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Abstract: The primary motivation behind this article lies in addressing the growing demand for image processing applications within 

critical environments where the presence of noise can significantly degrade the quality of the outputs. Existing methods primarily 

consider the noisy version of the image for denoising, neglecting crucial properties such as the dimension of image pixels. This oversight 

can lead to inaccurate estimates of image values. In the case of Patch-based Local Principal Component Analysis (PL-PCA) filters, the 

choice of similarity weights and the reduction of sample sizes are pivotal factors. Increasing the sample size can complicate image 

handling. Regrettably, existing filtering techniques focus solely on noise removal without taking into account the size of input samples. 

This article aims to resolve these challenges by introducing the H-PL-PCA (Hybrid Patch-based Principal Component Analysis) 

approach for efficient image noise filtering. The proposed method addresses issues related to dimensionality reduction and the selection 

of neighboring cells, ensuring that the end results are obtained through the comprehensive analysis of various parameters for effective 

denoising. 

Keywords: Cellular Automata; Image denoising; Dimensionality Reduction; Principal Component Analysis; Speckle Suppression Index 

SSI; Speckle Suppression and Mean Preservation Index SMPI 

1. Introduction 

The foremost source of noise in digital images arises during the 
image acquisition or digitization process. This noise is often 
associated with the inherent limitations of image sensors and can 
be influenced by various factors. Environmental conditions 
during image capture, such as temperature and ambient light 
levels, significantly impact the quality of images. Network issues 
or problems with the transmission medium, such as packet loss or 
corruption, can also lead to data loss or errors in the transmitted 
images, contributing to noise in the final received images [1]. 
Color quantization methods aim to reduce the number of colors in 
an image, which is especially useful for displaying images on 
devices with limited color support. Popular algorithms include 
the nearest-color algorithm, median-cut algorithm, and octree-
based approaches. This technique takes advantage of the human 
eye's ability to perceive differences in brightness over a large area 
while being less sensitive to rapid, high-frequency variations, 
allowing for data reduction. Various denoising techniques, such 
as Cellular Automata (CA) filtering, have been developed to 

address speckle noise, and their effectiveness can be evaluated 
based on parameters like noise density as discussed [2]. 
To distinguish between noise and the actual image content, a 
thresholding technique is employed. This technique involves 
using a mask with a 4x4 grid to identify patterns for detecting salt 
and pepper noise [3-5]. The mask is moved across the image in a 
systematic manner, and rules guide the identification of noise 
within the cells of the mask. While traditional mean filtering 
techniques can effectively remove salt and pepper noise from 
images, they often introduce a blurring effect. This is because, in 
mean filtering, each pixel is replaced with a fixed mean that is 
calculated based on both affected and unaffected pixels. This 
blurring effect can hamper the achievement of a higher Peak 
Signal-to-Noise Ratio (PSNR) and better image quality [6-8]. 
Therefore, there is a need for more advanced denoising 
techniques to address this challenge and improve the quality of 
denoised images affected by salt and pepper noise [9, 10]. 

2. Related Works 

The introduced denoising algorithm makes use of cellular 
automata with a Moore neighborhood in its local transition 
function. This CA-based method is designed for filtering images 
that are affected by salt and pepper noise. Through a comparison 
with the traditional median filter using the Hamming distance 
metric, the algorithm has demonstrated its superiority in terms of 
denoising effectiveness, especially when the intensity of salt and 
pepper noise exceeds 40%. This demonstrates the effectiveness of 
CA-based approaches in handling this type of noise. To address 
salt and pepper noise in images, a thresholding method is applied 
to distinguish noise from the actual image content. A 4x4 mask 
with specific patterns is employed for detecting salt and pepper 
noise. Specific criteria guide the identification of noise using this 
mask, with a focus on border cells that should not be considered 
noise. This process is essential for accurately identifying and 
removing the noise while preserving the image's essential 
features and details [11,12]. Cellular Automata's local rule-based 
processing and adaptability through rule design make them 
effective in image processing tasks such as denoising and edge 
detection [16]. 
The proposed mean filtering method offers an enhancement to the 
traditional approach by introducing two novel features. First, it 
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only considers unaffected pixels when calculating the arithmetic 
mean, effectively ignoring the noise-affected pixels. This 
selective consideration of clean pixels during mean computation 
helps preserve the original image details and reduces the impact 
of salt and pepper noise. Second, the introduction of a tolerance 
value is a significant advancement. This tolerance value allows 
for more controlled replacement of noisy pixels, which 
contributes to improved denoising results. By specifying a 
threshold, the method can decide whether to replace a pixel with 
the mean value, depending on the extent of its deviation from the 
mean. This adaptive approach to pixel replacement plays a vital 
role in enhancing the denoising effectiveness [13]. While the 
proposed method with tolerance-based modifications addresses 
this problem to some extent, it's essential to strike a balance 
between denoising and image quality, as excessively aggressive 
noise removal can lead to overly smoothed or blurred images. 
Achieving a high Peak Signal to Noise Ratio (PSNR) is one 
aspect of evaluating denoising methods, but it should be 
complemented by visual inspection to ensure that important 
image features are preserved [14]. 

3. Proposed Framework 

3.1 Cellular Automata for Image De-noising 

One of the key strengths of cellular automata in image processing 
is their local rule-based processing. Each cell's behavior is 
determined by its immediate neighborhood, consisting of 
neighboring cells' states. This localized approach is advantageous 
in denoising tasks as it allows cells to consider their local context 
when deciding on state changes.  

