | 81.74 | 80.82 | 8130 | 80.95 | 86.18 | 86.02
Fl-score | 8638 | 8531 | 85.69 | 85.64 | 90.11 | 90.01
Bayes Accuracy | 87.36 | 76.71 | 76.85 | 76.87 | 75.86 | 77.38
CIC-IDS2017 | g geore | 88.47 | 82.08 | 82.20 | 8222 | 81.30 | 82.68
Accuracy | 99.61 | 99.61 | 99.61 | 99.54 | 99.04 | 98.01
Fl-score | 99.75 | 99.75 | 99.75 | 99.71 | 99.39 | 98.75
Accuracy | 92.03 | 92.03 | 91.98 | 91.71 | 87.44 | 87.10
Fl-score | 93.89 | 93.89 | 93.86 | 93.67 | 90.57 | 90.79
Accuracy | 97.46 | 97.46 | 97.36 | 96.62 | 94.63 | 83.62
Fl-score | 97.93 | 97.93 | 97.85 | 97.27 | 95.51 | 88.02

CIC-IDS2017

KDD9%9

KDD9%9

SGD

CIC-IDS2017

KDD99

Naive UNSW-NB15

KDD9%9

UNSW-NBI5

DT

CIC-IDS2017
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Accuracy | 99.98 | 99.97 | 99.69 | 99.47 | 99.01 | 98.00
F1-score 99.99 | 99.98 | 99.81 | 99.67 | 99.38 | 98.75
Accuracy | 96.52 | 9520 | 94.51 | 90.51 | 88.79 | 87.12
F1-score 9729 | 96.25| 95.71 | 92.72 | 91.90 | 90.77
Accuracy | 99.95 | 98.65 | 98.22 | 98.21 | 97.69 | 94.66
F1-score 99.96 | 98.87 | 98.54 | 98.54 | 98.11 | 95.54
Accuracy | 99.70 | 97.73 | 97.73 | 97.73 | 96.89 | 95.15
F1-score 99.82 | 98.58 | 98.58 | 98.58 | 98.07 | 96.91
Accuracy | 92.60 | 9227 | 92.11 | 91.48 | 87.22 | 87.06
F1-score 94.47 | 94.22 | 94.09 | 93.62 | 90.90 | 90.79
Accuracy | 98.43 | 98.35 | 98.07 | 97.50 | 94.75 | 83.63
F1-score 98.70 | 98.63 | 98.39 | 97.92 | 95.62 | 88.03
Accuracy | 99.94 | 99.84 | 99.79 | 99.81 | 99.58 | 98.43

KDD99

RF UNSW-NBI5

CIC-IDS2017

KDD99

GB UNSW-NBI15

CIC-IDS2017

KDD99
F1-score 99.96 | 99.90 | 99.87 | 99.88 | 99.74 | 99.03
Ada Accuracy | 94.18 | 9347 | 93.61 | 87.38 | 84.18 | 70.27
UNSW-NBI5
boost F1-score 9548 | 9493 | 95.05 | 89.95 | 87.60 | 79.59

Accuracy | 99.83 | 99.70 | 99.58 | 99.22 | 97.03 | 90.68
F1-score 99.86 | 99.75] 99.65 | 99.35 | 97.52 | 91.90

CIC-IDS2017

3) Most informative features for KDD99, UNSW- Decision Trees classifier are shown graphically in
NB15, and CIC-IDS2017 datasets are used by Fig. 3
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(a) KDD99 dataset
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(b) UNSW-NBI15 dataset
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(c) CIC-IDS2017 dataset
Figure 3. Decision trees features importance per dataset ranked by IG.

70% of information for UNSW-NB15 dataset, and the

Analyzing feature importance per each dataset using

Bwd packet length Std feature (fi3) has nearly 50 % of

classifier shows that most useful

information is contained in few features. For example, the
count feature (f»3) contains about 90 % of information for

KDD99 dataset. The sttl feature (fo) comprises more than

Decision Trees

information needed by the classifier using the CIC-

IDS2017 dataset. Table 6 shows feature importance

scores per each dataset.

