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Abstract: Multi-objective optimization problem is commonly found in many real world problems. In computational intelligence, Particle 

Swarm Optimization (PSO) algorithm is a popular method in solving optimization problems. An extended PSO algorithm called Vector 

Evaluated Particle Swarm Optimization (VEPSO) has been introduced to solve multi-objective optimization problems. VEPSO algorithm 

requires an archive, which is used to record the solutions found. However, the outcome may be differ depending on how the archive is 

used. Hence, in this study, the performance of VEPSO algorithm when updates the archive at different instances is investigated by 

measuring the convergence and diversity by using standard test functions. The results show that the VEPSO algorithm performs better 

when update the archive during the search process, in the iterations. 
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1. Introduction

Particle Swarm Optimization (PSO) algorithm, which has been 

proposed by James Kennedy and Russell Eberhart [1], has getting 

more attentions due to its simplicity in solving optimization 

problems [2-3]. PSO algorithm is inspired by the social behavior 

of bird flocking and fish schooling to find the optimum solution. 

Since the original PSO algorithm is basically introduced to solve 

single-objective optimization (SOO) problems, for solving multi-

objective optimization (MOO) problems, a number of extended 

PSO algorithms, such as Dynamic Neighborhood PSO [4], Multi-

Objective PSO (MOPSO) [5], Another MOPSO (AMOPSO) [6], 

and Vector Evaluated Particle Swarm Optimization (VEPSO) [7] 

have been introduced. The VEPSO algorithm, which is motivated 

by Vector Evaluated Genetic Algorithm (VEGA) [8], requires 

multiple swarms in which each swarm optimizes one objective 

and the information regarding the best solution found in one 

swarm is transferred to the neighboring swarm. Besides, an 

archive is used to record the non-dominated solutions. 

To date, the VEPSO algorithm has been successfully applied in 

various MOO problems such as supersonic ejector [9], antenna 

design [10], composite structure [11], DNA sequence design [12], 

and machine scheduling [13]. Even though the usefulness of 

VEPSO algorithm in solving these problems has been shown by 

many researchers, there is lack of quantitative performance 

evaluation carried out for understanding the performance of this 

algorithm and the effect of archive update at difference instance.  

Hence, the main objective of this paper is to provide a 

quantitative performance measure for the VEPSO algorithm 

specifically in archive update at different instance. In this work, 

the performance measures used are the total number of non-

dominated solutions found, Generational Distance [14], Spread 

[15], and Hypervolume [16]. Besides, the algorithm is tested on 

various standard benchmark test functions, which are ZDT [17], 

DTLZ [18], and WFG [19]. It is also worth to note that this paper 

considers continuous or real valued solution which has a 

continuous search space. 

The remaining of this paper is organized as follows. The next 

section contains a brief description on MOO and VEPSO. In 

Section 3, the performance measure of the MOO algorithm will 

be explained. The result and discussion are presented in Section 

4. Finally, Section 5 concludes the findings of this paper.

2. Multi-Objective Optimization

2.1. Multi-Objective Optimization Problem 

Most real problems involve optimization of more than one 

objective. Usually, those objectives are conflicting with each 

other and hence, there will be no single solution exists that 

satisfies all the objectives. Consider a minimization MOO 

problem, which has an n-dimensional search space of 

 nxxx ,,1  containing all possible solutions for a m-objective

functions of       xmfxfxf ,,1  that fulfil an l-inequality 

constraints,   0xgi , where li ,,1 . The MOO problem is to

find a vector,   xxxx n   ,,1  that is optimized for  xf

while satisfying all constraints. The conflicting objectives cause 

difficulty to obtain a global minimum. As a result, a concept 

called non-dominated solution is employed to obtain a set of 

solutions which considers the trade-off among the objectives. 