 

Fig. 1. Proposed Framework 

The presented algorithm delineates a denoising procedure 
employing Cellular Automata (CA) to enhance the quality of 
noisy images by examining each pixel's local surroundings. The 
process is structured as follows: 
Step 1: Image Input: Commence by reading the input image (x, 
y).  

Step 2: Color Channel Handling: If the input image is in RGB 
format, convert it to grayscale. Alternatively, you can opt to 
process each color channel independently.  
Step 3: Local Neighborhood: Define a 2-D window of size 3 × 3 
to traverse the image I (x, y). 
Step 4: Central Pixel Identification: Let Ci,j denote the central 
pixel within a 2D Moore's neighborhood, an integral element of 
the Cellular Automata (CA). 
Step 5: Neighbor Pixel Vector: Create a vector B, sized 8 × 1, to 
store pixel values extracted from the window while excluding the 
central pixel. Arrange these values in ascending order. 
Step 6: Min-Max Pixel Values: Identify the minimum pixel 
value, Bmin, and the maximum pixel value, Bmax, from vector 
B. 
Step 7: Uncorrupted Pixels: If Ci,j is an uncorrupted pixel (0 < 
Ci,j < 255), it remains unchanged. 
Step 8: Handling Noisy Pixels: When Ci,j is a noisy pixel (Ci,j = 
0 or Ci,j = 255), various actions are taken based on the following 
cases: 
Case 1: If Bmin = 0 and Bmax = 255, set Ci,j to the mean of the 
values in vector B, excluding 0 and 255. 
Case 2: If all elements in vector B are 0 or 255, Ci and j remain 
unchanged. 
Case 3: If Bmin > 0 and Bmax < 255, set Ci,j to the mean of the 
values in vector B. 
Step 9: Iterative Denoising: Reiterate steps 6 to 8 for each pixel 
in the input image I(x, y) for a specified number of iterations. The 
number of iterations is calculated using "n/10 + 1," where "n" 
represents the level of noise in the image. The aim of the 
iterations is to progressively reduce noise in the image. 
This algorithm provides a fundamental illustration of how CA 
can be employed for image denoising. It relies on evaluating the 
local pixel values to decide whether a pixel requires correction. 
The approach offers distinct rules for addressing noisy pixels, 
contingent on the values within their vicinity. It also adapts the 
number of iterations to the prevailing noise level. In practical 
applications, fine-tuning the specific values used for noise 
thresholds and the number of iterations may be necessary to 
optimize denoising outcomes for different images and noise 
levels. 
Within step 8 of the algorithm, three distinct cases govern the 
handling of noisy central pixels in a 2D cellular automaton: 
1. When the central pixel falls within a window encompassing 
values from 0 to 255, its value is updated to the mean of the 
surrounding values, excluding 0 and 255. 
2. If all neighboring values are either 0 or 255, the central pixel 
remains unaltered. 
3. In situations where the surrounding values fall within the 
range (0, 255), the central pixel is adjusted to the mean of the 
neighboring values. 
The algorithm's innovation lies in the exclusion of minimum and 
maximum values from the mean calculation. This approach 
results in smoother preservation of edges and mitigates abrupt 
changes in the denoised image, particularly for noise densities 
spanning from 10% to 90%. 
The computational complexity analysis offers an estimation of 
the computational resources necessary for the denoising process. 
It emphasizes that the algorithm's efficiency can improve as the 
number of iterations advances, a common attribute of iterative 
denoising techniques. The exact computational performance will 
depend on specific image characteristics, the noise level, and 
other influencing factors. However, this upper-bound complexity 
estimate serves as a valuable guideline for assessing the 
algorithm's resource demand. 

3.2 Hazard in Cellular Automata 

One crucial aspect in designing an effective CA filter is the 
selection of proximity weights. These weights determine how 
neighboring cells or regions influence each other in the denoising 
process. The choice of proximity weights plays a significant role 
in the algorithm's performance. The proximity weights should be 
tailored to the specific image being processed. Different images 
may have different noise characteristics and structures, so the 
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weights should be optimized to achieve the best denoising results 
for that particular image. This customization can enhance the 
algorithm's ability to preserve image features while reducing 
noise [17]. 
Overall, addressing complex noise patterns, such as speckle 
noise, requires careful algorithm design and customization. 
Advanced CA algorithms and the fine-tuning of proximity 
weights are essential steps in developing effective noise reduction 
techniques. Additionally, understanding the unique characteristics 
of the noise in a specific image is crucial for optimizing the 
denoising process and achieving the best results. 

3.3 Patch based Local Principal Component Analysis De-
Noising Technique 

Patch-based methods involve assessing the similarity between 
two regions or patches in the image. This similarity information 
informs the strategy for sharing patches, which aids in the 
denoising process. 
In traditional batch PCA, the principal components are computed 
based on the eigenvectors of the covariance matrix. The optimal 
dimensionality "m" (number of principal components to retain) is 
determined once, typically when the entire dataset is available for 
analysis. However, this fixed dimensionality may not be suitable 
for data streams where the data distribution can change over time. 
In data streams, the optimal dimensionality "m" may 
continuously change due to variations in the data distribution. 
Existing approaches that allow for real-time adjustment of "m" 
often have limitations. They might permit increasing "m" by one 
for each incoming data point, which is insufficient to address 
sudden and significant changes in the data, potentially leading to 
information loss and suboptimal representation of the evolving 
data stream. The algorithm is designed to adaptively adjust the 
dimensionality "m" with an arbitrary step size while efficiently 
handling data streams. It incorporates elements from neural 
network-based PCA, which emphasizes efficient dimensionality 
reduction [18]. The algorithm acknowledges the ordering of 
eigenvalues in descending order and processes principal 
components sequentially, recognizing that variance is not evenly 
distributed across all components. By prioritizing the eigenvalues 
with the highest variability during training, it efficiently focuses 
on the most significant components first. The algorithm 
commences with "m = 2" for the initial processing cycle, 
indicating that it initially processes only the two most significant 
principal components. This approach efficiently reduces the 