Table 6. Decision trees 8 important features per dataset ranked by IG.
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1 fo sttl 0.729187
2 455} dwin 0.075873
3 f3s ct_dst src_ltm 0.058835
4 fh smean 0.046731
UNSW-NBI15
5 fs sbytes 0.032990
6 fa0 ct_srv_dst 0.030048
7 f dbytes 0.015772
8 fs rate 0.005970
| fi3 Bwd Packet Length Std | 0.494237
2 f5 Average Packet Size 0.305257
3 f3s Bwd Header Length 0.133945
4 fa Packet Length Mean 0.027938
CIC-IDS2017
5 fé6 Init Win_bytes forward | 0.022834
6 1 Active Std 0.006080
7 f27 Bwd IAT Std 0.004128
8 fo Destination Port 0.003560

4) Most important features of datasets; KDD99,

Forest classifier, ranked by IG are shown graphically

UNSW-NBIS5, and CIC-IDS2017 used by Random in Fig. 4.
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(a) KDD99 dataset
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(b) UNSW-NB15 dataset

3ng/seifg bay pmg
unod bejd 3mo

sbe|d HSd pmg
Aing/sa3ig bay pmy
3|ng/s13%3ed Bay pmy
S1ey ying bay pmy
3|ng/s1exded bay pmg
sbej4 oun pmg

ajey ying bay pmg
sbej4 9un pm4

uno) bejy 1Sy

uno) bejy 303

PIS 3Ip|

unod bejd NAS

sbe|d HSd pmd

Ul 3A1DY

P3s sndy

Xep andy

oney dn/umoq

uno) bejd N4

12301 11 pmg

xel V| pmg

uespy 1y| pmg

uea aAIY

Ul 1yl pmg

P35 U3buaT 33328d PMy
PIS LVI pMg

Ul 1| Mol

ulp 31p|

PIS LVl pmd

xe 2P|

ueal 1¥| pPm4

pmyd elep e
Cmmt‘ m_ﬂ_
pJemioy azis bas uiw
Uil Lyl pmd

uoieing moj4
5/53aded pmg

yibua 123ed Ui
s/s3130ed pMd

junod bej4 HSd
512328d PME MOANS
uealy 1yl Moj4

12301 1v1 pm4

5/s1@%2ed MO|4

Xely 1y] MO|4

junod bejs 9un
S)1230ed pJemideq |ejo]
juno) bejd oV

ully Y1BuaT 19xded pma
PIS 1VI Mo|4

Xely 1Y| pmdy

T'Uibua] JapeaH pmd
piemio) m0u>b UM U
yibua Jepeay pm4
s3123ded PM4 2101
s/s34Ag mol4

ui yibua 3ed pmy
512)28d PM4 Mo|qNS
yibus sspesy pmg
plemdeq sekg UM Ul
uealy yibua 3axded pm4
s3232ed pMm4 40 y3bua [ejoL
53148 pMJ4 Molqns
xXep Y1bua 193ded pmg
ozI5 uawbas pmy bay
uealy yibua 3axoed
yibua 1ajded xep
2zI5 uswbas pmg Bay
S1332ed pmg Jo yibua |ejoL
Hod uoheunssqg

s214g pmg mopqns
asueniep yibua jaxded
ueal yibua 1axoed pmg
PIs ubuaT 33ded

PIS 16U 39xded pma
xe Y1bus 1930ed pmg
2zis 1axjoed abesany

0.07
8006
£ 005
£0.04
2003
§ 0.02

0.01

0.00

Feature

(c) CIC-IDS2017 dataset
Figure 4. Random forest features importance per dataset ranked by IG.

Eight most important features using KDD99, UNSW-NB15 and CIC-IDS2017 datasets by Random Forest classifier are

shown in Table 7.

Table 7. Random forest 8 important features per dataset ranked by IG.
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2 51 ct_state_ttl 0.087504
3 fio dttl 0.053480
4 7 dbytes 0.047857
5 f3s ct dst src_Itm 0.046928
6 1 sbytes 0.044261
7 7 dmean 0.043237
8 fao ct_srv_dst 0.041297
1 fs> Average Packet Size 0.074091
2 fio Bwd Packet Length Max | 0.069817
3 fi3 Bwd Packet Length Std 0.068512
4 fu Packet Length Std 0.058631
CIC-IDS2017
5 fi2 Bwd Packet Length Mean | 0.054541
6 fn Packet Length Variance 0.051758
7 fés Subflow Bwd Bytes 0.041719
8 fo Destination Port 0.034718
5) Most important features using KDD99, UNSW-NB15 clearly shows that all needed information is contained
and CIC-IDS2017 datasets by Gradient Boosting only in one or two feature(s).

classifier, ranked by IG appear graphically in Fig. 5. It
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(a) KDD99 dataset
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(b) UNSW-NB15 dataset
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(c) CIC-IDS2017 dataset

Figure 5. Gradient boosting classifier features importance per dataset ranked by IG.