Non-dominated solutions are defined as follows. Given 

 muuu ,,1   and  mvvv ,,1   as two vectors, u  dominates

v if and only if ii vu  for all i-objectives and ii vu  for at

least one objective. A solution x of MOO problem is a non-

dominated solution if and only if there is no other solution 'x  that

has  xf dominate  'xf . A set of non-dominated solutions in a 

search space is usually referred as Pareto Optimal Set. While, the 

set of objective vectors with respect to the Pareto Optimal Set is 

known as the Pareto Optimal Front or Pareto Frontier. 
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Figure 1.  The particle swarm optimization algorithm 

2.2. Particle Swarm Optimization 

Particle swarm optimization has been introduced by Kennedy and 

Eberhart [1] for solving SOO problems. PSO algorithm is 

inspired by the social behavior of bird flocking and fish schooling 

[20]. In PSO, a swarm of individuals known as particles flies 

within a search space that contains all the possible solutions. The 

position of each particle represents the solution for a problem. 

Each particle in the swarm uses its own and social information to 

move in the search space.  

The PSO algorithm is shown in Fig. 1. During initialization, all 

particles are randomly positioned in the search space and its 

velocity is set to zero. Then the particles’ fitness is calculated 

before the particle own and global best positions are updated. The 

algorithm proceeds by updating the velocity and position based 

on the Eq. (1) and Eq. (2). 

      
  tpgBestrc

tppBestrctvtv

inin

inininin





22

111 

(1) 

     11  tvtptp ininin  (2) 

where i is the number of particles in an n-dimensional search 

space. The velocity and position of the particle is denoted as 

 tvi and  tpin , respectively,  is the weight inertia, and r1 and 

r2 are random numbers range between zero to one. Besides, the c1

and c2 are the cognitive and social constant, respectively, that 

determine the influence of the own and social information toward 

the velocity update. The velocity update also considers two

variables, which are the particle own best position,  tpBestin , 

and the swarm best position,  tgBestin , respectively. After the 

position is updated, the fitness is calculated again and the 

particle’s own and global best position are updated until the 

stopping criteria meet. 

2.3.Vector-Evaluated Particle Swarm Optimization 

The main difference of VEPSO compared to the original PSO 

algorithm is information sharing. Specifically, the position update 

in one swarm is influenced by its neighbor swarm’s best 

positions. Thus, the equation for velocity update is modified as 

follows: 

      
  tpgBestrc

tppBestrctvtv

kin

in

sin22

sin11sinsin 1



 

 (3) 

(a) 

(b) 

Figure 2.  Two possible archive update in VEPSO (a) after an iteration 

(b) during an iteration
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where  ms ,...,2,1  and m is the number of objectives.

Even though each swarm searches the best solution based on its 

own objective, however, because of the information exchange 

between swarms, multiple ‘trade-off’ solutions could be found. 

Thus, in order to make sure all the solutions satisfies the Pareto 

Dominance concept, a non-dominated selection process is applied 

in this extended algorithm. 

The VEPSO algorithm is shown in Fig. 2. Each step is repeated 

for all swarm concurrently as in the PSO algorithm. However, 

there is additional process for selecting non-dominated solutions 

by update them into an archive. Since Parsopoulos and Vrahatis 

have not clearly specified the archive update process [8], Fig. 2 

shows two possible archive updates in VEPSO algorithm. In Fig. 

2(a), the archive is updated after the iterations end [1, 11, 21] 

such that the non-dominated solutions found is the final solutions 

from those particles. This algorithm is denoted as “End of 

Iterations” (EoI) in this work. On the other hand, Fig. 2(b) shows 

that the archive is updated during iterations [22-27]. Hence, this 

algorithm is denoted as “During Iterations” (DuI). 

3. Performance Measure And Test Problems For MOO

The first performance measure used in this study is Generalized 

Distance (GD). GD is commonly used for measuring algorithm 

convergence ability [6, 15, 28]. GD measures the distance 

between the obtained Pareto Optimal Front (PF), PFobtained, and 

the true Pareto Optimal Front (PF), PFtrue. Let the modulus, 

 , be the count for the element,   , the GD can be

formulated as in Eq. (5). 
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Table 1. VEPSO Parameters 

Parameter Value 

Function evaluation 250,000 

Number of swarm 2 

Number of particle in each swarm 50 

Number of iteration 250 

Inertia weight, ω Linearly degrade from 1.0 to 

0.4 

 

obtained

mPF

q

m
q

PF

d

GD

obtain

1

1 









 

 (5) 

where m is the number of objective and dq is the minimum 

distance from q-th solution to the PFtrue. 