system size and efficiently handles the most important 
components. This adaptability allows the algorithm to be 
responsive to changes in data distribution, making it a valuable 
tool for real-time applications where data distributions are 
dynamic. It addresses the challenge of dimensionality reduction 
in a flexible and efficient manner, making it suitable for a range 
of applications requiring adaptive data analysis. 
By training a linear regression model with the logarithmic 
eigenvalues λi = log(λi), one can make predictions for additional 
eigenvalues. This approach leverages the observed linear 
behavior of the eigenvalues to estimate the behavior of the entire 
dataset, making it a useful tool for extrapolating information 
about the dataset beyond the observed values. The logarithmic 
eigenvalues in the set V are used to train a linear regression 
model. This model calculates the slope (α) and intercept (β) of a 
least-squares regression line in the logarithmic scale. This 
regression line is represented as λi = αi + β, where i ranges from 
m + 1 to n, predicting the missing eigenvalues based on the 
observed ones. The regression line is extrapolated to estimate the 
missing n - m eigenvalues in the logarithmic scale, resulting in a 
set of estimated eigenvalues V* = (λm+1, λm+2, ..., λ*n). These 
estimated logarithmic eigenvalues are then combined with the 
initial set V, which contains the first m computed eigenvalues. 
The combined set, denoted as U, includes both the initial 
eigenvalues and the estimated missing eigenvalues. This 
procedure serves the purpose of estimating the remaining 
eigenvalues, which can be valuable in scenarios like 
dimensionality reduction or handling dynamic data distributions. 
By employing linear regression on the logarithmic eigenvalues, it 
efficiently predicts the missing eigenvalues, helping maintain a 
reduced dimensionality representation while preserving essential 
information from the original dataset. 

λi = αi + β with i {m + 1, … , n}                                   (1) 
where λi represents the eigenvalues. The slope α and the intercept 
β of the regression line in the logarithmic scale are determined. 
The star symbol denotes values estimated by the linear regression 
line. 
The estimated n − m log-eigen values,  

V* = (λm+1, λm+2, … , λ*n)                                        (2) 
generated as shown in Figure 1c, are combined with the initial set 
V = {λ1, λ2, … , λm} containing the first m computed 
eigenvalues: 

U = V ∪ {λm+1, λm+2, … , λ*}                                      (3) 

 

Fig. 2. Dimensionality reduction in PCA method 
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The introduced stopping criteria can be adapted using the 
proposed approach, which relies on the initially trained "m" 
eigenvalues (with an initial m = 2) and the regression parameters 
α and β derived from the log-eigenvalues. This adaptation allows 
for a more flexible and data-driven approach to determining the 
stopping criteria, enhancing the robustness of the dimensionality 
reduction method. 

λtotal = ∑ λi𝑛
𝑖=1 = ∑ λi𝑚

𝑖=1 +σ2                    (4) 

The dimensionality reduction process involves utilizing the "m" 
trained eigenvalues (λi) and the residual variance (σ^2), both of 
which are continuously updated in each PCA update step. This 
dynamic updating of eigenvalues and residual variance helps in 
maintaining an accurate representation of data distribution for 
effective dimensionality reduction. 

m=|{b € U | b>1}|                                         (5) 
In these approaches, dimensionality is determined based on the 
extended set U rather than the fully trained set V. The condition 
for retaining eigenvalues greater than one or greater than the 
average simplifies the selection of relevant eigenvalues for 
further processing, effectively reducing dimensionality. 
 

m=|{ b € U | b>
1

𝑛
 λtotal}|           (6) 

This approach uses a dynamic threshold for dimensionality 
reduction. Instead of a static threshold, as seen in the offline 
version (equation 3), it adjusts the average threshold with each 
PCA step. This moving threshold is calculated based on the 
average of the eigenvalues. The dynamic nature of this threshold 
accounts for changes in data distribution, making it more 
adaptable to evolving datasets. While the dynamic threshold 
provides greater adaptability, it introduces additional complexity 
compared to the static threshold (equation 3). The use of a 
moving average requires continuous updates with each PCA step, 
which can increase computational overhead. In contrast, the static 
threshold of equation 8 remains fixed throughout the process. 
Therefore, this dynamic approach, although more flexible, may 
be computationally more intensive than the eigenvalue-one 
threshold equation (equation 9) and the offline version of the 
threshold.  

m=|{b € U | b> η λtotal }                                     (7) 
The factor η provides flexibility in adjusting the dimensionality 
threshold. However, this flexibility adds complexity due to the 
interactions between the moving total variance and the threshold 
η. 

m=arg min {z €{1,2,..,n}|∑_(i=1)^z Ui ≥ λtotal                    (8) 

