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Abstract: Plant pests pose a significant threat to agricultural production worldwide, as their outbreaks become increasingly 

intense and widespread. However, traditional methods of identifying these pests through lesion image segmentation are both 

inefficient and time-consuming, impeding the ability to generalize and apply their findings. To address this issue, this study 

introduces an enhanced convolutional neural network with Adaptive Particle Swarm Optimization with Long Short Term 

Memory (ICNN-APSO-LSTM), which improves the identification of plant pests in natural agricultural environments. The 

resulting pest identification system classifies harmful pests, enabling farmers to take corrective action. The study begins with 

an overview of current pest identification techniques, highlighting their pros and cons. Based on the limitations of these 

methods, the study proposes a new and improved classification technique. The mathematical model is derived using an 

objective function, combining pest recognition and pesticide recommendation using machine vision and CNN. The model 

also uses soil NPK sensors to acquire soil nutrient values, analyzing them to prescribe appropriate fertilizers. Choosing the 

right fertilizer for soil and yield is crucial for farming, and this article describes a powerful technique for estimating soil 

nutrient content and recommending suitable fertilizers. The study successfully identified five pests - aphids, magnolias, 

leaves, leaf miners, and sables - with over 99% accuracy. Field results using this technique resulted in recommended 

pesticide application times within 10 seconds and fertilizer recommendations within 80 seconds. 
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1. Introduction 

The agricultural sector in India has experienced significant 

growth due to globalization [1]. Additionally, there has 

been an increase in demand for high-quality food as people 

become more health-conscious. To achieve higher yields, 

farmers sometimes use pesticides and fertilizers [2]. 

However, pesticides can be more toxic than herbicides and 

fungicides, which are also used to protect crops from pests 

[3]. The Pesticides Act of 1968 strictly regulates the 

manufacturing, sale, importation, and proper application of 

pesticides in India. Also, the Indian government has banned 

the use of 30 pesticides and refused to license 18 plant 

protection agents [4]. Some farmers may be unaware of the 

harmful effects of excessive pesticide use and the need to 

check soil quality before applying fertilizers. Overuse of 

pesticides can cause respiratory disease, cancer, venereal 

syndrome, and even death if consumed directly or 

indirectly. Pesticides can also pose environmental hazards, 

such as soil and water pollution, and can harm animals and 

plants [5]. In India, pesticides are consumed at a rate of 

approximately 76%, followed by fungicides at 13%, and 

herbicides at 10%. To address this issue, a recommendation 

system using the "Pests in Crops and Their Treatment" 

ontology (PCT-O) was developed to detect pests and 

suggest relevant treatments [6]. The ontology utilizes 

datasets of pests, insecticides, and symptoms to classify 

and handle pesticides effectively [7]. The platform helps 

farmers optimize their resources, reduce production costs, 

and increase their profit margins. It promotes integrated 

pest management strategies, which involve using natural 

and approved pesticides to protect crops from pests. The 

platform also provides farmers with up-to-date information 

on pesticide regulations and useful advice on safely storing, 

handling, and applying pesticides [8]. 

2. Motivation 

Our objective in this study is to create a cutting-edge 

recommendation system that utilizes AI and machine 

learning algorithms to deliver precise guidance to farmers 

regarding the ideal fertilizers and irrigation techniques for 

the optimal growth of their crops. Furthermore, we strive to 

integrate sensor technology to monitor soil conditions in 

real-time and provide customized and timely 

recommendations that cater to each farm's unique 
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requirements. Fertilizers are essential substances that 

provide necessary nutrients for optimal plant growth. The 

soil naturally contains vital nutrients such as nitrogen (N), 

phosphorus (P), and potassium (K). However, without 

proper knowledge of soil fertility, excessive use of 

fertilizers can lead to plant deterioration, mineral 

accumulation, and soil pollution. The automation of 

agriculture is rapidly increasing, as modern technology 

offers more efficient and accurate solutions than traditional 

methods. Recommendation systems, which incorporate 

artificial intelligence (AI) and machine learning (ML) 

algorithms, help farmers achieve healthier crops by 

suggesting appropriate plant protection agents and 

fertilizers. These systems use sensors to detect various 

parameters such as temperature, pH, and moisture, which 

play a crucial role in determining soil suitability. By 

providing recommendations on fertilization, irrigation, and 

pH, these systems pave the way for better and more 

sustainable agricultural practices. Crop recommendations 

based on seasonal variation, geographic location, and 

planting time are available through recommender systems. 

These systems utilize machine learning techniques to 

address misconceptions and misinformation, enabling the 

Internet of Things to be utilized as a tool in smart farming. 

Proper planting and fertilizer advice is provided for optimal 

production. 

3. Survey 

With the rapid advancement of computer vision and pattern 

recognition technologies, machine learning and deep 

learning have emerged as primary study topics for 

identifying agricultural pests [9]. For example, k-means 

cluster segmentation proposed a method for identifying 

pests, but manually labeling features is time-consuming for 

large datasets [10]. After extracting the morphological 

characteristics of the pest using the Prewitt operator and the 

Canny edge detection algorithm, in insects from cabbage 

the accuracy is close to 91% [11]. 

