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Abstract: This paper proposes the Highway Deep Pyramid Convolutional Neural Network (HPDCNN) technique for smart grid stability 

forecasting. The objective is to enhance the accuracy and reliability of stability predictions in smart grids. The technique aims to reduce 

errors and uncertainties associated with stability predictions, thereby improving the overall performance of smart grids. The HPDCNN 

technique controls the strengths of highway networks and pyramid networks to reduce the impact of noise and irrelevant features in the 

data. This reduction in noise improves the robustness and accuracy of stability predictions, enhancing the reliability of the technique. The 

HPDCNN approach effectively captures both temporal and spatial dependencies in smart grid data by combining the strengths of 

highway networks and pyramid networks. The highway network enables the model to learn long-term dependencies, while the pyramid 

network facilitates multi-scale feature extraction. Using the HDCNN algorithm, the paper presents a methodology for predicting the 

stability of smart grids based on various input parameters such as power generation, consumption patterns, weather conditions, and grid 

infrastructure. The algorithm is trained using labeled data, where each data point is classified as either stable or unstable based on the 

actual stability status of the corresponding smart grid. Once trained, the HDCNN algorithm can classify new, unseen data points as stable 

or unstable, providing insights into the current and future stability of the smart grid. By identifying unstable grids, operators and energy 

management systems can take appropriate actions to prevent potential disruptions or outages, ensuring the reliable and efficient operation 

of the smart grid system. Experimental results demonstrate that the HPDCNN technique achieves an accuracy rate of over 95%. The 

proposed schema is evaluated using testing and training values, along with a confusion matrix, to validate its performance. Overall, the 

proposed HPDCNN technique has the potential to improve the accuracy and reliability of stability predictions, leading to more efficient 

and sustainable smart grid systems. The Proposed FSSG-HPDCNN approach accuracy value is 99.88% which is higher than other 

existing methods like FSSG-WHO, FSSG-PSO, and FSSG-HBO methods 

Keywords: Smart grid, Electricity, Forecasting Stability, Stable, MinMaxScaler, Highway Deep Pyramid Convolutional Neural Network 

(HPDCNN), Voltage. 

1. Introduction 

Networks transport electricity from locations where they 

are created and consumed by households and business 

establishments [1]. They are sophisticated networks of 

substations, wiring and transmission/distribution lines, 

transformers, and other components. To allow for the 

consumption of power by these various customers, the 

voltages in electrical networks are gradually lowered 

distribution voltage level from transmission voltage levels 

for servicing customers [2]. Transmissions and 

distributions where various wire and cabling systems are 

involved are often distinguished from one another [3]. 

Electricity must always be available whenever and 

wherever it is required, without interruption [4]. This raises 

a number of concerns. Grid management is extremely 

complicated; necessitating specialist sectors for experts to 

consider choices for energy laws and government 

sustainability efforts [5].These obstacles can include the 

effects of extreme weather conditions, wildlife damages, 

human sabotages, and other internal/external problems 

with equipment failure and crucial assets [6]. SGs are 

paradigm changes from conventional electric grids and 

have several functions [7].  

Self-healing capabilities in SGs make it possible to 

quickly recover from disruptions and detect and address 

grid issues automatically [8]. Despite the fact that many 

nations began implementing smart metering programs 

more than a decade ago, most of them are still in early 

stages of developments [9]. Since the electrical markets, 

power consumption rates, rules, stakeholder expectations, 

and even the process of producing electricity are all 

changing, SGs are being introduced all over the world, but 
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occasionally with varying methodologies and objectives 

[10]. Electricity supply and demand must be balanced for 

electrical networks to remain stable. To preserve this 

equilibrium, traditional technologies produce power based 

on demand response, on the other hand, is a realistic 

alternative for Advanced Grids with a high source of Eco-

Friendly Energy [11]. This suggests that changes in 

electricity use occur as a result of price fluctuations. Local 

power auctions and establishing realistic demand and 

supply estimates are two approaches for calculating and 

conveying the price to customers [12].SGs are more than 

advanced metering infrastructure and smart meters. Smart 

meters, however, are only one component of SGs; others 

include distribution lines and substations, as well as ways 

to minimize power outages and ensure power quality [13]. 

Energy integrations from diverse sources have a higher 

emphasis on Eco-Friendly Energy, power production, 

sensors along transmission lines, and power system 

automations. Energy integration with greener energies has 

been made possible by extensive use of smart sensors, 

intelligent devices, and automated controls that monitor 

and analyses network health and conditions in order to 

detect irregularities and problems [14].  