In order to measure the diversity of non-dominated solutions, a 

performance measure called Spread [15, 28-29] has been 

considered in this study. Spread evaluates the distance difference 

between all the solutions as follows: 

 dPFdd

dddd
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obtainlf
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1

1
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where df and dl are the Euclidean distance between the extreme 

solutions in PFobtained and PFtrue. When all the solutions in PFtrue 

is arranged in descending, dq is the distance between one solution 

to the next solution while d  is the mean distance for all the 

solution in the PFobtained. Note that the calculation of Spread also 

includes the extreme solutions from the PFtrue. The extreme 

solution is the best solution with respect to one objective but it is 

also the worst solution with respect to another objective. 

Hypervolume (HV) [16] measures are also included in this work 

to evaluate the convergence and diversity performance. HV 

measure the area or volume enclosed by the PFobtained and a 

reference point which defined from the worst fitness in the PFtrue. 

In all measures, the obtained PF is produced by the VEPSO 

algorithm. However, the PFtrue requires well-defined non-

dominated solutions for each MOO problems. Therefore, the 

PFtrue used in this work will be based on the standard database 

from the jMetal (http://jmetal.sourceforge.net/problems.html). 

Regarding the test problems, Zitzler, Deb and Thiele [17] have 

designed six MOO test problems in which each problem focuses 

on one kind of problem feature. These problems were abbreviated 

as ZDT1 to ZDT6. However, in this study, the ZDT5-based 

evaluation is not considered since the ZDT5 is a binary coded test 

problem for discrete optimization problems. 

In this study, another common test problems called DTLZ [17] is 

considered as well. The DTLZ, which is abbreviated from Deb, 

Thiele, Laumanns, and Zitzler, consists of seven MOO test 

problems in order to extensively evaluate different features of 

MOO problems. 

A disadvantage of ZDT and DTLZ is that both test problems are 

separable and degenerate [23]. Hence, another test problem called 

WFG has been proposed by Huband et al. [18]. WFG test 

problem is also chosen in this study. 

4. Experiment, Result, and Discussion

The parameters used for the test problems followed the original 

papers of ZDT [17] and DTLZ [18], whereas for the WFG [19], 

similar parameters in [30] were used. Meanwhile, the number of 

objective for all test problems was restricted to two and the 

VEPSO parameters used is tabulated in Table 1. The experiments 

for each problem were repeated for 100 runs and then the average 

convergence and diversity values are calculated.  

Table 2 shows the performance of VEPSO algorithm when tested 

on ZDT test problems. The VEPSO algorithm with different 

archive updates, namely EoI and DuI, are analysed with two 

different settings: c1 = c2 = 0.5 and c1 = c2 = 1.0. From this table, 

the VEPSO algorithm which updates archive during iterations 

shows better performance in both settings except ZDT2 and in the 

NS for ZDT4. However, for ZDT2, the VEPSO which update at 

the end of the iterations are much better in NS for both setting. 

This do not directly indicate the EoI is a better configuration. 

Therefore, when c1 = c2 = 0.5, both EoI and DuI are inconclusive 

for which is better as they has almost similar GD. However, when 

c1 = c2 = 1.0, the DuI does results in lower GD value which 

indicates the obtained Pareto front is closer to the true Pareto 

front, again, but with lower number of solutions found. 

Note that the ZDT4 is a difficult problem because there are 229

local optima solutions exist in its search space. However, it is 

found that DuI able to obtain better optima solution since the GD 

obtained is smaller than the GD obtained by EoI. Additionally, in 

ZDT4 problem, only the VEPSO algorithm with DuI and c1 = c2 = 

1.0 was able to obtained HV value. 

The performance of VEPSO algorithm when tested on DTLZ test 

problems is listed in Table 3. In short, the VEPSO algorithm with 

DuI is better at most performance measures. However, when c1 = 

c2 = 0.5, the VEPSO algorithm with EoI has better NS measures 

than DuI in DTLZ1 and DTLZ6. In contrast, extremely large 

performance difference in convergence could be observed in 

DTLZ1 and DTLZ3 where these problems also have similar multi 

local optima solutions feature as in ZDT4. Even the SP measure 

is hardly conclusive; the HV measure does indicates that VEPSO 

algorithm with DuI has superiority over algorithm with EoI. 