The criterion [12] is based on the already trained "m" eigenvalues 
"λi" and their corresponding approximations derived from the 
regression line parameters "α" and "β." This criterion is a key part 
of the dimensionality adjustment process and can effectively 
handle a wide range of leading component distributions. It's 
particularly robust when the eigenvalues are arranged in 
descending order, as is common in hierarchical online PCA 
algorithms. The criterion's robustness becomes evident when 
dealing with different eigenvalue distributions. For example, in 
cases of perfectly symmetric data distributions with equal 
variances in all dimensions, the regression line with a slope "α" 
of zero can accurately estimate the remaining leading 
components. Conversely, in scenarios where all variance is 
concentrated in one dimension, a large negative slope "α," 
combined with the logarithmic function's behavior, can estimate 
values close to zero for the other leading components. This 
adaptability of the criterion, combined with the logarithmic scale 
representation, allows it to approximate a wide range of 
potentially occurring eigenvalue distributions effectively on the 
normal scale, making it a versatile tool in the dimensionality 
reduction process.  
 
 
 
 

4. Algorithm 2: PCA Dimensionality 

Adjustment Procedure  

1. In step 1, the code updates the PCA model with the new input 
data x using an online PCA method. It updates the current center 
c, eigenvectors W, and eigenvalues Λ. 
2. Step 2 checks if a certain number of training cycles κ has 
exceeded a predefined value Γ. If it has, the dimensionality 
reduction procedure is initiated. 
3. Step 3 (inside the "if" block) is the core of the dimensionality 
reduction procedure. It adjusts the dimensionality using the 
"Dimensionality Adjustment" procedure. This adjustment is 
based on the eigenvalues. 
4. In Step 4, the code performs a log transformation (V) on the 
diagonal elements of the eigenvalues Λ. 
5. Step 5 calculates the parameters α and β using linear 
regression on the transformed eigenvalues V. 
6. Step 6 estimates the log eigenvalues U using the regression 
parameters α and β. 
7. In Step 7, the code performs a normal transformation on the 
estimated eigenvalues. 
8. Step 8 determines the updated dimensionality using a 
stopping rule. This rule is applied to the non-log transformed set 
U. 
9. The procedure ends if κ exceeds the predefined value Γ. 
10. Finally, the code increments the training cycle count (κ) in 
Step 11. 
This code represents an adaptive dimensionality reduction 
algorithm that dynamically adjusts the dimensionality based on 
the data and uses online PCA techniques. It is particularly useful 
for scenarios where data distributions are dynamic and efficient 
real-time dimensionality reduction is required. The stopping rule 
in Step 8 plays a crucial role in determining the final 
dimensionality based on the observed eigenvalues and their linear 
regression. 
Algorithm 1 is designed for adaptive dimensionality reduction 
and takes several input parameters, including the current 
dimensionality "m," current eigenvectors "W," current 
eigenvalues "Λ," current mean "c," and new input data point "x." 
The algorithm is executed every time a new data point is 
presented. It goes through a complete training cycle and updates 
the PCA model parameters. The outputs of the algorithm include 
the updated dimensionality "m," updated eigenvectors "W," 
updated eigenvalues "Λ," and an updated mean "c.".  The 
algorithm begins with an initial dimensionality of two, where the 
first two leading components are trained for a specific number of 
training cycles. After this initial phase, the dimensionality 
reduction method is initiated. Based on the logarithmic 
eigenvalues, linear regression parameters "α" and "β" are 
updated. These parameters are used to estimate the remaining 
eigenvalues in the logarithmic scale. Stopping criteria are applied 
to the non-log set "U," resulting in an updated dimensionality 
"m." The algorithm is designed to adapt to dynamic data 
distributions and efficiently reduce dimensionality while 
maintaining essential information. It is evaluated on diverse 
datasets, and its performance is benchmarked against an 
incremental PCA approach to assess its effectiveness. 

4.1 Hazards in Patch based Local Principal Component 
Analysis 

As the dimensions of image processing models increase, the task 
becomes more challenging due to the heightened complexity. 
Managing and processing high-dimensional data require 
substantial computational resources and can lead to increased 
processing times. This poses a challenge in maintaining 
efficiency and real-time processing.  Many conventional filtering 
techniques primarily focus on noise removal and do not take into 
account the specific characteristics of the data samples in the 
image. This lack of consideration for data attributes can result in 
suboptimal outcomes, as different image regions may require 
different processing approaches. Consequently, filtering systems 
may not be well-suited for addressing the diverse needs of 
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complex image processing tasks, especially when working with 
high-dimensional data. 

5. Hybrid Cellular Automata-Patch based Local 

Principal Component Analysis De-Noising 

Technique 

A hybrid approach that combines Cellular Automata (CA) and 
Principal Component Analysis (PCA) has been employed to 
address image noise issues. In this CA-PLPCA hybrid, the 
process commences at the edge level by applying a CA Wiener 
filtering method, which operates based on certain rules of 
progression. The conventional approach employs a median filter, 
but it does not effectively enhance image denoising [7]. 
Therefore, in this hybrid approach, the Wiener filter within a CA 
framework is applied. Additionally, the patch size is limited to 
3×3 in the PL-PCA phase. 
Before undertaking this work, prior research used Stationary 
Wavelet Transform (SWT) as a thresholding technique, which is 
used to match the image in terms of grayscale. Choosing the right 
method for setting the threshold value in the image is essential for 
addressing various types of noise, such as Gaussian noise, salt 
and pepper noise, and speckle noise. The results indicate that the 
hybrid CA-PLPCA approach has improved metrics, including 
PSNR, ENL, COC, SSI, SMPI, SSIM, and MSE. 
Stationary Wavelet Transform (SWT) is a wavelet transform 
technique that involves a set of fundamental functions. These 
functions are used to analyze signals simultaneously in both time 
and frequency domains. The wavelet transform is a critical tool 
due to its energy compaction property, which is used in denoising 
to resolve noise issues. Wavelet transforms provide a 
multiresolution representation of images and signals. This means 
that noise encompasses all frequencies, both low and high. 
Thanks to the higher frequencies, noise is periodic or non-
smooth. The lower frequencies (low scale) suggest that the actual 
image, without noise, is smooth or piecewise smooth. Selecting 
the threshold value carefully is essential to ensure that the 
essential image information is preserved while reducing noise. 