Recently suggested systems of CSGs (Control for SGs) 

have received much attention. This is due to the fact that it 

doesn't necessitate gathering and processing a lot of data 

[15].It binds the cost of power to the grids frequency so 

that all participants, or all energy producers and 

consumers, may access it. Assumptions are used to build 

current CSG models. Simulations of its stability are made 

easier by certain hypotheses, i.e., to determine if 

participant response to pricing adjustments leads to grid 

instability [16]. To achieve this, differential equations are 

used to describe the system. Decentralized energy 

generations imply increasing energy productions in a 

variety of methods. If users of energy in general produce 

their own energy, fewer costs are involved at various levels 

of electrical networks. The integration of RESs (renewable 

energy resources) in SGs requires real-time monitoring of 

added energy sources. Computing stability of SGs are 

crucial challenges as the processes are time-dependent. In 

the present method of studying stability, certain inputs are 

given fixed values throughout all equations and simulation 

runs, whereas other inputs are given values taken from 

fixed distributions in experiments [17]. The outcome is a 

collection of one-dimensional intervals that illustrate how 

stability depends on the tabulated input values. The 

conclusions were drawn from analysis where certain inputs 

were not considered. It is possible to see where present 

approaches fall short. First of all, when only one input 

value is changed at a time, as in the example, only a small 

number of additional input values are examined. This 

makes it impossible to estimate how different inputs 

interact [18]. The term "fixed inputs issue might be used to 

describe this situation. Second, it is unrealistic to assume 

that all input values are equal, especially when some of 

them are intrinsic to system participants, such as private 

families, and cannot be controlled from outside the system. 

These inputs include things like energy users' price 

elasticity their proclivity to shift usage in in reaction to 

pricing fluctuations or the passage of time it takes for them 

to respond to a price change. Renewable energy is gaining 

appeal as a potential alternative to conventional, limited, 

and climate-damaging fossil fuels. Its implementation, on 

the other hand, introduces a cascade of new paradigms, 

two of which demand special consideration. Prior to the 

arrival of renewable energy sources, the traditional 

operational ecosystem was made up of a small number of 

industrial firms (sources) that transferred energy to 

consumers through unidirectional flows. [19]. With the 

arrival of renewable energy, end customers can not only 

consume but also generate energy, and are referred to be 

"presumes," and energy flow across distribution networks 

is bidirectional in SGs. Despite increased flexibility 

brought by introduction of renewable sources and 

emergence of presumed, managing supplies and demands 

have become complex. SGs have broader definitions and 

applications because of the numerous opportunities made 

possible by this significant paradigm shifts and increasing 

use of technologies in the context of deployments of SGs.  

To put it in another way, the goal is to develop Meta 

models. The use of AIs (Artificial Intelligences) on input 

parameters of SGs can bring new insights like stability of 

forecasting systems in the presence of new energy 

consuming devices. This study proposes HPDCNN to 

assess the stability of SGs [20]. Following this 

introductory section, subsequent section details on studies 

related to stability of grids followed by the proposed 

methodology in section three. Section four details on 

results with discussions while this paper is concluded in 

section five.  

The key contributions of the proposed technique are 

abridged below: 

• In the paper "Forecasting Stability of Smart Grids 

using Highway Deep Pyramid Convolutional Neural 

Network (HPDCNN) Algorithm," the proposed 

technique aims to classify the stability of smart grids 

into two categories: stable and unstable.  

• Initially, Min-Max Normalizations are used to 

transform data values to values between 0 and 100, 

where new values are added. 

• VGG-16 model is used to feature-extract more 

advanced image analysis and recognition by 

extracting meaningful information from raw visual 

data. 

• Using the HDCNN algorithm, the paper presents a 

approach for estimating smart grid stability based on 

various input parameters such as power generation, 
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consumption patterns, weather conditions, and grid 

infrastructure. 

• The algorithm is trained using labeled data, where 

each data point is classified as either stable or 

unstable based on the actual stability status of the 

corresponding smart grid. 

• Overall, the HDCNN technique contributes to the 

advancement of smart grid stability forecasting by 

introducing a novel approach that leverages deep 

learning techniques and considers the complex 

dynamics of smart grid systems. Its potential benefits 

include improved prediction accuracy, proactive 

decision-making, and enhanced grid reliability. 

2. Recent Research Work 

Li, [21] have developed the rapid shift from fossil fuels to 

renewable energy sources in the energy system has brought 

cleaner energy to urban smart grid systems. However, the 

volatile and erratic nature of renewable energy (RE) has 

made accurate short-term load forecasting a challenging 

task. Recent attempts have focused on machine learning 

(ML) for short-term load projections, however many of 

these models overlook crucial features such as data 

characterization, parameter fine-tuning, and predictive 

stability. To address these concerns, a unique short-term 

load forecasting model was created. To reduce the 

unpredictability in load data, it uses deep data mining and 

multi-step rolling forecasting, as well as a de-noising 

technique. The model dynamically calculates artificial 

neural network (ANN) parameters using the phase space 

reconstruction (PSR) technique and then optimizes them 

using a multi-objective grasshopper optimization algorithm 

(MOGOA). This technique was proven through case 

studies in metropolitan smart grid networks in Victoria and 

New South Wales, Australia., offering a promising 

solution for more reliable and accurate short-term load 

forecasts in the era of renewable energy integration.  

Alquthami et al., [22] have developed a variety of cutting-

edge ML approaches, including logistic regression (LR), 

support vector machines (SVM), naive Bayes (NB), 

decision tree classifier (DTC), K-nearest neighbor (KNN), 

and neural networks (NNs), has created to assess their 

performance. This study's main purpose was to assess the 

prediction error and accuracy of machine learning (ML) 

algorithms for short-term load forecasting (STLF). 

