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Abstract: The presence of CCTV cameras on highways helps enhance public safety and instills a sense of security among road users. It 

promotes responsible behavior, discourages reckless driving, and can aid in resolving disputes related to accidents or incidents. This 

research proposes an innovative and very trustworthy approach to identify vehicles on the road. This paper also examines vehicle 

tracking in the presence of uncalibrated Cameras with overlapping fields of view used to capture images, which are characteristics of 

traffic surveillance systems. To discover a greater accuracy of the desired field of vision in such a situation, it is crucial to create and 

construct a system to compute the road geometry and establish correspondence between the positions of the multiple cameras. We outline 

a special technique for automatically identifying traffic camera angle positions using a collection of dimensions and the GA-SVM 

machine learning algorithm followed by the novel vehicle detection architecture.  

Keywords: CCTV, FOV, GA-genetic algorithm, Multi-Camera setup, machine learning, SVM, vehicle detection, Video Surveillance, 

neural network. 

1. Introduction 

Monitoring of visual traffic employing a multiplicity of 

sensors with intersecting fields of view is critical for the 

development of smart cities, interstates, and highways. To 

provide safer transport services, together with smarter 

transportation infrastructure both academics and industry 

are paying attention to new advances in computing and 

communication technologies. 

Traffic surveillance makes use of multi-camera, multi-

object tracking. Even the most straightforward of these 

arrangements needs more than one camera for two reasons: 

First, because of a single camera's constrained area of 

vision, it is unable to completely encompass the 

environment (FOV). Second, many cameras should be 

placed in strategic locations to give resilience against 

occlusion-like scenarios [1, 2, 3, 4]. 

Establishing connections between several viewpoints is 

important in order to benefit from more cameras. The main 

challenge of tracking with a single camera is the 

connection between frames over time [5]. The angle of the 

overlapping field of view is a quantitative metric for 

measuring the correlation between tracks of objects 

observed from various cameras. 

Visual sensors are used in visual traffic monitoring with 

video analytics to offer information, such as traffic flow 

prediction or vehicle detection. Although it has recently 

gained popularity among computer vision experts, it is still a 

difficult process, especially when several cameras are 

involved. 

Multi-camera installations require a more complicated 

infrastructure, the capacity to handle more data at once, as 

well as greater processing capabilities than mono-camera 

traffic monitoring.  

The examination of visual signals collected from several 

cameras while accounting for setups with overlapping fields 

of vision (FOVs), in which cameras may be placed at various 

angles and separated by considerable distances. A rise in the 

number of cameras poses technological and architectural 

obstacles, such as issues with camera positioning and 

calibration, object matching across numerous cameras, 

automated switching between cameras, and information 

integration. 

In this paper, we propose a machine learning methodology to 

more accurately capture roads and highways by 

automatically detecting the position angle of several cameras 

with overlapping FOVs along with the accurate detection of 

the vehicles. 

The paper is structured as shown below. The cutting-edge of 

multi-camera technology in traffic surveillance design 

methodologies is covered in Section 2. The methodology for 

identifying the optimal observation zone automatically is 

introduced by the suggested method in section 3. Section 4 

describes the evaluation strategy and implementation details. 

Last but not least, Section 5 describes the conclusion 

remarks. 
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2. Literature Survey 

One fundamental concept from [8], which is used in this 

study, is identifying the optimal observation zone using 

low-level characteristics from the video. This method built 

on models can give us a positive outcome by offering a 

collection of models for each car. In developing countries, 

however, roads are inadequately split into lanes for various 

types of mobility (such as autos, bicycles, motorbikes, 

pedestrians, and others). It seems difficult to make models. 

Due to the wide variety of vehicles, the issue is even more 

complicated [6, 7, and 8]. 

In order to manage and regulate traffic congestion, 

bottleneck conditions, and prevent mishaps, CCTV-closed-

circuit TV cameras are being used more and more in traffic 

network administration [9, 10, 11, and 12]. They can be 

used with fixed or steady FOVs, broader FOVs, PTZ 

capabilities, or multi-camera monitoring systems.  

The study of numerous camera tracking characteristics is a 

huge task in computer vision, with publications 

categorized by features, matching approach, and camera 

calibration. 

A. Approaches for Feature Matching 

In multi-camera object tracking, the object is matched 

simultaneously in multiple cameras' view scopes, with 

various camera characteristics visible in each camera. 

Geometric constraint and feature identification are the two 

possible techniques. 