Table 8 includes the eight most important features for KDD99, UNSW-NBI15, and CIC-IDS2017 datasets using

Gradient Boosting model, ranked by IG.

Table 8. Gradient boosting 8 important features per dataset ranked by IG.
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7 31 ct state ttl 0.021445
8 f11 sloss 0.01109
1 f13 Bwd Packet Length Std 0.488723
2 52 Average Packet Size 0.312806
3 35 Bwd Header Length 0.125434
CIC- 1DS2017 4 f66 Init Win_bytes forward 0.026147
5 10 Destination Port 0.01512
6 39 Max Packet Length 0.007966
7 71 Active Std 0.005975
8 27 Bwd IAT Std 0.003924

6) Fig. 6 is the most important features of KDD99, UNSW-NB15 and CIC-IDS2017 datasets using Adaboost classifier,
ranked by IG graphically. The figure shows that useful information is distributed on many features.
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(a) KDD99 dataset
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Figure 6. Adaboost features importance per dataset ranked by IG.
Table 9. Adaboost 8 important features per dataset ranked by IG.

KDD99

Dataset

CIC-IDS2017 datasets

Adaboost classifier, ranked by IG are explained.

and,
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In Table 9, eight most important features for KDD99,

UNSW-NBI5




5 | 35 dst_host diff srv_rate | 0.040000

6 39 dst_host srv_serror_rate 0.030000

7 | 138 dst_host_serror_rate 0.030000

8 | f36 | dst host same src port rate | 0.030000

1 f1 proto 0.120000

2 f6 sbytes 0.080000

3 34 ct_dst sport Itm 0.080000

4 | 135 ct_dst src Itm 0.070000

5 9 sttl 0.070000

Uﬁg’ 1\2/ 6 | 27 dmean 0.060000
7 | 26 smean 0.060000

8 40 ct srv_dst 0.050000

1 f0 Destination Port 0.140000

2 | fo7 Init Win_bytes backward | 0.100000

3 | fe6 Init Win_bytes forward 0.090000

52 Average Packet Size 0.060000

5 04 Fwd IAT Min 0.050000

IDCSIZCO'” 6 | 37 Bwd Packets/s 0.050000
7 135 Bwd Header Length 0.040000

8 20 Fwd IAT Total 0.040000

7) Using the KDD99, UNSW-NBI15, and CIC-
IDS2017 datasets, the accuracy of all nine models
for all features, eight features, six features, four
features, two features, and one feature are
presented in Fig. 7. According to Tables 12, 13,
and 14, the RF model has the greatest accuracy for
all features and 8F. KNN model consistently
outperforms other models for all features, including
eight, six, and four. When the property number
reduced, the majority of models perform worse.
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Accuracy of models vs KDD99
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Figure 7. Accuracy per model and dataset.

International Journal of Intelligent Systems and Applications in Engineering

IJISAE, 2024, 12(8s), 553569 | 566



8) The F1-score metric for all models by 8, 6, 4, 2, and 1 feature(s) using KDD99, UNSW-NB15 and CIC-IDS2017 datasets
are reported in Fig. 8.

100.0 F1 score of models vs KDD99

99.5

99.0

98.5

f1 score

- KNN

98.0 = = logReg
— SV
== SGD

- NB
97.5 = o1
— RF

P ¢ 8_f 6_f 4 f 2 f 1 f
No. of features

(a) KDD99 dataset

98 F1 score of models vs UNSW-NB15
-— KNN

\ = s LogReg

— SVM

== SGD
-— B

84
82
& ¢ 8_f 6_f 4 f

No. of features

(b) UNSW-NB15 dataset
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f1 score of models vs CICIDS2017

F1 score

B0 8 f 6_f 0
No. of features

4 f 2 f 1 f

(c) CIC-IDS2017 dataset

Figure 8. F1 score per model and dataset.

4. Comparison And Discussion

The outcomes of this work are compared with what was
obtained by [8, 11, 37]. Results are tabulated and shown

in Table 10. The table clearly shows the better achieved
values and the contribution of this work (second column).

Table 10. Comparing this work and others.