Hafeez et al., [23] have developed A forecasting 

framework known as "FE-SVR-mFFO" combines the 

Feature Engineering (FE) and Modified Fire-Fly 

Optimization (mFFO) methodologies with Support Vector 

Regression (SVR).FE reduces superfluous and unnecessary 

functionality to achieve maximum computing efficiency. 

The relevant parameters of the SVR model are collected 

and fine-tuned using the mFFO approach to successfully 

prevent trapping into local optimums and offer reliable 

prediction results. Furthermore, the majority of literature 

research focuses on improving forecast accuracy. 

However, the forecasting model's stability and 

convergence rate are equally important in determining its 

usefulness and productivity. 

Ali and Ramaswamy [24] have developed a control 

mechanism based on complicated fuzzy logic. Advanced 

fuzzy control combines the finest renewable energy 

resource (RER) power distribution to limit interruptions 

caused by overloading and variations in the demand 

profile. The model's usefulness and validity were 

demonstrated using the transmission network's 9 Bus test 

system. Power network overloading is caused by 

nonlinearity in the load profile and variations in demand 

induced by forecasting mistakes for short-term loads. The 

electricity grid's condition deteriorated after a network 

breakdown caused overload. Identifying how these 

disturbances affected the power system network was a 

critical component of this project. 

Liu et al., [25] have suggested A smart grid edge sensing 

data generates a multitude of important information that 

encourages the development of new smart power 

applications in IoT-focused smart cities and society. The 

accuracy of load prediction in the smart grid is limited 

since the potential links between time series of power 

demand data and characteristics of temperature, weather, 

and date have not been well investigated. A power load 

prediction technique based on edge sensing data-imaging 

conversion (DIC) was developed to increase forecasting 

accuracy in smart cities and society by finding generalized 

patterns and hidden correlations in data connected to 

power demand. 

Ali et al., [26] have suggested a control method that 

emphasizes a sophisticated fuzzy logic approach. 

Overloading of the power network was caused by 

nonlinearity in the load profile and changes in demand 

caused by forecasting errors for short-term loads. When a 

breakdown in the power system network causes 

overloading, the power system's condition deteriorates. A 

key aspect of this research was analyzing how these 

disruptions affected the power system network.  Advanced 

fuzzy control incorporates the best power distribution from 

renewable energy resources (RERs) to minimize 

disruptions caused by overloading and changes in the 

demand profile. 

Zulfiqar et al. [27] have developed a hybrid load 

forecasting technique that is both quick and exact. The 

proposed model includes two modules and a forecaster 

based on locally weighted support vector regression 

(LWSVR). These modules are optimizers based on feature 

engineering (FE) and adaptive grasshopper optimization 

(AGO). The hybrid feature selector (HFS) was created in 
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the FE module by combining wrapper and filter 

approaches to choose an appropriate subset of features. 

Furthermore, the curse of feature dimensionality was 

reduced by detecting and removing erroneous features 

using the instance-based Relief- F (REF) and information 

theoretic-based Mutual Information (MI) filters. To 

address the over fitting issue, the HFS module was 

additionally optimized utilizing the recursive feature 

elimination (RFE) wrapper feature selection technique. 

2.1. Background of the Research work 

Recent research indicates that the increasing integration of 

renewable energy sources, distributed energy resources, 

and advanced control systems in modern power grids has 

created a critical need for predicting the stability of smart 

grids. These grids, designed to enhance energy distribution 

efficiency and reliability, encounter new challenges due to 

the complexities introduced by these technologies. The 

variability in renewable energy generation, along with 

dynamic demand response and the intricate interplay of 

distributed resources, can lead to unforeseen stability 

issues. Additionally, smart grids rely on communication 

networks and digital control systems, making them 

vulnerable to cyber security threats. Therefore, it is 

essential to proactively identify potential stability risks. 

Accurate stability forecasts enable grid operators to 

anticipate voltage and frequency imbalances, optimize 

resource allocation, and implement preventive measures 

against cascading failures. This proactive approach is vital 

for ensuring the resilience and effectiveness of smart grids 

in the face of evolving energy landscapes and potential 

disruptions. These above mentioned drawbacks are 

inspired to do this research work. 

3. Proposed Methodology  

In this section, Forecasting Stability of Smart Grids is 

discussed. The proposed method is called as FSSG-

HPDCNN to help us predict the stability of SGs. The 

selections of the input values for the CSG simulations are 

justified. The dataset was generated through the simulation 

of a four-node star electrical grid featuring centralized 

power production. The model incorporates input features 

such as total power balance, nominal power generated or 

consumed at each grid node, the time it takes for 

participants to alter their consumption or production in 

response to price changes (referred to as reaction time), 

and energy price elasticity. This dataset is primarily 

centered around star topologies comprising four nodes, 

featuring a sole centralized power source that supplies 

energy to three consumption nodes. It has been designed 

with a particular emphasis on the analysis of reliable Smart 

Grids (SGs).Block diagram of proposed HDPCNN method 

is shown in Figure 1. 

 

 

Fig 1: Block diagram of proposed HDPCNN method 

The suggested HPDCNN was evaluated using the Smart 

Grid Dataset and have a five-stage evaluation process. 