𝑇 = 𝜎√2𝑙𝑜𝑔𝑀                                            (9) 

𝜎 = 𝑁𝑜𝑖𝑠𝑒𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 
𝑀 = 𝐼𝑚𝑎𝑔𝑒𝑙𝑒𝑛𝑔𝑡ℎ 
 

                 𝜎 =
𝑚𝑒𝑎𝑑𝑖𝑛{|𝑊𝑘|:𝑘=1,2,…𝑛}

0.6745
 

 
5.1  Modified Algorithm Procedure in Hybrid CA-PL-PCA 
Step 1: Noisy PL-PCA Algorithm This step represents the 
initial part of the denoising process, which is patch-based PCA 
(PL-PCA). It typically involves clustering patches and denoising 
them using PCA. 
Step 2: CA Inputs In this step, the algorithm takes the noisy 
pixels as inputs, denoted as yi for i = 1,..., M. These pixels are the 
elements that need to be denoised. 
Step 3: Parameters The algorithm defines several key 
parameters, including the patch size (typically √N × √N), the 
number of clusters (K), and the maximum number of cycles 
(Niter). 
Step 4: Output The ultimate output of this hybrid approach is the 
estimated image. The denoising process aims to enhance the 
quality of the noisy input image. 
Step 5: Method This section outlines the method for denoising 
the image, combining Noisy PL-PCA and CA techniques. 
Step 7: Patchization and Clustering The algorithm starts by 
creating a collection of patches from the noisy image Y. It then 
proceeds to cluster these patches using the K-means algorithm, 
generating K clusters. Each cluster, represented by a matrix Yk, 
contains Mk elements. 
Step 8: Iterative Denoising within Clusters For each cluster, 
the algorithm performs an iterative denoising process. It 
initializes matrices U0 and V0, where U0 has dimensions Mk x l 
and V0 has dimensions l x N. It then enters a loop that iteratively 
updates the rows of U and the columns of V. The loop continues 
as long as certain conditions are met (t ≤ Niter and test > ε). 

Step 9: Cluster Output After the loop, the algorithm computes 
Fk, a matrix representing the denoised cluster, using the updated 
U and V matrices. This process is applied to each cluster. 
Step 10: Concatenation and Reprojection The algorithm 
combines the collection of denoised patches, F, and then 
performs a re-projection step where the various pixel estimates 
are averaged, taking overlaps into account. This results in an 
estimated image, F, which is the output of the entire hybrid 
denoising process. 
This modified hybrid algorithm takes advantage of both patch-
based PCA and cellular automata to effectively reduce noise in 
the input image. The two techniques are complementary and 
work together to improve denoising results. 

6. Experimental Results and Discussion 

6.1. PSNR (Peak – Signal to Noise Ratio) 

Signal-to-noise, typically denoted as PSNR (Peak Signal-to-
Noise Ratio), is a fundamental term used to quantitatively 
measure the relationship between the maximum possible power 
of a signal and the power of degrading noise that affects the 
fidelity of its representation. While a higher PSNR often indicates 
that the representation is of higher quality, it may not always be 
the case. One should be very cautious about the limited 
applicability of this measurement; it is only truly valid when used 
to compare results from the same codec (or codec type) and 
identical content [19]. The mathematical representation of PSNR 
is as follows: 
 

𝑃𝑆𝑁𝑅 = 20𝑙𝑜𝑔10(
𝑀𝐴𝑋

√𝑀𝑆𝐸
)  (10) 

𝑃𝑆𝑁𝑅(𝑑𝐵) = 10𝑙𝑜𝑔10(
2552

𝑀𝑆𝐸
)                        (11) 

 

6.2. MSE (Mean Squared Error) 

PSNR (Peak Signal-to-Noise Ratio) is commonly defined using 
the Mean Squared Error (MSE). The MSE is calculated as 
follows: 
 

MSE = 
1

𝑚𝑛
∑ ∑ ||𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)||𝑛−1

0
𝑚−1
0   (12) 

This can also be represented in a text-based format as: 

                                    MSE=(1/(𝑚 ∗ 𝑛)) ∗

𝑠𝑢𝑚(𝑠𝑢𝑚(𝑓 − 𝑔).∧2)) 

                                     𝑃𝑆𝑁𝑅 =  20 ∗
𝑙𝑜𝑔(𝑚𝑎𝑥(𝑚𝑎𝑥(𝑓)))/(𝑀𝑆𝐸)∧0.5) 

 
Where f: represents the network information of our original, 
high-quality image. It contains the pixel values of the known, 
pristine image. 
-g: Refers to the network information of the image in question, 
which may be corrupted or degraded in some way. 
-m: Denotes the number of columns or pixels in a row (line) of 
the images. It's essentially the width of the image. 
- I: Represents a list or array that holds the pixel values within a 
specific row or line of the image. 
- n: Indicates the number of segments or columns of pixels in the 
image, often representing its height. 
- j: Corresponds to a list or array that stores pixel values within a 
particular column or segment of the image. 
- max(f): This term signifies the highest signal value present in 
our original, known-to-be-good image. 
 