The researchers in [12] created an aphid detection approach 

based on a genetic algorithm to recognize and count aphids 

in difficult field situations efficiently. With specified 

backgrounds, using static matrices to extract lesion shape 

properties in combination with the ARTMAP neural 

network technique achieved recognition accuracy of 86%. 

Unlike manual detection, the soy flour monitoring system 

built based on digital image processing can automatically 

recognize and count flour [13]. Conventional machine-

learning algorithms for identification work best when the 

number of plant pests is modest; however, when there are 

many pest species and limited input circumstances, 

machine-learning approaches cannot extract crucial 

functional information. The durability of the model is 

reduced. 

Deep learning uses multi-stage neural networks to allow 

computers to extract meaningful properties from large 

amounts of images automatically. Enhanced Convolutional 

Neural Networks (CNNs) are extremely powerful deep 

learning networks [14]. CNN forgoes complex 

preprocessing and feature extraction in favor of a complete 

architecture that successfully merges global and local data 

and substantially simplifies the recognition process. As a 

result, CNN is often used in real-world agricultural 

situations to identify crop information, and automatic pest 

identification combined with CNN improves detection 

accuracy and reduces labor costs [15-19]. 

The tomato leaf pest classification system was developed 

with an accuracy of 90%. However, it can only be used for 

rudimentary ambient pest detection and cannot be 

integrated into actual applications [20]. The residual 

network structure was optimized by including a high-

resolution convolutional layer and the appropriate amount 

of channels, and the lesion recognition accuracy was 92%. 

Integrate pest condition data into CNNs to increase the 

accuracy of pest detection and identification in complicated 

contexts [21-24-]. 

A practical method for optimizing multiscale data from 

lesion images has been proposed. The existing single image 

size method cannot detect and recognize small target 

changes; therefore, the proposed approach incorporates 

image optimizations of different sizes in the identification 

model. The proposed CNN approach for fruit fly 

recognition achieves an accuracy of 96% [25-29]. 

A Generative Adversarial Network (GAN) was applied to 

augment the dataset and feed the augmented dataset to a 

pre-trained CNN model to achieve 92% accuracy in plant 

disease classification [30-31]. This method achieved an 

average accuracy of 93.84% for training and testing 10 pest 

species in a pest detection and diagnosis system designed 

based on transfer learning [32-34]. The author proposed to 

fine-tune the VGG-16 network to classify tea pests and 

found that the classification accuracy is as high as 97.75%. 

Recently, attention mechanisms have been widely used in 

machine translation, generative antagonism, etc., due to 

their properties that extract distinctive features from 

regions of interest [35-39]. The researchers used the call 

attention mechanism to scan the entire image for regions of 

interest quickly. However, plant pest detection is still in its 

early stages [40-44]. The proposed CNN method for 

malware identification combines an attention control 

mechanism with CNN. In experiments on 16 kinds of field 

pests, the average accuracy reached 75.46%, significantly 

improving the accuracy rate [45-47]. The self-service 

engine was designed and integrated into the CNN 

framework to achieve an F1 best score of 93.21% against 

11 plant pests and diseases and presented a DenseNet-

based approach and attention mechanism capable of 

detecting navel orange and a total of seven pests in the 

experiment set with 97% of accuracy [48-50]. 

4. Problem Definition 

The detection and identification of plant pests pose a 

significant challenge in the field of agriculture. Due to the 

evident variations between pest species, detecting and 

classifying them is much more complex than detecting 

ordinary objects. To prevent the invasion of pests, it is 

necessary to enhance crop productivity and reduce 
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economic losses through early pest diagnosis. Different 

machine learning algorithms have been introduced to detect 

various types of pests, but these techniques are not 

effective on all pest types. A deep learning method is 

proposed to identify and categorize pests into two groups: 

harmful insects and beneficial pests. Unfortunately, most 

farmers in India lack the education and skills to distinguish 

between beneficial and harmful pests, leading to the killing 

of both types of pests and damaging long-term yields. 

Therefore, distinguishing between beneficial and harmful 

pests is a crucial task. 

Previous studies have primarily focused on using various 

soil properties and data mining techniques to predict crop 

yield. However, the vital aspect of fertilizer 

recommendation has often been overlooked. Therefore, it is 

crucial to develop a comprehensive system that 

incorporates soil nutrients and crop yield data to accurately 

predict crop yield and provide fertilizer recommendations 

for different crops. Unfavorable agricultural practices have 

led to a decline in soil quality and nutrient availability. The 

excessive use of chemical fertilizers has exacerbated this 

issue. To address this, there have been attempts to use 

artificial intelligence models to forecast nutrient levels, but 

these models, such as deep learning and machine learning, 

have limitations in terms of training time and memory 

usage. As a result, there is still untapped potential to 

improve the accuracy, time efficiency, and memory 

consumption of classification models. To address the issues 

mentioned earlier, this paper employs an optimized neural 

network to solve the pest detection and recognition 

problem. Farmers are often unaware of the pests that 

destroy crops and use inappropriate pesticides, making 

crops harmful to human health. Farmers are also 

uninformed about soil fertility and spread manure without 

permission. Therefore, the excessive use of pesticides in 

plants should be controlled, and a certain amount of 

fertilizers should be added to the soil. To avoid these major 

agricultural difficulties, an intelligent system with pest 

identification and treatment suggestions, as well as soil 

testing and NPK fertilization advice, has been developed. 