Functions were created to help with mapping 

correlations and Image analysis of particular 

characteristics or observations from the dataset. The first 

step is to use correlations between variables to identify 
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data relationships. The second stage is featuring 

preparation, which involves standardizing dataset 

recognizing values between 0 and 1relevant features for 

classifications. Division of Features, the following stage, 

involves dividing samples into Training and Testing sets. 

The classifications of stable and unstable grid sources are 

made using NNs, which are subsequently assessed using 

a Confusion matrix, metrics for training and testing 

accuracy. 

3.1. Dataset 

Electrical Grid Stability Simulated Dataset was produced 

at Karlsruher Institute für Technologies, Karlsruhe, 

Germany and donated to the University of California 

(UCI) Machine Learning Repository. This study makes 

use of an improved version of the original dataset. The 

analysis is carried out using a process similar to that 

described in [25] for various sets of input data. The 

original dataset has 10,000 observations. Because the 

reference grid is symmetric, a permutation of three 

customers occupying three consumer nodes can be 

represented by extending the dataset by a factor of 3!(3 

factorial) which equals 6 times. In the upgraded edition, 

the dataset now contains a total of 60,000 observations. 

Additionally, it includes two dependent variables and 12 

essential predictive characteristics. There were no 

missing values because the content of the dataset is 

drawn from simulated exercises. Additionally, there is no 

need to code any features because they are all initially 

numerical. Such dataset characteristics enable a seamless 

transition to machine modeling without the requirement 

for feature engineering or data preparation. 

3.1.1. Assessments of Relationships between Data 

Using HPDCNN 

Two or more variables are said to be statistically 

connected if their values fluctuate with correlations. For 

Example, there is a relationship between the two 

variables "hours ran" and outputs created, if an increase 

in hours run, outputs automatically increase. The 

statistical measure of correlations which are numbers, 

describe sizes and directions of relationships between 

variables. HPDCNN uses assessments of correlations 

between variables. 

3.2. Feature preparations using MinMaxScaler 

HPDCNN the MinMaxScaler is used to standardize 

dataset values between 0 and 1, and the normalizations 

are performed using Equation (1). 

))min()min(( xxxZ ii −−=
   (1)

 

where iZ  stands for ith normalized dataset values, ix  

represents ith values of datasets, )min(x implies 

minimum values in datasets and )min(x represents 

maximum values in datasets. The goal of Min-Max 

Normalizations is to transform data values to numbers 

between 0 and 100, with new values derived using 

Equation (2). 

100*min)/(maxmin)( −−= valuevalueNew                     (2) 

The dataset comprises 12 attributes, and their distribution 

patterns in relation to the dependent variable "stab" have 

been examined. Most of these attributes exhibit 

distributions that closely resemble a normal distribution, 

as anticipated. However, it's worth noting that the 

combined absolute sum of "p2," "p3," and "p4" 

demonstrates a distribution that is nearly normal, with 

only a minor skew factor of -0.013.distributions, are 

typically consistent across the board because this data is 

derived from simulations with defined ranges for all 

features. Figure 2 shows Feature preparations of NNSPT.  

 

 

Fig 2: Feature preparations of NNSPT 
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Segregating train and test sets in HPDCNN: The label 

dataset only includes "stabf," however The features 

dataset included all 12 original predictive characteristics. 

Since, samples were shuffled; training sets included first 

54,000 observations, while testing sets included 6,000 

observations. Despite the fact that the dataset was large, 

To confirm that the original dataset distributions were 

retained following the split, the proportion of "stable" 

and "unstable" observations were estimated for both 

training and testing sets. In HPDCNN, sample splits 

between training and testing are shown in Figure 3. 

 

 

Fig 3: Train/test Splits in NNSPT 

3.3. Feature Bifurcations using VGG-16 

VGG-16 is a deep CNN composed of multiple 

convolutional and pooling layers. These layers perform 

hierarchical feature extraction, starting from low-level 

features like edges and textures to higher-level features 

like object parts and shapes. In the context of malicious 

sample classification, the network would learn to extract 

relevant patterns or features from the data, which could 

include binary code, assembly instructions, or other 

representations of the malicious code. Transfer Learning: 

VGG-16 is often used as a pre-trained model. This 

means it's trained on a large dataset like Image Net, 

which contains images of everyday objects to learn 

general image feature representations. For your task, you 

might fine-tune or transfer the pre-trained VGG-16 

model to your specific problem domain (malicious code 

classification. This is called transfer learning, where you 

retrain the last few layers of the network with your 

specific dataset. Once the model has been fine-tuned on 

your dataset of malicious and non-malicious samples, it 

learns to associate certain features with the concept of 

being malicious. During the training process, the model 

learns to adjust its internal parameters to minimize the 

classification error. This results in a model that can 

accurately assign labels to new, unseen samples as either 

malicious or non-malicious based on the features it has 

learned. When you have a new, previously unseen 

sample that you want to classify, you pass it through the 

pre-processed VGG-16 model. The model will extract 

relevant features from the sample and use its learned 

knowledge to predict whether the sample is malicious or 

not Equation (3). 