Type This work [8] [11] [37]
Parameter Value % Value % Value % Value %
Accuracy 99.9615 97.22 92.7 99.6
Error Rate 0.0385 2.78 B B

True Positive Rate 99.9621 97.2 - -
False Positive Rate 0.0411 2.9 - -
Precision 99.9899 97.2 99.9 99
Recall 99.9622 97.2 91 98
F1_score 99.9761 97.2 95.3 99.8

Key points that could be deduced from this work:

1- Accuracy values using Decision Trees classifier by all
features and 8 features were equal for all the three
datasets, as shown in Table 11. The reason for this is

that this classifier obtains the most important
information from many features and not few ones, as
in Fig. 7.

Table 11. Decision trees classifier accuracy.

No. Dataset All features accuracy % 8 features accuracy%
1- KDD99 99.6073 99.6073
2- UNSW-NBI5 92.0274 92.0274
3- CIC-IDS2017 97.4649 97.4639
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2- Accuracy and F1 scores for all classifier models have
the highest values with KDD99 dataset, then the CIC-
IDS2017 dataset and the last is the UNSW-NBI15
dataset. This is due to imbalances between attacks and
normal record numbers in the datasets. The KDD99
dataset is with 80.3% attack records, which means it is
biased toward attacks, while the percentages in the
UNSW-NBI15 and CIC-IDS2017 datasets are 63.9%

and 60.33%, respectively. Also, the number of records
(datapoints) in the CIC-IDS2017 dataset is four times
the number of records in the UNSW-NBI15 dataset, as
it was shown in Table 1. With the increasing
datapoints, accuracy and F1 score values will enhance.

3- The highest accuracy and F1 score values for KDD99
dataset are in Table 12.

Table 12. KDD99 dataset highest performance values.

No. Used features Classifier Accuracy% F1 score%
1- All Random Forest 99.9798 99.9874
2- 8 Random Forest 99.9663 99.979
3- 6 KNN 99.9224 99.9517
4- 4 KNN 99.9372 99.9609
5- 2 Adaboost 99.5837 99.7405
6- 1 Adaboost 98.4299 99.0284

4- The highest Accuracy and F1 score values for UNSW-
NB15 dataset appear in Table 13.

Table 13. UNSW-NB15 dataset highest performance values.

No. Used features Classifier Accuracy% F1 score%
1- All Random Forest 96.5176 97.2862
2- 8 Random Forest 95.1968 96.2473
3- 6 Random Forest 94.5124 95.7074
4- 4 KNN 92.6638 94.239
5- 2 KNN 91.9886 93.6952
6- 1 Random Forest 87.1194 90.7671

5- The highest Accuracy and F1 score values for CIC-

IDS2017 dataset are illustrated in Table 14.

Table 14. CIC-IDS2017 dataset highest performance values.

No. Used features Classifier Accuracy% F1 score%
1- All Random Forest 99.9485 99.9573
2- 8 Adaboost 99.7004 99.7515
3- 6 Adaboost 99.5808 99.6524
4- 4 Adaboost 99.2157 99.3494
5- 2 Random Forest 97.6906 98.1055
6- 1 Random Forest 94.6558 95.5412

6- Although Random Forest classifier has the highest
Accuracy and F1 score values using all features, KNN
classifier shows better Detection Rates (Recall), which

5. Conclusion

In the scope of this work, many binary classifiers that
work based on rules, distances and probability approaches
were realized using three widely used semi-structural
datasets. The most commonly used evaluation metrics are
applied to evaluate the classifiers, supported by tables and

means less False Negative rates, a point needs to be
considered in some application fields.

figures throughout the paper and the outcomes are shown
below:

e Reducing the required numbers of features by
80% achieved a dual enhancement effect of
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increasing the speed of detection using less
memory.

e  Performances values have been improved. Best
performance value was with the KDD99
dataset, with an accuracy of 99.96% and an error
rate of 0.038%.

Minors to the above points are:

e Information gain technique is used for feature
selection; therefore, eight features are used
instead of all features to improve model’s
performances.

e The models were implemented with all features,
8 features, 6 features, 4 features, 2 features and
1 feature. The Random Forest classifier showed
a unique outcome and the best performance for
all datasets after feature reduction by 80%.

o The packet header, not the data, is used to
extract the features. Consequently, online IDSs,
which are directly connected to the internet,
require minimum processing and provide quick
detection. Due to working with 8 features only
and extracting data from the packet's header
rather than the payload, a dual speed-up
enhancement is achieved.

e Random Forest classifier is our nominee as it
achieved the best performances and metrics
values in all of the three datasets.
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