The result based on WFG test problems are shown in Table 4. 

Similarly, the VEPSO algorithm with DuI shows better 

performance than the EoI. In addition, as compared to previous 

test problems, the DuI consistently shows better NS measures 

than EoI. Again, based on the information of SP measure, it was 

difficult to conclude either EoI or DuI is better. However, the 

superiority in GD and HV measures does imply that the DuI has 

better overall performance. 

Generally, based on the results of all test problems, VEPSO 

algorithm with DuI does performs better in two different settings. 

In order to explain this superiority, first, the movement of the 

fitness vector (solution objectives) for a particle is observed in the 

objective space domain for every iteration. Secondly, for better 

visual analysis, the fitness vectors is filtered using non-dominated 

selection process to obtain the non-dominated vectors and then, it 

is labeled with their respective number of iteration, as illustrate in 

Fig. 3. Besides, the vector for the last iteration of 250 is displayed 

as well to differentiate with the filtered non-dominated vectors. 

In Fig. 3, it is obvious that the vector at the last iteration do not 

dominate the rest of the vectors. This vector is non-dominated to 

several other vectors (labeled with 67, 113, 161, 162 and 223). 

While, the rest filtered solutions (labeled with 123, 134, 150, 187, 

196 and 200) were actually dominating the last solution which 

means they are better than the last solution. However, in VEPSO 

algorithm with EoI, only the last solution is chosen for non-

dominated selection whereas the better solutions found during the 

computation are ignored. Therefore, the VEPSO algorithm with 

DuI preserves good solutions whenever it is found during the 

computation when the last solutions that may possibly be a worst 

solution. 
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Table 3.Performance of VEPSO algorithm when tested on ZDT test problems 