( )ijiij
F
ji bCWC +=

−= 11 *
                                          (3) 

where iC is the output feature map, ijW  is the 

convolutional kernel for the i-th layer and j-th filter, 

jiC
1−

is the previous layer’s j-th feature map, ib  is the 

bias term and  is the activation function. The 

hierarchical feature extraction process, starting from 

low-level features  to higher-level features due to crucial 

enabling computer vision systems to understand and 

interpret visual information in a manner similar to how 

humans perceive the world. This hierarchical approach 

allows for the extraction of increasingly abstract and 

meaningful information from raw visual data, ultimately 

contributing to more advanced and accurate image 

analysis, recognition, and understanding. 

3.4. Classification Using Highway Deep Pyramid 

Convolutional Neural Network (HPDCNN) 

HPDCNN uses neural network for classifications. 

HPDCNN has a significant benefit in establishing early 

ending callbacks (iterations), since it ends NN learning 

after 5 consecutive epochs of no progress in validation 

losses, where epochs mean training with all of the 

training data for one cycle. 
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The objective is to develop a robust classification 

model which distinguishes between stable and unstable 

grid sources using a Highway Deep Pyramid 

Convolutional Neural Network (HDP-CNN). This 

advanced architecture combines elements of highway 

networks and pyramidal structures to effectively capture 

complex patterns in time-series data related to power 

grid parameters. The process begins with the collection 

and preprocessing of a diverse dataset encompassing 

both stable and unstable instances from various grid 

sources. This dataset is labeled to indicate the stability 

status of each instance. The data is then prepared for 

input into the HDP-CNN by transforming the time-series 

data into a 2D image-like format, where the temporal 

dimension corresponds to the x-axis and various 

parameters are represented along the y-axis 

HPDCNN transformation Equation are given as Equation 

(4), 

)*(Re HHdtransforme bXWLUH +=
                            (4)

 

where HW  is learnable convolutional kernels for the 

transformation and gate respectively, * represents the 

convolution operation, Hb is corresponding bias terms. 

The unique characteristics of grid source data. It consists 

of multiple convolutional layers with varying filter sizes 

to capture different scales of patterns, As such; the model 

may learn both short and long-term dependencies. 

Additionally, highway connections are integrated into 

the network to facilitate the flow of information across 

layers, thereby addressing challenges associated with 

vanishing gradients and promoting deeper network 

exploration. Training the HDP-CNN involves optimizing 

its parameters using the labeled dataset. This includes 

selecting an appropriate loss function (such as binary 

cross-entropy) and optimization algorithm (like Adam) 

to iteratively improve the model's performance. Hyper 

parameter tuning is crucial for achieving optimal results 

and might involve adjusting learning rates, batch sizes, 

and the number of layers or filters in the architecture. To 

evaluate the model's performance, it's tested on a 

separate dataset that it hasn't encountered during 

training. Metrics such as accuracy, precision, recall, F1-

score, and stability curves could provide insights into its 

ability to generalize to new, unseen data. Once the model 

demonstrates satisfactory performance, it can be 

deployed to classify the stability of grid sources in real-

time scenarios. Continual monitoring and periodic 

retraining of the model with updated data are crucial to 

account for potential changes in grid behavior over time. 

This iterative process ensures the model remains 

accurate and adaptable to evolving grid conditions. In 

essence, the HDP-CNN approach offers a sophisticated 

solution for classifying stable and unstable grid sources, 

contributing to the overall reliability and efficiency of 

power systems. 

HPDCNN output formation is given as Equation (5),  

XCHTH dtransformeout .. +=
                               

(5)
 

where dtransformeH  is the transformed information, outH  

is the final output of the highway layer, In conclusion, 

developing a robust classification model to distinguish 

between stable and unstable grid sources using a 

Highway Deep Pyramid Convolutional Neural Network 

(HDP-CNN) is a promising approach for addressing grid 

stability and reliability issues. By leveraging the 

capabilities of deep learning and the hierarchical features 

extracted by the HDP-CNN architecture, this model has 

the potential to provide accurate and timely predictions, 

helping to prevent grid failures and improve overall 

energy infrastructure management. However, it is 

essential to emphasize that the success of this model 

depends on high-quality data, proper preprocessing, 

hyper parameter tuning, and rigorous validation to ensure 

its reliability and generalizability in real-world grid 

monitoring and control scenarios. 

3.4.1. Evaluations of Classifications Using HPDCNN 

The proposed method is assessed using two key concepts 

there are training and validation losses. These metrics 

serve as indicators of the model's performance. They 

quantify the errors generated by the models when 

processing inputs and producing outputs. High loss 

values suggest that the models are making significant 

errors, while low loss values indicate fewer errors. 