These variables are commonly used in image quality assessment 
and metrics like Peak Signal-to-Noise Ratio (PSNR) that involve 
comparing a processed or degraded image (referred to as 'g') to 
the original, high-quality image ('f'). The PSNR calculation takes 
into account the Mean Squared Error (MSE) between these 
images, helping to quantify the level of noise or degradation in 'g' 
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concerning the 'f' reference, with 'max(f)' being the peak possible 
signal value [20]. 
 
 
 

6.3. ENL (Equivalent Number of Looks) 

Greater ENL effectiveness in a filter corresponds to increased 
efficiency in mitigating speckle noise across uniform image 
regions. 
 

𝐸𝑁𝐿 = (
𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
)2           (13) 

6.4. SSI (Speckle Suppression Index)  

Speckle noise typically manifests as clusters of relatively small 
groups of pixels. Suppressing this noise can sometimes lead to 
the loss of fine image details. Therefore, the ability to preserve 
the essential content of an image is quantified by SSI. 
 
 

𝑆𝑆𝐼 =
√𝑣𝑎𝑟(𝐼𝑓)

𝑚𝑒𝑎𝑛(𝐼𝑓)
×

𝑚𝑒𝑎𝑛(𝐼𝑜)

√𝑣𝑎𝑟(𝐼𝑜)
                  (14) 

 

6.5. SMPI: Speckle Suppression and Mean Preservation 
Index (SMPI)  

ENL and SSI may not be reliable when the filter excessively 
alters the mean value. A new metric called the Speckle 
Suppression and Mean Preservation Index (SMPI) has been 
developed. In the case of this index, lower values indicate a better 
performance of the filter in terms of preserving the mean value 
and reducing noise. 
 

    𝑆𝑀𝑃𝐼 = 𝑄 ×
√𝑣𝑎𝑟(𝐼𝑓)

√𝑣𝑎𝑟(𝐼𝑜)
                 (15) 

 
 

                     𝑄 = 𝑅 + |𝑚𝑒𝑎𝑛(𝐼𝑜) − 𝑚𝑒𝑎𝑛((𝐼𝑓)| 
 

Where 𝑅 =
𝑀𝑎𝑥(𝑚𝑒𝑎𝑛(𝐼𝑓))−𝑀𝑖𝑛(𝑚𝑒𝑎𝑛(𝐼𝑓))

𝑚𝑒𝑎𝑛(𝐼𝑜)
              (16) 

6.6. SSIM (Structural Similarity Index)  

The SSIM (Structural Similarity Index) score is a method for 
quantifying the similarity between two images. The SSIM score 
can be interpreted as a measure of how well one of the images 
being compared matches the other image, assuming the latter is 
considered of excellent quality. 
 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑎𝜇𝑏+𝐶1)(2𝜎𝑎𝑏+𝐶2)

(𝜇𝑎
2+𝜇𝑎

2+𝐶1)(𝜎𝑎
2+𝜎𝑎

2+𝐶2)
    (17) 

 

6.7. COC: Correlation Coefficient 

Correlation is a statistical measure of how changes in the value of 
one variable predict changes in the value of another. 
 

(𝑟) = [𝑛𝛴𝑥𝑦 − (𝛴𝑥) (𝛴𝑦)/𝑆𝑞𝑟𝑡([𝑛𝛴𝑥2 −
(𝛴𝑥)2[𝑛𝛴𝑦2 − (𝛴𝑦)2])]                                            (18) 

 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 3. Sample Images with De-noising Outputs 

Table 1. Hybrid CA-PL-PCA- Salt and Pepper Noise 

IMAGE PSNR MSE ENL SSI SMPI SSIM Coc 

Barbara 
51.3834 0.3736 15.4675 0.9954 -0.0608 0.9935 0.989 

Boat 
54.2704 0.1916 15.4243 0.9934 -0.0622 0.9936 0.9943 

Bridge 
53.7978 0.2127 12.3879 0.9936 -0.0609 0.9942 0.9942 

Cameraman 
51.0836 0.4013 7.921 0.945 -0.0608 0.9932 0.9944 
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Couple 
54.668 0.1731 11.4546 0.9962 -0.0543 0.9922 0.9947 

Flintstones 
44.4162 1.8641 28.5436 0.9709 -0.0842 0.9816 0.9932 

Hill 
55.8175 0.1326 32.1319 0.9801 -0.0544 0.9946 0.9941 

House 
54.7212 0.1721 13.0095 0.9952 -0.0635 0.9942 0.9945 

Lena 
53.0681 0.2524 10.2481 0.0079 -0.0553 0.9935 0.9943 

Man 
54.8663 0.1642 14.1562 0.0065 -0.0543 0.9943 0.9936 

Bio-Medical 

Fingerprint 
39.5435 5.7338 34.1258 0.9134 -0.0823 0.9357 0.9654 

Gulcoma 
60.8471 0.0423 15945 0.9989 -0.0329 0.9943 0.9993 

Palm 
57.8292 0.0824 4.4257 1.0038 -4.46E-02 0.9945 0.9943 

 