Establishing correspondence constraints by matching the 

color or other color or other attributes of monitored objects 

in each camera may be the easiest way to assure equal 

labeling. This has been accomplished with either a 

Bayesian network approach or the computational Kalman 

Filter approach. At both times, the authors use a variety of 

features within the same structure rather than being limited 

to a single kind of feature. 

To understand the camera geometry and infer additional 

limits, they also use camera calibration data. Geometry-

based modalities include epipolar geometry, homograph, 

and landmarks, while recognition-based modalities include 

perceived height and color. These are divided into two 

categories: geometry-based and recognition-based. 

Researchers have attempted to make color feature 

correspondence more trustworthy, however it is unreliable 

when the disparity is high. Because separate cameras have 

varying intrinsic characteristics and photometric features, 

having security cameras positioned in opposite directions 

is considered an optimal approach. Deviations in 

illumination also cause a similar object to appear 

differently in different cameras. 

B. Approaches based  on 3D information and camera 

calibration 

Camera calibration and the 3D surroundings model structure 

can be used to offer systematic labeling by establishing the 

precise position of each 3D object in the worldwide 

coordinate system and determining equivalence across 

objects. This technique is used in [13, 14], as every single 

camera has calibration and the globe is delimited by a known 

ground plane. View equivalence is produced by connecting 

views with similar projected 3D locations. [15, 16, 17] also 

employ ground plane homograph. 

This strategy may be effective in controlled situations, but 

calibrated cameras and accurate environment maps are 

difficult to obtain in a general surveillance scenario. We 

contend that camera calibration is redundant because most of 

the pertinent data may be obtained by monitoring motion 

over time. Camera calibration assesses intrinsic and/or 

extrinsic parameters relating to the camera's internal features, 

such as focal length, skew, distortion, and image centers. 

Multi-camera calibration and camera arrangement with 

interspersed and not interspersed FOV are distinguished by 

FOV. 

It is vital in a multi-camera approach to calculate real-time 

precise locations for all cameras, which will better monitor 

numerous objects simultaneously, Object reconstitution in 

3D within a scene, and a combination of innovative 

viewpoints [18]. 

C. Approaches for Alignment 

Alignment-based techniques concentrate on recreating the 

geometric change across the cameras and guarantee that the 

tracks of an identical object overlap in alignment with the 

anticipated transition. Recently, the authors of [19] 

approached the issue from the perspective of frame 

alignment, extending spatial picture alignment approaches to 

integrate time information [20], describing a different 

strategy that employs trajectory information for alignment. 

On the other hand, [21], [22], and [23] describe ways to 

establish time correspondences between non-overlapping 

FOVs. Cameras set at regular intervals along a corridor or on 

a motorway are typical uses. Correspondence is established 

using the MAP method. 

Multi-camera tracking systems must deal with the object 

handover problem, which involves the diverse occurrences of 

the same object in multiple cameras. In recent technology, 

fusion frameworks and methods are used to identify whether 

there exist overlapping regions among cameras. After 

surveying related research papers and methodology, multiple 

camera systems in the overlapping FOV with deep learning 

techniques emerged with better solutions. In a multi-camera 

tracking system, many methodologies and algorithms have 

been utilized in camera calibration, object matching, and 
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information fusion, but there is a scope for future study.  

D.   Vehicle Detection 

Currently, ITSs, in addition to a few industrial and military 

systems, make extensive use of object detection and 

classification. For example, ITSs can carry out vehicle 

identification and classification for complete analysis of 

passing vehicles in order to accomplish efficient vehicle 

traffic management and oversight as well as urban 

planning 

Due to their powerful representational capabilities, 

convolution neural networks (CNNs) form the foundation 

of many object identification models currently in use [27].  

The CNN feature extraction's performance of visual 

recognition is comparable to how humans perceive things 

[28]. Convolution, pooling, fully The methods for 

detecting objects that are now in use can be split into two 

categories: hardware-based approaches and vision-based 

methods. 

The hardware-based strategy involves integrating hardware 

components like temperature sensors, lidar, and other 

devices [26]. While technologies based on vision are 

becoming popular and linked, and other sorts of layers are 

common in CNNs, and each layer converts the 3D input 

volume into a 3D output volume of neuron activations 

[29]. Different CNN architectures have been invented up 

to this time. The first of them, the Region-based CNN (R-

CNN), successfully applied DL for object identification 

and other computer vision applications, as well as 

automatic picture feature extraction. The success of 

RCNNs, whose cost has been greatly decreased by sharing 

convolutions among object proposals, has really been a 

driving force behind recent developments in object 

detection [30]. 