Losses are determined through cost functions that are 

tailored to the specific problems being solved and the 

data provided to the neural networks. Errors can be 

quantified in various ways, but commonly, cross-entropy 

is used for binary classification tasks. Training losses are 

used to evaluate how well the neural network models fit 

the training data. They measure the computational errors 

of the models on the training dataset. Training losses are 

computed by summing the errors for each example in the 

training set. These losses are typically calculated for 

each batch and can be visualized by plotting curves of 

training losses. Validation losses, on the other hand, 

assess the performance of the neural network models on 

validation datasets. Validation datasets are portions of 

the data that are set aside for the purpose of evaluating 

model performance. These losses are similar in nature to 

training losses and are calculated by summing the errors 

of samples in the validation set. Validation losses are 

typically computed after each epoch, helping to 

determine whether the models require further fine-tuning 

or adjustments. These losses can be visualized as 
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learning curves. In practice, training and validation 

losses are often displayed together on graphs to diagnose 

the models' performance and identify areas that require 

adjustment. When both training and validation losses are 

high, and validation losses surpass training losses, it 

suggests under fitting. This means that the models are 

accurately capturing the training data but struggle with 

large errors. Conversely, when validation losses exceed 

training losses, it indicates over fitting. In such cases, the 

models perform well on the training data but struggle to 

generalize to new data. The proposed HPDCNN method 

is designed to mitigate both under fitting and over fitting 

issues through its optimizations of neural networks, 

ensuring more robust and reliable model performance. 

3.5. Confusion Matrix: 

To evaluate the performance of the classifier, the 

confusion matric is best. The basic idea is that instances 

of class a counted as instances of class B. Look in the 

fifth row and third column of the confusion matrix to 

discover the number of times the classifier confused 

pictures of 5s with 3s. A confusion matrix's rows 

indicate real classes, while the columns represent 

predicted classes. The confusion matrix provides 

information about preferring a simpler statistic at times. 

Table 1 lists the confusion matrix of classifications using 

HPDCNN 

 

 Table 1: Confusion matrix of HPD-CNN Total data set =10000 Train: 6000(60%) Test: 4000(40%) 

 Predicted Unstable Predicted Stable 

Actual Unstable 1998 3 

Actual Stable 2 1997 

 

4. Results and Discussion 

The proposed HPDCNN was developed in Python 3 on 

Windows 10 with an AMD processor. This section 

contains stage-by-stage outcomes of the proposed system 

in the form of figures or tables, as appropriate. The 

augmented smart grid dataset was used in the study. 

To scale the proposed Performance metrics like 

accuracy, F-Score, precision, computation time, 

specificity, stability and error rate are investigated in 

order to assess performance. It is decided to use 

confusion matrix to scale the performance parameters.  

4.1. Accuracy 

The ratio of accurate prediction to total count of 

proceedings is the accuracy Equation (6).  

FNFPTNTP

TNTP
Accuracy

+++

+
=                                 (6) 

here TP refers True Positive, TN  refers True Negative, 

FP refers False Positive, FN and refers False Negative. 

4.2 F1-score 

The weighted average of precision and accuracy is the 

F1-Score.. This is determined by Equation (7),  

precisionrecall

precisionrecall
ScorevalueF

+


=− 21                          (7) 

The performance Equation is provided in and the 

evaluation parameter of F-score for detecting emotion 

from input signals, are analyzed 

4.3. Specificity 

This is called as True Negative rate. This is scaled by 

Equation (8) 

)(

)(

FPTN

TN
yspecificit

+
=

                  

(8) 

4.4. Assessments of relationships between data using 

HPDCNN: 

Analyzing correlations among numerical features and 

their relationships with the dependent variable is 

essential as it helps identify potential issues such as 

collinearity. The provided heat map illustrates the 

association between the dependent variable 'stabf' and 

the 12 numerical attributes. It's important to note that 

we've also included the alternative dependent variable 

'stab' to provide additional context regarding its 

relationship with 'stabfIt is reasonable to expect such a 

link to be significant (-0.83), which supports the Section 

3 prediction that it should be discarded. Furthermore, 

while the connection between "p1" and its 

subcomponents "p2," "p3," and "p4" is above average, it 

is insufficient to support any removal Figure 4 shows 

Correlations in HPD-CNN.  
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Fig 4: Correlations in HPD-CNN 

Training and Validation Accuracy of HPDCNN on SDN 

traffic dataset is shown in Figure 5. The validation 

accuracy began at 0.65% during the first epoch, 

experienced a gradual increase, and reached 1% around 

1.8 epochs. Subsequently, it plateaued, maintaining a 

constant accuracy level between 1.8 to 8 epochs. 

Training and Validation Loss of HPDCNN on SDN 

traffic dataset is shown in Figure 6. The validation loss 

value begins at 0.35% during the first epoch, 

subsequently decreasing to 0.00% between the first and 

third epochs. Following this, the loss value stabilizes and 

remains constant from the third to the eighth epoch. 

Comparison of accuracy value with Proposed FSSG-

HPDCNN approach and existing method is shown in 

Figure 7. The Proposed FSSG-HPDCNN approach 

accuracy value is 99.88%, FSSG-WHO method accuracy 

value is 84%, FSSG-PSO method accuracy value is 62% 

and the HBO method accuracy value is 72%. The 

Proposed FSSG-HPDCNN approach is higher accuracy 

value compare than other existing methods for stable. 