These recommendations are provided in accordance with 

safety standards established by governing bodies. 

5. Contribution 

Compared to the suggested model, provide a model for 

identifying useful and harmful pests using a deep learning 

classifier. The suggested model minimizes the number of 

hidden layers, reducing time complexity, and increasing 

accuracy. 

This research provides an improved CNN and APSO-

LSTM model for identifying plant pests. To achieve unity 

of the parallelism mechanism, spatial attention, and 

channel attention are integrated. The ResNet network 

model deeply incorporates the Parallel Attention module. 

The Attention module sets multi-dimensional dependencies 

for the extracted cropped feature maps, which is 

lightweight and easy to add to the network. This method 

has been used to identify crop pests very accurately in 

complex agricultural environments. 

The proposed method consists of four steps: soil analysis, 

data preprocessing, data analysis, and recommendations. 

The soil sample is analyzed using an IoT-based device that 

uses a two-electrode NPK sensor to determine the ratio of 

NPK to soil nutrients and preprocess the sensor output as a 

valid dataset. 

6. Proposed 

The proposed model aims to enhance agricultural 

productivity by utilizing intelligent technology to suggest 

effective pesticides and fertilizers for plants and soil. The 

improved APSO-LSTM CNN can capture images of pests 

in a short time and recommend pesticides based on 

scientific criteria. This paper also uses a soil NPK sensor to 

make intelligent fertilizer recommendations based on soil 

fertility in just 50 seconds, which is a relatively short time 

compared to laboratory soil testing methods. The proposed 

model is expected to help improve the standard of living of 

farmers and boost economic growth. 

 

Fig. 1. Images of 5 pest [5] 
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Crop pests: 

Figure 1 shows images of the five pests that were part of 

this study.  

Aphids: They feed on plant sap and are a harmful pest that 

can cause viral plant diseases in cabbage, mustard greens, 

peas, peaches, tomatoes, soybeans, cotton, and potatoes. 

Bollworms: They cause severe crop damage and cause 

global economic losses. It is found in grain crops such as 

cotton, tomatoes, soybeans, corn, sorghum, and chickpeas. 

Green Stinkbug: They are in abundance and cause yield-

reducing damage to crops, found in soybeans, corn, and 

cotton. 

Leaf Folder: They can be seen in regions with a warm 

climate, typically areas where rice is the primary crop. This 

insect is notorious for causing significant losses in rice 

yields. 

Leaf Miner: It is a tiny pest that can damage plant health 

by feeding on leaves and causing rot. This species is 

commonly found in plants such as tomatoes, cucumbers, 

and watermelons, as illustrated in Figure 1. 

7. Material and Study 

A study was conducted in India to identify two 

classifications of pests - harmful and beneficial - across 

multiple crops. The study involved examining 10 different 

types of pests and 10 instruments. Among the harmful 

insects discovered were kudzu, aphids, black beans, 

ladybugs, bed bugs, and caterpillars. Figures 2 and 3 

present examples of both detrimental and advantageous 

changes. However, the images used for this research were 

sourced from various farms and the internet, which may not 

provide sufficient data for training deep neural networks. 

To overcome overfitting issues, it is recommended to 

expand the image dataset by applying techniques such as 

rotation, scaling, and database manipulation. 

 

 

 

Fig. 2. Beneficial Pest 

 



 

International Journal of Intelligent Systems and Applications in Engineering                                     IJISAE, 2024, 12(9s), 15–31 |  19 

 

Fig. 3. Harmful Pest 

The data was approached with care because the collected 

images were noisy and of poor quality. Each image has a 

size of 50 * 50 pixels. The collection contains 

approximately 9,500 images from these two categories. 

8. Soil Analysis 

Near-Infrared Spectroscopy (NIRS) methods are used for 

identifying soil nutrients. NIRS is a laboratory device that 

enables testing of additional samples in a shorter time 

period. It checks and recommends nutrients, such as 

nitrogen, phosphorus, potassium, sodium, and zinc, as 

needed. A mobile laboratory device on a chip has been 

developed for detecting soil nutrients in fields. The plate is 

employed in capillary electrophoresis where the charge 

variation adapts to the concentration of nutrients in the soil. 

The instrument successfully analyzed the ion 

concentrations of NO3, PO4, K, and NH4. 