After it, Fast R-CNN [31], Faster R-CNN [30], Mask R-

CNN [32], and Mesh R-CNN[33] were developed as 

iterations of the R-CNN model. These are all illustrations 

of two-stage object identification models that produce 

sparse candidate frames (i.e., region suggestions retrieved 

from a scene) in the first stage and then validate, 

categorize, and enhance candidate frames in the second 

stage to improve the scores and locations [28]. Two 

benefits of these models are their high precision and 

localization of objects, while their main disadvantages are 

a more involved training process and slower operational 

speed [28], especially when you consider how crucial real-

time object detection is becoming to practical applications. 

You Only Look Once (YOLO) [34] and Single Shot Multi-

Box Detector (SSD) are examples of single-stage object 

detection models that perform better in this regard by 

adopting a regression method for object detection 

immediately, leading to faster operating speed. However, 

because SSD does not take into account the interaction 

between different sizes, it is limited in its ability to recognize 

small objects, whereas YOLO is faster and easier to learn 

general traits from [35]. However, the graphic area cannot be 

handled completely by SSD or YOLO, leading to significant 

detection error and missing rate rates. 

From the literature, it is clear that there is a need to work on 

the camera angle along with highly reliable vehicle detection. 

In the next chapter, the proposed method is presented 

followed by the result and discussion chapter. 

3.  Proposed Method 

To determine the overlapping region of two cameras with 

given angles, we have considered the field of view (FOV) of 

each camera and the distance between them. The camera is 

positioned as shown in figure 1.  

Now we have calculated the FOV of each camera. The FOV 

is the angle at which the camera can capture an image. It is 

usually given in degrees.  

We can determine the overlapping region by finding the area 

where the two FOV areas intersect. This is the region where 

both cameras can capture an image. Note that the size and 

shape of the overlapping region will depend on the specific 

angles and distances involved. It is important to use accurate 

measurements and calculations to get an accurate result. 

 

 

Fig 1: Viewing angle of two cameras with overlapping 

region 

The size and shape of the overlapping region depend on 

several factors, including the camera's field of vision and the 

distance across them. A larger angle of view results in a 

larger overlapping region, while a shorter distance between 

cameras results in a smaller overlapping region. The shape of 

the overlapping region can vary from a simple rectangular or 

square shape to a more complex shape depending on the 

specific angles and distances involved.  

The SVM classifier using genetic algorithm (GA) is used to 

determine the camera angle with the most overlapping 

region. The architecture of GA-SVM is illustrated in Figure 

2. 
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The Support Vector Machine (SVM) is a well-known 

machine-learning technique for prediction [24]. The 

Genetic technique (GA) is an optimization technique 

inspired by natural selection. Combining SVM with GA 

can enhance the performance of the SVM algorithm and 

help find the optimal hyper parameters for the SVM 

model. The basic idea behind using GA with SVM is to 

search for the optimal set of hyper parameters that can 

maximize the SVM's performance on the given data. The 

main parameters of the SVM model, such as the kernel 

function, regularization parameter, and gamma, have a 

substantial impact on the model's performance 

 

Fig 2: SVM with Genetic algorithm 

In the GA-SVM approach, the SVM model's hyper 

parameters are considered as the genes in the GA. The GA 

generates a population of solutions; each represented by a 

set of hyper parameters, and evaluates their fitness by 

training the SVM model on a subset of the data. The 

accuracy of the SVM model on the remaining data is used 

to determine the fitness of each solution. The fitness 

function is calculated by using the following mathematics. 

We want to get the maximum overlapping of two camera 

outputs while maximizing the width of the margin. The 

fitness function which is also the objective function of the 

SVM becomes: 

max
w,b

 
1

2
∥ w ∥2+ C

1

n
∑  

i

  ξi

 subject to {
yi(x ⋅ w + b) ≥ (1 − ξi)  for i = 1, … , n

ξi ≥ 0  for i = 1, … , n

 

     … Equation 

(1) 

Where w is the decision boundary vector and c represents 

the cost of the slack.  Boundaries produced by larger C will 

have fewer support vectors. SVM decreases its variance by 

increasing the number of support vectors because it is less 

dependent on any one observation. The model becomes more 

general when the variance is decreased. Therefore, lowering 

C will result in more support vectors and less over-fitting. 