The Proposed FSSG-HPDCNN approach accuracy value 

is 99.88%, FSSG-WHO method accuracy value is 72%, 

FSSG-PSO method accuracy value is 76% and the HBO 

method accuracy value is 62%. The Proposed FSSG-

HPDCNN approach is higher accuracy value compare 

than other existing methods for unstable. Comparison of 

computation time with proposed and existing methods is 

shown in Figure 8. The Proposed FSSG-HPDCNN 

approach computation time is 100 sec, FSSG-WHO 

method computation time is 200sec, FSSG-PSO method 

computation time is 250 sec and the FSSG-HBO method 

computation time is 280 sec. The Proposed FSSG-

HPDCNN approach is lower time value compare than 

other existing methods. Comparison of error value with 

proposed and existing method is shown in Figure 9.The 

Proposed FSSG-HPDCNN approach error value is 2%, 

FSSG-WHO method error value is 18%, FSSG-PSO 

method error value is 35% and the FSSG-HBO method 

error value is 25%. The Proposed FSSG-HPDCNN 

approach error value is lower than other existing 

methods for stable. The Proposed FSSG-HPDCNN 

approach error value is 2%, FSSG-WHO method error 

value is 32%, FSSG-PSO method error value is 25% and 

the FSSG-HBO method error value is 35%. The 

Proposed FSSG-HPDCNN approach error value is lower 

than other existing methods for unstable. 
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Fig 5: Training and Validation Accuracy of HPDCNN on SDN traffic dataset 

 

Fig 6: Training and Validation Loss of HPDCNN on SDN traffic dataset 

 

Fig 7: Comparison of accuracy value with proposed and existing method 
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Fig 8: Comparison of computation time with proposed and existing methods 

 

Fig 9: Comparison of error value with proposed and existing method 

 

Fig 10: Comparison of F1 Score value with proposed and existing method 
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Fig 11: Comparison of precision value with proposed and existing methods 

 

Fig 12: Comparison of sensitivity with proposed and existing methods 

 

Fig 13: Comparison of specificity with proposed and existing methods 
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Fig 14: Comparison of stability with proposed and existing methods 

Comparison of F1 Score value with proposed and existing 

method is shown in Figure 10. Comparison of F1 score 

value with proposed and existing method is shown in 

Figure 10.The Proposed FSSG-HPDCNN approach F1 

score value is 99.2%, FSSG-WHO method F1 score value 

is 76%, FSSG-PSO method F1 score value is 85% and the 

FSSG-HBO method F1 score value is 70%. The Proposed 

FSSG-HPDCNN approach F1 score value is higher than 

other existing methods for stable. The Proposed FSSG-

HPDCNN approach F1 score value is 99.7%, FSSG-WHO 

method F1 score value is 72%, FSSG-PSO method error 

value is 78% and the FSSG-HBO method error value is 

85%. The Proposed FSSG-HPDCNN approach error value 

is higher than other existing methods for unstable. 

Comparison of precision value with proposed and existing 

methods is shown in Figure 11. The Proposed FSSG-

HPDCNN approach precision value is 99.4%, FSSG-WHO 

method precision value is 68%, FSSG-PSO method 

precision value is 74% and the FSSG-HBO method 

precision value is 78%. The Proposed FSSG-HPDCNN 

approach precision value is higher than other existing 

methods for stable. The Proposed FSSG-HPDCNN 

approach precision value is 99.4%, FSSG-WHO method 

precision value is 78%, FSSG-PSO method precision value 

is 84% and the FSSG-HBO method precision value is 

65%. The Proposed FSSG-HPDCNN approach precision 

value is higher than other existing methods for unstable. 

Comparison of sensitivity with proposed and existing 

methods is shown in Figure 12. The Proposed FSSG-

HPDCNN approach sensitivity value is 99.4%, FSSG-

WHO method sensitivity value is 68%, FSSG-PSO method 

sensitivity value is 84% and the FSSG-HBO method 

sensitivity value is 78%. The Proposed FSSG-HPDCNN 

approach sensitivity value is higher than other existing 

methods for stable. The Proposed FSSG-HPDCNN 

approach sensitivity value is 99.4%, FSSG-WHO method 

sensitivity value is 64% FSSG-PSO method sensitivity 

value is 62% and the FSSG-HBO method sensitivity value 

is 70%. The Proposed FSSG-HPDCNN approach 

sensitivity value is higher than other existing methods for 

unstable. Comparison of specificity with proposed and 

existing methods is shown in Figure 13. The Proposed 

FSSG-HPDCNN approach specificity value is 99.4%, 

FSSG-WHO method specificity value is 84%, FSSG-PSO 

method specificity value is 78% and the FSSG-HBO 

method specificity value is 70%. The Proposed FSSG-

HPDCNN approach specificity value is higher than other 

existing methods for stable. The Proposed FSSG-

HPDCNN approach specificity value is 99.4%, FSSG-

WHO method specificity value is 70% FSSG-PSO method 

specificity value is 82% and the FSSG-HBO method 

specificity value is 84%. The Proposed FSSG-HPDCNN 

approach specificity value is higher than other existing 

methods for unstable. Comparison of stability with 

proposed and existing methods is shown in Figure 14. The 

Proposed FSSG-HPDCNN approach stability value is 

98.4%, FSSG-WHO method stability value is 70%, FSSG-

PSO method stability value is 78% and the FSSG-HBO 

method stability value is 74%. The Proposed FSSG-

HPDCNN approach stability value is higher than other 

existing methods for stable. The Proposed FSSG-

HPDCNN approach stability value is 98.4%, FSSG-WHO 

method stability value is 84% FSSG-PSO method stability 

value is 72% and the FSSG-HBO method stability value is 

78%. The Proposed FSSG-HPDCNN approach stability 

value is higher than other existing methods for unstable. 