9. Classification 

The gradient descent approach is utilized to update the 

weight and threshold parameters of the LSTM neural 

network model. As the number of hidden hierarchies 

increases, the convergence speed rate decreases, and the 

weight adjustment may decrease towards the local 

maximum, affecting the standardization of the LSTM 

model and the accuracy of the predictions. Therefore, this 

paper proposes an enhanced LSTM neural network model 

based on the Adaptive Particle Swarm Optimization 

algorithm (APSO-LSTM). 

9.1. Improved CNN model 

The researchers hypothesized about different attention 

strategies and tested them on conventional CNN learning 

tasks and significantly increase network performance using 

modest parameters and processing overhead. The channel 

attention mechanism and the spatial attention mechanism 

are the two fundamental components of the attention 

system. 

9.1.1. Spatial Attention Mechanism 

A spatial attention model highlights regions of interest 

from features and quantifies feature importance based on 

dependencies between different locations within a feature. 

To improve the representation of key region features, 

appropriate weight parameters need to be defined. The 

spatial attention model allows the network to better assess 

the role of individual resource locations in the categorical 

resource extraction process, further enhancing the 

network's modeling capabilities. We perform maximum 

summation and aggregation operations on the input feature 

map F, collect information on two different feature maps 

successively, and apply the convolution layer used to create 

the spatial conduction map. Then, a 7×7 achieves resource 

fusion. The convolution process and sigmoid activation 

function, both contained in the original input feature map, 

are used to produce the weight map. Finally, the spatial 

attention model has improved the efficiency of the target 

pixel area. 

9.1.2. Channel Attention Mechanism 

Channel attention predicts the correlation of resource maps 

between different channels, learns the relevance of each 

resource channel by automatically learning the 

backpropagation parameter, and provides distinct 

weighting factors for each channel. The cost function 

determines the weight of different channels, and the weight 

factor of each resource channel is calculated automatically. 

It optimizes effective resource channels and excludes 

invalid resource channels based on the weighting factor 

size for each resource channel. 
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9.1.3. Parallel Attention Mechanism Model 

Based on the pest detection, highlight the function of the 

spatial unit of the lesion area in terms of spatial location, 

while the function of the channel monitoring unit conveys 

more meaningful information within the channel. Multi-

attention must be combined to achieve improved attention. 

As a result, in this study, provide a parallel method, PCSA, 

that effectively integrates the spatial module with the 

channel module for pest identification as shown in Figure 

4. 

 

 

Fig. 4. Improved CNN structure of the parallel attention mechanism 

(1) Channel model basically redistributes the channel 

weights to the resource maps by 1D convolution, which 

increases the damage-related channel weights while 

decreasing the remaining channel weights. In the first 

perform a global mean clustering on the terrain map with 

input size C × H × W through the compression process 

(Fsq) to obtain 1 × 1 × C feature vectors that are inserted 

into two fully connected elevation layers.  

(2) Spatial surveillance performs mean and max clustering 

operations on the F-dimensional channel feature map, 

creating two single-channel feature maps 𝐹𝑎𝑛𝑔
𝑠  and 𝐹𝑚𝑎𝑥

𝑠 . 

The 𝐹𝑎𝑛𝑔
𝑠  and 𝐹𝑚𝑎𝑥

𝑠  resource maps are then merged to 

generate the M weight map, and the F resource map is 

weighted by the M weight map to create the P resource 

map. Finally, the pest related locations are given an 

additional weight in the map resource P.  

(3) The feature map Q using the activation function of 

ReLu and it is a dot product of the feature map P. The G-

feature map integrates the weight distribution in the 

channel dimension. 

9.1.4. Activation Function: 

ResNet's blocking architecture can effectively minimize 

network characteristics and computational complexity. The 

block structure consists of two convolutional layers 1 × 1 

and a convolutional layer 3 × 3 . A 1 × 1 convolution 

reduces the input feature vector from 256 dimensions to 64 

dimensions, the features are learned using a 3 × 3 

convolution layer, and the feature vector is restored to 256 

dimensions using a 1 × 1 convolution layer. Finally, the 

ReLU activation function adds mapping and ID output. The 

improved ResNet network architecture is shown in Figure 

5. 

 

Fig. 5. The residual block (left) and the bottleneck structure 

(right) 

9.2. Adaptive Particle Swarm Optimization 

(APSO) Algorithm: 

Particle swarm optimization (PSO) is an empirical 

optimization algorithm [8]. The particles are iterated in a 

logical space to develop viable solutions, replicating the 

biological process of harvesting algae. Each iteration 

represents a possible solution to an optimization difficulty. 
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In most optimization scenarios, the PSO algorithm does not 

require the use of previous optimal positions to update the 

particle states. This approach increases training costs, 

slows down convergence, and enables particle diversity 

through the use of random number techniques. The APSO 

algorithm, on the other hand, does not require any 

modification of the initial velocity of the particles and can 

be replaced with a random number technique. This 

simplifies the process, accelerates convergence, and 

facilitates the discovery of the global optimum. 