With Lagrange multipliers: 

αi ≥ 0 and μi ≥ 0  … Equation (2) 

The primary Lagrangian function can be used to rephrase the 

constrained optimization problem as follows: 

min
w,b,ξ

 max
α,μ

  [
1

2
∥ w ∥2+ C

1

n
∑  

i

  ξi

− ∑  

i

 αi[yi(xi ⋅ w + b) − (1 − ξi)]

− ∑  

i

 μiξi] 

    … Equation (3) 

We can maximize over the multipliers subject to the relations 

derived before for w, b rather than minimizing over w, b, 

subject to restrictions. The dual Lagrangian formulation is 

what we refer to as: 

max
α

  [∑  

i

 αi −
1

2
∑  

i,i′

 αiαi′yiyi′xi ⋅ xi′]

 subject to {
0 = ∑  

i

 αiyi

0 ≤ αi ≤ C for i = 1, … , n

           

    … Equation (4) 

With the use of Sequential Minimization Optimization, this 

quadratic programming issue is now rather simple. 

The GA then employs selection, crossover, and mutation 

procedures to develop new solutions from the population's 

fittest individuals. The method is done multiple times until 

the ideal collection of hyper parameters is discovered. 

The benefits of employing GA with SVM include the ability 

to avoid over fitting and increase model generalization. It can 

mitigate the time and effort needed to manually tune the 

hyper parameters of the SVM model. It is crucial to note, 

however, that the success of the GA-SVM technique is 

significantly dependent on the fitness function's quality, the 

size of the population, and the number of generations used. 

The result of the prediction of the angle for the maximum 

overlapping is presented in the next section. 

The union of the footage from the two cameras (overlapped) 

region is then fed as an input. The image (a,b) is passed 

through the feature extraction process to get Pψ
i  (k,c,d).  there 
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is equation 5. 

Pφ(k0, c, d) =
1

√MN
∑ .

M−1N−1

x=0

  image(a, b)φj=0(a, b) 

     …Equation 

(5) 

  Pψ
i (k, a, b) =

1

√MN
∑ .

M=1

x=0

   ∑.

N−1

y=0

  image(a, b)ψijk,c,d(a, b)ψi 

     …Equation 

(6) 

To enhance the performance of the network, we added 

residual blocks of sizes 1x64 and 2x128 to the Darknet-

53's initial layers. In order to encourage feature reuse and 

provide the network the ability to learn more robust and 

discriminative features, the output from this stage is 

transmitted to a Dense Architecture, where every layer is 

connected to every other layer in a dense block. To 

enhance the network's information flow, the outputs from 

each layer are concatenated and transferred to the 

following dense block. Batch normalization and ReLU 

activation functions, which also prevent over fitting, 

improve the training process. 

The front detection layer, or FDL, is in charge of locating 

and confirming the existence of objects in an input image. 

This layer, which is frequently a convolution layer, scans 

the input image at various scales and locations, looking for 

regions that potentially contain the objects of interest. 

The front detection layer (FDL) uses small rectangles with 

specified sizes and aspect ratios called anchor boxes or 

prior boxes to identify objects in the input image.  The 

FDL determines scores for each anchor box that represent 

the likelihood that an object will be found there, and 

bounding box offsets show the distance between the 

anchor box and the bounding box of the actual object. The 

architecture is made for small item detection, such as 

finding a gun in a video that looks little and far away. Up-

sampling layers are used to increase the feature map's 

resolution and improve detection accuracy. This enables 

accurate detection of small items like firearms. 

 

Fig 3: PSA for the detection of vehicle 

In order to improve performance, we changed the size of the 

residual block at the top layer where our network operates in 

depth. A residual group contains different residual blocks, 

such as 1x, 2x, 4x, and 8x, after each convolution layer. 

Before each residual group, stride convolution with a stride 

of 2 is employed to down sample the spatial dimension of the 

feature maps. By encoding positional information necessary 

for object detection and preventing the loss of low-level 

features, stride convolution also made the down sampling 

less completely non-parametric than max-pooling. It made it 

easier to find smaller objects. 

The network can learn more precise information from early 

feature maps and more significant semantic information from 

up sampled later-layer feature maps by up sampling and 

concatenating features with various scales. 

We used 17760 photographs of different types and sizes of 

vehicles to train our PSA. The proposed algorithm is 

presented below and incorporates this architecture. The result 

of the PSA is presented in the next chapter.  

4. Results and Discussion 

The database is generated by calculating overlapping areas 

with every possible angle. This database is then given as 

input for the training GA-SVM. The result is presented in 

figure 4. 
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Fig 4: Result of GA-SVM for calculating best angle of 

camera for maximum overlapping 

Here, the best angle of camera for maximum overlapping 

comes out as 14.36°. For this angle the overlapping is 

93.27%. The result of the maximum overlapping is 

presented in figure 5. 