Problem Measures c1 = c2 = 0.5 c1 = c2 = 1.0 

EoI DuI EoI DuI 

ZDT1 NS 18.240000 31.950000 19.370000 29.890000 

GD 0.598185 0.358614 0.562556 0.306671 

SP 0.860619 0.888452 0.848210 0.848180 

HV 0.000000 0.000000 0.000000 0.000004 

ZDT2 NS 8.100000 4.760000 11.090000 7.970000 

GD 1.149853 1.177792 0.854514 0.787217 

SP 0.948850 0.934661 0.909496 0.938282 

HV 0.000000 0.000000 0.000000 0.000000 

ZDT3 NS 16.120000 39.280000 15.890000 33.340000 

GD 0.380908 0.186525 0.383453 0.175611 

SP 0.827436 0.921501 0.818477 0.883538 

HV 0.000000 0.000103 0.000026 0.000774 

ZDT4 NS 6.600000 7.450000 7.130000 7.110000 

GD 38.562324 14.823281 33.073706 7.893276 

SP 0.893332 0.939747 0.879965 0.873988 

HV 0.000000 0.000000 0.000000 0.043327 

ZDT6 NS 9.310000 24.820000 9.520000 46.450000 

GD 2.011100 1.254921 1.631496 0.731704 

SP 0.959094 0.997705 0.910200 1.117636 

HV 0.000000 0.000000 0.011002 0.135575 

Table 4. Performance of VEPSO algorithm when tested on DTLZ test problems 

Problem Measures c1 = c2 = 0.5 c1 = c2 = 1.0 

EoI DuI EoI DuI 

DTLZ1 NS 9.570000 7.910000 7.270000 5.320000 

GD 101.883042 21.520816 98.211741 14.315669 

SP 0.811414 0.797738 0.779129 0.882947 

HV 0.000000 0.005000 0.002500 0.180723 

DTLZ2 NS 17.760000 95.350000 15.990000 73.090000 

GD 0.046790 0.006503 0.078892 0.004824 

SP 0.730134 0.832162 0.769422 0.793372 

HV 0.083728 0.143988 0.093191 0.167805 

DTLZ3 NS 7.260000 10.940000 6.090000 7.620000 

GD 243.370239 91.918356 198.283297 55.412570 

SP 0.879851 0.919220 0.905444 0.898635 

HV 0.000000 0.000000 0.000000 0.011662 

DTLZ4 NS 6.950000 23.870000 5.590000 21.850000 

GD 0.099813 0.028737 0.111334 0.025031 

SP 1.058371 1.074169 1.032273 1.167165 

HV 0.001586 0.062433 0.002456 0.062361 

DTLZ5 NS 17.240000 96.480000 16.360000 74.960000 

GD 0.045383 0.006751 0.073864 0.004971 

SP 0.701103 0.850762 0.754325 0.779270 

HV 0.080995 0.140817 0.096673 0.166771 

DTLZ6 NS 15.280000 9.830000 5.520000 6.730000 

GD 4.513450 4.006382 6.178312 3.739334 

SP 0.917620 0.817805 0.862215 0.833595 

HV 0.000000 0.000000 0.000000 0.000000 

DTLZ7 NS 9.500000 10.590000 11.580000 14.890000 

GD 1.132059 0.770572 0.901702 0.479538 

SP 0.905583 0.919789 0.876098 0.898720 

HV 0.000000 0.000000 0.000000 0.000035 
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Table 5.Performance of VEPSO algorithm when tested on WFG test problems 

Problem Measures c1 = c2 = 0.5 c1 = c2 = 1.0 

EoI DuI EoI DuI 

WFG1 NS 14.370000 99.940000 19.640000 99.980000 

GD 0.132771 0.047608 0.113948 0.047640 

SP 0.990042 0.957187 1.306888 0.843295 

HV 0.000000 0.100283 0.023606 0.104358 

WFG2 NS 10.340000 51.730000 12.870000 41.510000 

GD 0.046071 0.019043 0.041782 0.019344 

SP 0.803569 1.088650 0.779051 1.001560 

HV 0.341787 0.400725 0.367339 0.424419 

WFG3 NS 28.100000 99.940000 33.930000 99.830000 

GD 0.022213 0.009526 0.015977 0.007256 

SP 0.722680 0.699150 0.693586 0.559141 

HV 0.298578 0.336630 0.336536 0.365673 

WFG4 NS 32.360000 98.180000 37.600000 95.850000 

GD 0.019747 0.008262 0.014500 0.006784 

SP 0.712605 0.686858 0.716378 0.604025 

HV 0.098504 0.130089 0.115638 0.145196 

WFG5 NS 25.130000 44.530000 21.800000 54.670000 

GD 0.050704 0.025509 0.044493 0.014933 

SP 0.707043 0.665721 0.682074 0.663076 

HV 0.038964 0.084897 0.060983 0.132675 

WFG6 NS 23.850000 90.770000 16.940000 46.780000 

GD 0.045762 0.017541 0.044006 0.015198 

SP 0.701535 0.804844 0.721396 0.842422 

HV 0.045158 0.074543 0.051280 0.118054 

WFG7 NS 33.100000 99.990000 39.620000 99.780000 

GD 0.025956 0.012239 0.021883 0.010647 

SP 0.669851 0.544235 0.664195 0.547616 

HV 0.073608 0.095537 0.081870 0.106423 

WFG8 NS 28.490000 99.260000 30.390000 98.300000 

GD 0.046024 0.019130 0.039781 0.016889 

SP 0.717970 0.716757 0.667089 0.659762 

HV 0.055402 0.078007 0.061782 0.085734 

WFG9 NS 18.010000 75.800000 15.370000 86.320000 

GD 0.045011 0.011732 0.035357 0.007480 

SP 0.645567 0.699325 0.623683 0.571291 

HV 0.079966 0.143781 0.095532 0.163231 

Figure 3. Fitness vectors that dominate the fitness vector at last iteration 

5. Conclusions

In this study, two possible archive updates for VEPSO algorithm 

are analysed for its convergence and diversity performance based 

on quantitative evaluation using several performance measures. 

From the results, the VEPSO algorithm which updates its archive 

after the end of iterations has difficulty to produce good non-

dominated solutions. However, the VEPSO algorithm which 

updates its archives during iterations does show better overall 

performance. This is due to the fitness vector found at the end of 

iteration is actually worse than those found during the iterations.  
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