Discussions 

Decision trees are one of the machine learning models that 

can provide outputs in the desired format, as discussed in 

Section I. It's worth noting that some argue for the joint 

selection of experimental design and statistical models 

[26]. Additionally, there are various types of system 

stability that we can briefly touch upon, along with their 

respective advantages and disadvantages. Stability against 

Single Perturbations refers to a system's ability to return to 

an equilibrium state after experiencing a single 

disturbance, often related to power requirements during 
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short periods. Analyzing this type of stability introduces 

several simulation complexities, such as determining 

which grid nodes to perturb, defining the disturbance 

characteristics (e.g., magnitude, duration), and establishing 

the observation period required to assess stability. Basin 

stability is a concept that entails defining a set of potential 

disturbances and then running simulations of the system 

with randomly selected disturbances from within this 

predefined set. The term "basin volume" is used to quantify 

this by calculating the proportion of initial conditions that 

lead to a stable system operation compared to all possible 

initial conditions. This methodology is more 

comprehensive than simply assessing stability against 

specific disturbances, as it inherits and considers all 

relevant constraints. On the other hand, local stability 

analysis, also known as linear stability analysis, delves into 

the examination of dynamic stability in the vicinity of a 

steady-state operating point within a grid or system. While 

our current simulation method is fairly effective, there is 

room for generalization. We acknowledge areas of study 

that remain unexplored but hold promise as research 

directions. In our trials, we achieved an accuracy of 

approximately 80%, which suffices for a general 

understanding of the system. However, for simulations 

aimed at identifying pure stability areas, this level of 

accuracy may be insufficient. One intriguing research 

avenue is the exploration of cost-sensitive classifiers that 

prioritize stable design points. Additionally, we employed 

our knowledge of system symmetry to extract 

characteristics from initial input data, but questions persist 

about the optimality of these features and whether they can 

be automatically discovered. Furthermore, extending this 

analysis to large grids with more than ten individuals 

presents significant challenges [28]. 

5. Conclusion 

The decentralization of energy generation and the inclusion 

of distributed energy storage are reshaping the landscape 

of the electricity grid. This shift presents both opportunities 

and challenges and represents a significant transformation 

in the electricity market, alongside trends like 

electrification and digitalization. When we refer to 

"closeness," it doesn't necessarily pertain solely to physical 

proximity. For instance, a corporation with on-site power 

generation facilities may not always be physically close to 

the end user. However, situations can arise where a power 

plant is indeed physically nearby. What truly matters is the 

ability to aggregate multiple energy resources. 

Decentralized energy generation essentially means 

producing energy closer to where it will be consumed, as 

opposed to relying on large centralized power plants that 

distribute electricity across a wide area. By the year 2023, 

it is projected that 65% of energy companies will have 

invested in digital technologies and platforms to enhance 

flexibility services, which could potentially activate up to 

35% of the total installed capacity. Smart grids (SGs) are 

electrical networks that enable a bidirectional flow of 

electricity and data. They utilize digital communication 

technology to detect, respond to, and address changes in 

electricity demand and various challenges. Smart grids also 

possess self-healing capabilities and empower electricity 

consumers to actively participate in the grid. The stability 

of smart grids holds paramount importance in evaluating 

the effectiveness of smart grid architecture. Therefore, it is 

crucial to conduct testing and predictions of stability under 

diverse conditions. This is essential to prevent undesirable 

instabilities in future smart grid architectures. The 

integration of renewable energy sources into SGs 

necessitates intelligent techniques for stability prediction. 

Several factors come into play, including production, 

decentralization (distributed energy), regulatory changes, 

the emergence of presumptive behaviors, the proliferation 

of micro-generation and micro grids, mandates for 

renewable energy, and the growing demand for electric 

vehicle charging infrastructure. In this context, AI plays a 

vital role in forecasting smart grid stability. Utilizing DL 

models, we examine complex customer-centric smart grid 

systems across a wide range of input values, eliminating 

limitations associated with input value assumptions. Our 

proposed approach achieves accuracy rates exceeding 

95%, offering valuable insights through a simulated 

system. Notably, fast adaptation emerges as a factor that 

can enhance overall system stability. This encompasses 

various aspects such as energy market liberalization, 

metering evolution, and shifts in electricity demand. 

Through this method, previously unknown information 

about smart grids comes to light. For instance, it reveals 

that systems can maintain stability even if certain 

individuals adjust their energy consumption with 

significant delays, and in some scenarios, rapid adaptation 

is preferable for ensuring stability. The Proposed FSSG-

HPDCNN approach accuracy value is 99.88% which is 

higher than other existing methods like FSSG-WHO, 

FSSG-PSO, and FSSG-HBO methods.  
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