 

Fig 5: Result of overlapping part in both images for 

optimized angle calculated using proposed methodology 

The overlapping of the two cameras is predicted by using 

other machine learning also. The overlapping along with 

the predicted angle is tabulated in table 1. 

For object tracking purposes, overlapping footage from 

numerous cameras can be useful. The various viewpoints 

can be used by tracking algorithms to increase object 

localization, tracking accuracy, and resilience. Even when 

objects cross camera boundaries, object trajectories can be 

estimated more precisely by merging data from various 

camera viewpoints. 

Table 1: optimized angle prediction along with percentage 

overlapping with various ML algorithms 

Method 
Overlapping 

percentage 

Predicted 

Angle 

Proposed SVM + GA 93.27% 14.36° 

SVM + PSO 92.32% 14.08° 

SVM 89.84% 15.89° 

Decision Tree + GA 91.48% 15.94° 

Decision Tree + PSO 91.04% 13.52° 

Decision Tree 84.52% 17.94° 

 

The proposed SVM+GA gives the maximum overlapping 

than another ML algorithm as illustrated in table 1. The 

result of the vehicle detection using PSA is presented in 

figure 6.  

 

Fig 6:  Result of vehicle detection using PSA 

Confusion matrix is used to calculate the performance 

metrics. The performance metrics are calculated to check and 

compare PSA with other existing architectures after the 

feature extraction algorithm has been finalized. Equations 7, 

8, 9, and 10 are used to calculate accuracy, precision, recall, 

and F1 score, respectively. The confusion matrix is first 

constructed to determine the performance metrics. Figure 7 

shows a confusion matrix followed by formulae for 

performance parameters. 

 

Fig 7: Confusion matrix of the PSA 

𝐴𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    …equation (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    …equation (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     …equation (9) 
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𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
                  …equation 

(10) 

 

Figure 7's confusion matrix has been used to calculate 

performance metrics, which are reported in table 2. 

Table 2: Performance parameters of vehicle detection 

using PSA 

Performance Parameter Value 

Accuracy 99.56 

Precision 99.5 

Recall 99.5 

F1 score 100 

 

The performance parameters of the PSA is calculated and 

tabulated in table. The accuracy of the vehicle detection is 

compared with another ML algorithms also which is 

tabulated in table 3.  

Table 3: Comparison of the PSA with other architectures 

Architecture for 

Vehicle Detection 
Accuracy (%) 

PSA 99.56 

SVM 78.32 

CNN 87.92 

RCNN 92.31 

Yolo V3 95.82 

Yolo V4 97.29 

 

The table 3 illustrates that the PSA gives the maximum 

accuracy than that of the standard ML algorithms. The 

time complexity of the algorithm is calculated on different 

hardware platforms and tabulated in table 4.  

Table 4:  Time complexity of PSA, on different hardware 

platforms [25] 

Different Hardware 

Platforms 

Time taken to obtain 

a result (in seconds) 

CPU, i3 processor, 8GB 

RAM 
0.58 

CPU, i5 processor, 8GB 

RAM 
0.78 

CPU, I7 processor, 8GB 

RAM 
0.94 

GPU, Nvidia K80 0.0038 

 

After testing the PSA on different hardware platforms it 

comes to know that the higher-end CPU gives less time 

complexity.  Whereas there is a drastic change in time 

complexity once this algorithm is tested on GPU. 

5. Conclusion 

In this research, firstly we presented a camera configuration 

that used the SVM classifier with the genetic algorithm (GA) 

to find the overlapping region of two cameras with given 

angles. We examined the field of view (FOV) of each camera 

and the distance between them; the size and form of the 

overlapping region will be determined by the precise angles 

and distances involved. To obtain an exact outcome, proper 

measurements and computations must be used. Combining 

SVM with GA can improve the efficiency of the SVM 

algorithm and aid in the discovery of appropriate hyper 

parameters for the SVM model. The benefits of employing 

GA with SVM include the ability to avoid over fitting and 

increase model generalization. It can also save time and 

effort when manually tuning the SVM model's hyper 

parameters.  

Then the result of this overlapping is fed as an input to the 

proposed vehicle detection architecture. It shows the PSA 

gives 99.56% accuracy for the detection of the vehicles. The 

PSA is compared with other standard algorithms also and it 

comes out as the accuracy of the PSA is higher than that of 

the other algorithms. The time complexity is also calculated 

and it only shown that the detection of vehicle takes very less 

time in the real time scenario.  
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