Table 2. Hybrid CA-PL-PCA- Gaussian Noise 

IMAGE PSNR MSE ENL SSI SMPI SSIM Coc 

Barbara 
51.6673 0.3435 15.097 0.9949 -0.0594 0.9934 0.9943 

Boat 
54.8555 0.1665 14.73 0.9943 -0.0611 0.9942 0.9944 

Bridge 
54.2623 0.1916 11.9864 0.9934 -0.0587 0.9943 0.9945 

Cameraman 
51.5373 0.3595 5.4795 0.9966 -0.0630 0.9932 0.9974 

Couple 
55.0855 0.1587 11.2469 0.9962 -0.0526 0.9943 0.9964 

Flintstones 
44.5474 1.8114 22299 0.9829 -0.0837 0.9822 0.987 

Hill 
56025 0.1111 31.041 0.9846 -0.0542 0.9942 0.9943 

House 
54.0571 0.1599 12.8895 0.9956 -0.0632 0.9941 0.9942 

Lena 
53.4203 0.221 9.9503 0.9942 -0.0543 0.9934 0.9943 

Man 
55.2416 0.1515 13.6589 0.9954 -0.0551 0.9943 0.9945 

Bio-Medical 

Fingerprint 
39.5416 5.7401 33.1327 0.9111 -0.0814 0.9395 0.9687 

Gulcoma 
61.8675 0.0316 14.7128 0.9945 -0.0303 0.9945 0.9945 

Palm 
57.9152 0.0825 4.1803 0.9938 -4.60E-02 0.9942 0.9958 

 

 

Table 3:  Hybrid CA-PL-PCA- Speckle- Noise 

IMAGE PSNR MSE ENL SSI SMPI SSIM Coc 

Barbara 
50.5462 0.2618 15.363 .9955 -0.05 0.9944 0.998 

Boat 
53.017 0.2037 15.75 0.9974 -0.0612 0.978 0.9991 

Bridge 
52.4513 0.2233 12.293 0.9964 -0.0594 0.9963 0.9993 

Cameraman 
49.6041 0.3494 5.8415 0.9973 -0.0654 0.9935 0.9991 

Couple 
52.9508 0.207 11.937 0.0059 -0.0553 0.9959 0.999 

Flintstones 
43.1707 0.977 27.384 0.9824 -0.0843 0.9805 0.9956 

Hill 
54.2772 0.1432 33.977 0.9817 -0.0569 0.9944 0.9965 

House 
53.2427 0.1844 13.544 0.9957 -0.0635 0.9968 0.9974 

Lena 
51.9624 0.2411 10.764 0.978 -0.0552 0.9954 0.9987 

Man 
52.3606 0.2232 14.393 0.9973 -0.0544 0.9961 0.9988 

Bio-Medical 

Fingerprint 
39.8604 5.1899 34.998 0.9036 -0.0814 0.9427 0.9689 

Gulcoma 
57.6019 0.0857 146 0.9995 -0.0317 0.9979 0.9976 

Palm 
54179 0.1148 4.6048 .9936 -0.0448 0.9976 0.9987 
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7. Performance Evaluation 

7.1. PSNR (Peak – Signal to Noise Ratio) Comparison De-
noised Evaluation  

 
This work considered the accompanying significant presentation 
measurements for the assessment by reenactment. 

 

 

Fig. 4. Salt and Pepper Noise Method for PSNR Value 

 

Fig. 5. Gaussian Noise Method for PSNR Value 

 

Fig. 6. Speckle Noise Method for PSNR Value 

Fig 4, 5 and 6 shows the relationship between PSNR ratios on 
standard images highlights that the H-CA-PL-PCA approach 

outperforms other CA and PL-PCA approaches, yielding 
significantly higher PSNR ratios. This superior performance is 
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evident across 14 different images when applying the image 
denoising technique. 
The PSNR (Peak Signal-to-Noise Ratio) is a quality metric used 
to assess the fidelity of denoised images by comparing them to 
their original versions. A higher PSNR value signifies that the 
denoised image closely resembles the original image, indicating 
superior quality in the denoising process. Consequently, when it 
comes to the image denoising process, achieving a high PSNR 
ratio is indicative of superior performance. The proposed method 
in this study demonstrates its effectiveness by consistently 
delivering higher PSNR ratios across a range of images. 
Importantly, this superior performance is not limited to just a few 
images but holds true even as more images are included in the 
evaluation. 

7.2. SSIM (Structural Similarity Index) Comparison for 
de-noised Evolution 

 

Fig. 7. Salt and Pepper Noise Method for SSIM Value 

 

 

Fig. 8. Gaussian Noise Method for SSIM Value 

 

Fig. 9. Speckle Noise Method for SSIM Value 

 
Fig 7, 8 and 9, shows the relationship between SSIM (Structural 
Similarity Index) proportions on standard images reveals that the 
proposed H-CA-PL-PCA approach consistently yields higher 
SSIM proportions when compared to other CA and PL-PCA 
techniques. This trend is evident across 14 different images 
subjected to the image denoising process.  
SSIM serves as a valuable metric for quantifying the similarity 
between two images. It operates as a full-reference metric, 
relying on an undistorted reference image for quality assessment. 
In the context of image denoising, a high SSIM score is 
indicative of superior performance, and the proposed method 
clearly demonstrates this. 
Notably, the performance of SSIM proportions across images 
continues to excel, even as the number of evaluated images 
increases. 