𝑉𝑖,𝑗
𝑡+1 =  𝑤𝑉𝑖,𝑗

𝑡 + 𝛼𝑟 + 𝛽𝑟2,𝑖,𝑗
𝑡 (𝑦𝑗

�̂� − 𝑥𝑖,𝑗
𝑡 )          (1) 

𝑥𝑖,𝑗
𝑡+1 = (1 − 𝛽)𝑥𝑖,𝑗

𝑡 + 𝛽𝑦𝑗
�̂� + 𝛼𝑟 )                  (2) 

Where (1), r is a random number in the range [0,1]. Use 

random number techniques to replace 𝛼𝑟1,𝑖,𝑗
𝑡 (𝑦𝑗

�̂� − 𝑥𝑖,𝑗
𝑡 ) in 

the equation (1). The Eq. (2), the parameter r makes the 

particles more mobile. In General α∈[0.1,0.5], β∈[0.2,0.7].  

9.3. Improved LSTM 

To preserve the reliability of long-range time series 

information and generate high-precision predictions, only 

closed modules are used in the LSTM neural network to 

train and save the sequence data. Figure 1 illustrates the 

structure of LSTM neurons. 

 

Fig. 6. LSTM neuron structure 

As illustrated in Figure 6, an LSTM neuron has an input 

gate, an output gate, and a forget gate. The inbound 

gateway primarily handles incoming data. The forgetting 

gate determines whether past information from current 

neurons should be retained. The output port is the neuron's 

output. Given an input sequence (𝑥1, 𝑥2, . . . 𝑥𝑡),  calculate 

the formula for each LSTM neuron parameter at time t: 

𝑖𝑡 = 𝑆(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)                             (3) 

𝑓𝑡 = 𝑆(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                             (4) 

𝑜𝑡 = 𝑆(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)                             (5) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ tanh(𝑊𝑐 ∗ [ℎ𝑡−1, 𝑥𝑡])          (6) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                               (7) 

At a given instance, 𝑥𝑡  serves as the input for an LSTM 

neuron, while ℎ𝑡−1 represents the output state of the hidden 

hierarchy at the previous time step, 𝑡 − 1. The gates, 𝑖𝑡 , 𝑓𝑡 

and  𝑜𝑡 receive input from the input gate, forget gate, and 

output gate respectively, at time𝑡. Weight matrices 𝑊𝑖 , 𝑊𝑓 

and 𝑊𝑜  are responsible for the input, forget, and output 

gates of the neuron at time 𝑡, while offset vectors 𝑏𝑖 , 𝑏𝑓  and 

𝑏𝑜 correspond to each gate. Additionally, there is a weight, 

𝑊𝑐, that connects the input and unit cell. The output of the 

hidden layer at time t is denoted by  ℎ𝑡 , and a sigmoid 

function represented by 𝑆 is used in the process. 

9.4. APSO-LSTM Model 

The APSO-LSTM model suggested in this article uses real 

number encoding. The image illustrates the architecture of 

an LSTM neural network with three hidden layers as 

shown in Figure 7. 

 

Fig. 7. The structure of LSTM neural network with 2 

hidden layers 

Fitness Function: 

The AGA-LSTM model chromosomes correspond to 

individuals in the population and constitute weight 

groupings among the LSTM model nodes. The particle 

fitness function in the APSO-LSTM model tries to evaluate 

these particles in a population. The RMSE between the 

LSTM model output value and the actual value was 

modeled as a fit function during the model validation step 

to assess particle importance. The lower the RMSE, the 

more rational is the change in particle weight of the LSTM 

model and the more powerful the model. 

Working: 

In order to determine the initial values for the weights 

using the APSO algorithm, and create weights between 

each node for the particular dimensional attributes of the 

particles during the validation step of the APSO-LSTM 

model, i.e. the model right after the initial training of the 

LSTM network, as a neuron represents the resulting set of 

candidate weights from the entire network as shown in 

Figure 4.  
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Procedure: 

Here is the corrected version of the text: 

(1) Configure the LSTM model and APSO algorithm 

settings such as the LSTM network structure, node count, 

APSO cluster count, iteration count, and so on. 

(2) Use the test data set to train the LSTM neural network 

and obtain the fundamental starting weights. 

(3) Calculate the APSO population of particles. 

(4) Determine the best universal particle. Compare the 

trapping value of the smallest particle to that of the best 

particle and select it as the next global best particle. 

(5) Update all particle velocities and positions according to 

equations (3) and (4). 

(6) Carry out n+1 iterations and determine whether the 

current value of n exceeds the maximum number of 

iterations. 

(7) The LSTM network emits globally ideal particles 

corresponding to the ideal weight distribution. 

10. Experimental Results 

This paper explores the use of ICNN-APSO-LSTM, Faster-

RCNN, and Mask-RCNN neural networks for time series 

prediction modeling. ICNN-APSO-LSTM, in particular, is 

an LSTM model that optimizes network weights using the 

standard APSO algorithm. The deep learning framework 

used is TensorFlow 1.10.0, and the programming language 

used is Python 3, all running on Ubuntu 16.4. The 

simulation parameters include a learning rate of 0.00145, a 

momentum of 0.8, a weight loss of 0.0001, and a batch size 

of 1 for Improved CNN-APSO-LSTM, Faster-RCNN, and 

Mask-RCNN. 

10.1. Performance Metrics  

The primary metric for evaluating pest detection 

performance is accuracy, although recall is also crucial. To 

comprehensively analyze model performance, four criteria 

are used: accuracy, precision, recovery, and recall. These 

metrics are calculated based on True Positives (TP), False 

Positives (FP), True Negatives (TN), and False Negatives 

(FN). Accuracy is determined by the proportion of 

correctly detected pests to total predictions (as shown in 

equation (8)), Precision is the proportion of TP among 

detected positives (as shown in equation (9)), and recall is 

the fraction of TP correctly predicted (as shown in equation 

(10)). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (8) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                 (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                      (10) 

 

(a) (b)(c) 

Fig. 8. Simulation results of insect pest detection  

(a) Faster-RCNN, (b) Mask-RCNN and (c) ICNN-APSO-

LSTM model 
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Fig.  9. Simulation results of proposed insect pest detection 

of ICNN-APSO-LSTM 

The simulation results of the proposed insect pest detection 

of ICNN-APSO-LSTM are shown in Figures 8 and 9. In 

Table 1, the 3 different algorithms have a good ability to 

detect insect pests of different sizes with an accuracy of 

more than 98%, among which the accuracy of the proposed 

ICNN-APSO-LSTM is the highest 99.53%. 

 

Fig. 10. Confusion matrices for rice leaf pest detection  

In Figure 10, the detection results of the confused matrix 

are shown, and the detection rate of all four rice leaf 

diseases exceeds 99%. Compared to plant diseases and 

insect pests, rice foliar diseases' diagnostic accuracy 

increased by 1.27%. The primary reason for this is that 

only four forms of foliar diseases exist, while the remaining 

six are lesser-known illnesses and insect pests. The 

suggested method has a broader applicability and superior 

performance than depth-based methods used with publicly 

available datasets. 

Table 1. Performances of Proposed ICNN-APSO-LSTM, 

Faster-RCNN and Mask-RCNN pest insect detection 

Models Accuracy 

(%) 

Precision 

(%) 

Recall (%) 

Faster-

RCNN 

98.14 99.33 99.36 

Mask-

RCNN 

98.42 99.63 99.82 

Proposed  

ICNN-

APSO-

LSTM 

99.53 99.53 99.64 

 

10.2. Pesticide Recommendation System 

Soil Analysis 

The feeder detection system comprises an NPK monitor 

and an Arduino UNO microcontroller. The Arduino UNO 

is responsible for retrieving data from the NPK monitoring 

devices. The NPK instrument operates through a soil 

conductivity measurement procedure that employs two 

electrodes of the same material, which are submerged 

several centimeters into the soil to determine the ion 

current in the soil. One electrode receives an alternating 

voltage, while the other electrode's voltage gain is adjusted 

by the Arduino, which amplifies the flow of ions to the 

ground. The ion flow is proportional to the NPK ratio of 

the soil, allowing for the collection of NPK rates from the 

NPK monitors and transmission to the data preparation 

system. 

10.3. Data Preparation 

Java programming was used to compute additional soil 

components, conduct data preprocessing, and transfer the 

information to the cloud for streamlined data management. 

The data is preserved in comma-separated value (.csv) 

format to enable future analysis. The data is garnered 

through soil analysis of soil samples from diverse 

agricultural regions, and is stored in both cloud and local 

databases for subsequent analysis and synthesis. Farmers 

can enter crop details, as well as other criteria like soil 

category, location, and current season, into this crop cycle 

for further scrutiny and study. 

Experiment Analysis: 

The fertilizer contents FN, FP2O5, and FK2O, measured in 

kg/HA, are necessary to achieve the target yield T. 

Meanwhile, the soil nutrient contents SN, SP, and SN, also 
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measured in kg/HA, are considered when taking a soil 

sample with an 8:9:10 ratios. 

The concentration level in parts per million (ppm) will be: 

For Nitrogen: Ppm N = 13.1925 * 8 = 106  

For Phosphorus: Ppm P = 5.8047 * 9 = 52  

For Potassium: Ppm K = 10.949 * 10 = 109  

The value of nutrients in kilograms per hectare (kg/HA) 

will be: 

N(kg/HA) = ppm N * 2.5 = 265 

P(kg/HA) = ppm P * 2.5 = 130 

K(kg/HA) = ppm K * 2.5 = 273 

 

Crop: rice  

Season: rabi  

Soil: Alluvial  

State: Tamil Nadu  

Target yield= 70q/HA  

FN = 2.3T – 0.32SN = 2.3 * 70 – 0.32 * 265 = 161 – 95.2 = 

65.8  

FP = 1.91T – 1.9SP = 1.91 * 70 – 1.9 * 130 = 247 – 275 = 

0 (as it is a negative value) 

FK = 2.27T – 0.27SK = 2.27 * 70 – 0.27 * 273 = 158.9 – 

75.6 = 83.3 

10.4.     Pesticide Recommendation System 

To achieve maximum yield in farming, two key factors 

must be considered: protecting crops from pests and 

providing the soil with the proper nutrients. Our smart 

system has implemented two functions to address these 

concerns. Firstly, we utilize machine vision and 

convolutional neural networks to identify pests and 

recommend appropriate pesticides. Furthermore, we utilize 

a soil NPK sensor to evaluate soil nutrient levels and 

suggest appropriate fertilizers accordingly. Our innovative 

system consists of a Raspberry Pi 4, Arduino nano, Soil 

NPK Sensor, RS485 to TTL Converter, DC-DC Buck 

Converter, Pi Camera, Cooling Fan, and Batteries. Figure 

11 and 12 show an experimental setup of the model's pest 

identification operation. 

 

Fig. 11. Experimental Setup of Pest Identification 
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Fig. 12. Simulation Snapshot of Pest Detection 

  

 

Fig. 13. Simulation Results of Different Pest Identification 

To create the pest dataset, in addition to importing Google 

images, real plant pests were also imported as input for the 

machine learning module. The operation scheme of the 

NPK soil nutrient detection and fertilization proposal can 

be seen in the figure. It consists of a total of 5 parts, as 

shown in Figure 13. The first part is the front and back of 

the camera, the second part is the upper part of the body 

collar, the third part is the LCD touch screen, the fourth 

part is the key switch, and the fifth part is equipped with a 

sensor. 

To operate the pest detection system, the system must be 

positioned horizontally with the camera facing the insect 

and the operator looking at the LCD touch screen. It opens 

a browser, takes a picture of the pest, and uses the 

recommended exterminator. The model was only valid for 

five crops, such as cotton, rice, tomato, banana, pepper, 

eggplant, sugarcane, cabbage, and potato. Run the files 

required to run the NPK soil testing system and submerge 

the NPK soil testing probe into the soil sample. After 50 

seconds, a page will open showing the NPK value and the 

recommended fertilizer dose. 
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Fig. 14. Experimental Setup of Soil NPK Value Data Collection 

Data on fertilizer brands and NPK rates were collected in a 

survey used to make fertilizer recommendations. The 

collected data set is then analyzed using appropriate 

clustering algorithms and parameter settings, depending on 

the desired results. This is not an automatic process, but 

rather requires trial-and-error for knowledge discovery or 

interactive multi-objective optimization. One commonly 

used algorithm is K-means, which divides the data based 

on distance to clustering centers. The algorithm selects 

centers randomly, calculates distances to each center, and 

assigns data to the closest cluster. After each iteration, the 

algorithm calculates the average parameters and checks if 

any data needs to be transferred to another cluster. The 

algorithm terminates if no data is transferred. 

Representation involves distinguishing subpopulations 

based on a training dataset with known class memberships. 

An effective method involves utilizing appropriate 

fertilizers to address the specific soil needs of chosen crops 

and crystal trees, as determined through soil analysis. By 

feeding fertilizer nutrient requirements into a decision tree, 

the optimal fertilizer is determined. Through report 

calculations, the necessary amount of fertilizer to be 

applied throughout the crop cycle of the selected crop is 

recommended. A computation is then performed to 

determine the precise amount of fertilizer needed for the 

soil based on the selection made. 

 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 

=  (𝑘𝑔/ℎ𝑎 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 

/ % 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑖𝑛 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟)  ∗  100 

 

The amount of Fertilizer, to use for the farmer are 

intimidated by the farmer's understanding GUI. The NPK 

ratios obtained in the soil analysis step are subjected to a 

data preprocessing step to calculate individual ppm of 

NPK.  

 

 

 

 

Cro

p 

State Sea

son 

Vari

ety 

Distric

t 

Soil N(kg

/HA) 

P(kg/

HA) 

K(kg

/HA) 

Tar
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Coeff

icient 

Coeff

icient 

Coeff

icient 

Coeffi

cient 

Coeffi

cient 

Coeffi

cientt 

of SK 

Rice Andr

a pra 

kha

rif 

Mas

huri 

guntur Black 

soil(Verti

osols) 

330 105 372 55 3.79 0.5 3.19 3.17 1.6 0.19 

Rice Andr

a pra 

kha

rif 

Poth

ana 

Karim 

nag 

Inceptisol

s 

(Sandy 

loam) 

364 90 370 60 3.78 0.44 1.96 2.13 2.96 0.36 

Rice Andr

a pra 

kha

rif 

MT

U-

2067 

Marute

ru 

Alluvial 342 88 428 60 2.3 0.32 1.91 1.9 2.27 0.27 

Rice Andr

a pra 

kha

rif 

MT

U-

5182 

Nandya

l 

Black Soil 302 41 439 70 3.35 0.32  2.52 4.53 1.24 0.12 
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Rice Andr

a pra 

kha

rif 

NLR

-

9672 

Nellore Alluvial 331 93 375 50 3.47 0.37 2.53 2.12 1.89 0.2 

Rice Andr

a pra 

kha

rif 

Tell

aha

msa 

Rajend

rar 

Light 

Black Soil 

(Sandy 

clay) 

346 97 399 55 4.2 0.55 2.7 2.67 2.22 0.21 

Rice Andr

a pra 

kha

rif 

Poth

ana 

Waran

gal 

Black 

Soil(vertis

ols) 

330 39 449 55 4.75 0.75 2.75 4.2 1.99 0.15 

Rice Andr

a pra 

Rab

i 

Tell

aha

msa 

Nandya

l 

Black Soil 419 71 550 55 2.83 0.32 2.29 2.98 1.34 0.17 

Fig. 15. Trimming the dataset 

Once all necessary calculations have been made, the next 

step is to analyze the data. Farmers must specify which 

plants they plan to harvest during the current season. Soil 

samples are combined using historical data, as illustrated in 

Figure 15. Crop data sets are then used to determine the 

amount of nutrients required for the current soil conditions. 

This quantity is measured in kg/ha. By referencing the 

fertilizer dataset, appropriate fertilizers are chosen for the 

soil samples. The final step is to calculate the exact amount 

of selected fertilizer required to nourish the soil and 

produce maximum yield during the recommended stage. 

Fertilizer N P K Weight 

Ammoniu 20.6 0 0 100kg 

Ammoniu 25 0 0 100kg 

Calcium A 13 0 0 100kg 

Calcium N 15.5 0 0 100kg 

Urea  46 0 0 100kg 

SSP 14% 0 14 0 100kg 

SSP 16% 0 16 0 100kg 

Rock phos 0 18 0 100kg 

Potassium 0 0 60 100kg 

Fig.16. Fertilizer dataset 

The number is the result of the project, which shows that 

the necessary fertilizer is potassium chloride, and the 

appropriate dose is 100 kg as shown in Figure 16. 

The soil parameter NPK is shown in a table with each 

value and fertilization recommendations for each nutrient. 

Also, check the recommended capacity for each crop by 

clicking the green button at the top named Recommended, 

as shown in Figure 17 (a) and (b). The simulation result of 

fertilizer recommendation of different crops as shown in 

Figure 17 (c).  
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(c) 

Fig. 17. Fertilizer recommendation (a) soil test sample 1, (b) soil test sample 2 (c) Simulation results of different crops 

11. Discussion 

The suggested method employs a Multi-layer convolutional 

neural network, trained on 500 images. When trained on 5 

pest types, the model achieves a maximum accuracy of 

91%, with 100 epochs, 32 batch sizes, and a learning rate 

of 0.001. Similarly, for all three injury classes, the 

computation time is under 5 minutes with 99% accuracy. 
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The detected pests are used to make pesticide 

recommendations. Using the ICNN-APSO-LSTM 

technique, the network attains 99.53% accuracy per period 

and 29.51% test loss per period. It outperforms other 

techniques in detecting five pest species and providing 

corresponding pesticide recommendations, with an 

accuracy of 99%. NPK soil testing takes approximately 50 

seconds, which is faster and more cost-effective than 

conventional lab approaches that take around 24 hours per 

sample. The ICNN-APSO-LSTM method is compared to 

Faster-RCNN and Mask-RCNN, and it displays the highest 

accuracy. 

12. Conclusion and Future Direction of 

Research 

This paper presents a novel deep learning-based algorithm 

for recognizing plant pests. A manually collected dataset of 

over 5,000 images was used to train the model to classify 

ten different pests. The proposed system integrates 

pesticide and fertilizer recommendations to help maximize 

crop yields. By enhancing the CNN with an APSO-LSTM 

attention mechanism, it achieves superior performance 

compared to other models such as Faster-RCNN and Mask-

RCNN. The attention mechanism effectively suppresses 

complex backgrounds and recovers lesion details at 

multiple scales, enabling rapid and accurate detection of 

varied lesions. The proposed method provides pesticide 

recommendations in less than 10 seconds and fertilizer 

recommendations in 50 seconds. Future work may include 

incorporating additional sensors to collect data such as pH, 

temperature, and humidity for outdoor and indoor growing. 

The proposed algorithm is implemented in an agricultural 

inspection robot to complement cropping data in real-world 

farming environments and improve robotic models' 

performance. 

In the future, it would be possible to expand upon this work 

by utilizing a vast data set. By incorporating additional 

parameters, such as calcium, magnesium, sulfur, lime, and 

carbon, which are related to micro and macro nutrients, the 

accuracy score could be improved. Furthermore, one could 

consider adding various distinguishing features, like leaf 

color and thickness, to achieve more precise outcomes. It 

may also be possible to broaden the scope of this work by 

including the following functionalities: developing a 

mobile application that enables farmers to upload images of 

their farms; utilizing image processing technology to 

identify crop diseases and provide pesticide 

recommendations based on those images; and 

implementing a smart irrigation system to enhance crop 

yields.  
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