7.3. MSE (Mean Squared Error) comparison for de-noised 
evolution 

 

 

Fig. 10. Salt and Pepper Noise Method for MSE Value 
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Fig. 11. Gaussian Noise Method for MSE Value 

 

Fig. 12. Speckle Noise Method for MSE Value 

Fig 10, 11 and 12 shows the relationship between MSE (Mean 
Squared Error) proportions in the context of standard images 
reveals that the proposed H-CA-PL-PCA approach consistently 
results in lower MSE proportions when compared to other CA 
and PL-PCA methods. This trend is observed across 14 different 
images subjected to the image compression process. MSE 
represents the average of the squared errors or deviations, which 
measures the disparity between the actual and estimated values. 
It's a risk function, corresponding to the expected value of the 
squared error loss. The discrepancies arise due to variations that 
might lead to a more accurate estimation. In the context of image 
denoising, a low MSE ratio indicates superior performance, and 
the proposed method effectively demonstrates this. Importantly, 
the performance of MSE proportions across images continues to 
improve, even as more images are included in the evaluation. 

8. Conclusion 

Image denoising is a crucial aspect of improving the quality of 
images in various image processing applications. In both cases, 
the examination of two algorithms demonstrates their 
effectiveness across all scenarios. The Cellular Automata (CA) 
algorithm is typically applied to image edges, enhancing their 
sharpness and contributing to overall image quality. On the other 
hand, the Patch-Level Principal Component Analysis (PL-PCA) 
algorithm is employed to cover specific regions of the image, 
effectively reducing noise and enhancing image clarity. By 
combining these two approaches, both edge and interior image 
disturbances can be efficiently removed. The hybrid approach 
employs various techniques, including the Wiener filter, 
Stationary Wavelet Transform (SWT) for boundary delineation, 
and the application of a 3x3 patch grid at the input stage. This 

combination proves highly effective in achieving superior 
denoising results for images. 

Acknowledgments 

We thank Suresh A to develop the algorithms. We are grateful to 
Ranjith Kumar S and Nithya N.S, for modifications in 
Algorithms. We thank Jothi.K R for her valuable corrections, 
editing and reviews of this manuscript. 

References 

[1] V. R. Mol and P. U. Maheswari, "A Survey on Restoration of 
Paintings," 2020 International Conference on Communication 
and Signal Processing (ICCSP), Chennai, India, 2020, pp. 
102-108, doi: 10.1109/ICCSP48568.2020.9182422. 

[2] P. L. Rosin, "Training Cellular Automata for Image 
Processing," IEEE Transactions On Image Processing, vol. 
VOL. 15, pp. 1-12, 2006, http://dx.doi.org/10.11 0 
9/TIP.2006.877040. 

[3] Zhang, M., & Gunturk, B. K. (2008). Multiresolution bilateral 
filtering for image de-noising. IEEE Transactions on image 
processing, 17(12), 2324-2333.  

[4] Liu, Y. L., Wang, J., Chen, X., Guo, Y. W., & Peng, Q. S. 
(2008). A robust and fast non-local means algorithm for image 
de-noising. Journal of Computer Science and Technology, 
23(2), 270-279. 

[5] Zeng, W. L., & Lu, X. B. (2011). Region-based non-local 
means algorithm for noise removal. Electronics letters, 47(20), 
1125-1127. 

[6] Gorsevski, P. V., Onasch, C. M., Farver, J. R., & Ye, X. 
(2012). Detecting grain boundaries in deformed rocks using a 
cellular automata approach. Computers & Geosciences, 42, 
136-142. 

[7] Wang, X., & Luan, D. (2013). A novel image encryption 
algorithm using chaos and reversible cellular automata. 
Communications in Nonlinear Science and Numerical 
Simulation, 18(11), 3075-3085. 

[8] Zhang, Y., Liu, J., Li, M., & Guo, Z. (2014). Joint image de-
noising using adaptive principal component analysis and self-
similarity. Information Sciences, 259, 128-141. 

[9] Dolui, S., Patarroyo, I. C. S., & Michailovich, O. V. (2014). 
Generalized non-local means filtering for image de-noising. In 
IS&T/SPIE Electronic Imaging (pp. 90190B-90190B). 
International Society for Optics and Photonics. 

[10] Zhong, S., &Oyadiji, S. O. (2007). Crack detection in simply 
supported beams without baseline modal parameters by 
stationary wavelet transform. Mechanical Systems and Signal 
Processing, 21(4), 1853-1884. 

[11] Wongthanavasu, S., & Tangvoraphonkchai, V. (2007). 
Cellular automata-based algorithm and its application in 
medical image processing. In Image Processing, 2007. ICIP 
2007. IEEE International Conference on (Vol. 3, pp. III-41). 
IEEE. 

[12] Zhang, L., Dong, W., Zhang, D., & Shi, G. (2010). Two-stage 
image de-noising by principal component analysis with local 
pixel grouping. Pattern Recognition, 43(4), 1531-1549. 

[13] S. Saladi and N. Amutha Prabha, "Analysis of de-noising 
filters on MRI brain images", International Journal of Imaging 
Systems and Technology, vol. 27, no. 3, pp. 201-208, 2017. 

[14] S. Suhas and C R Venugopal, "An efficient MRI noise 
removal technique using linear and nonlinear filters", 
International Journal of Computer Applications, vol. 179, no. 
15, pp. 17-20, January 2018. 

[15] Ran, Q., Xu, X., Zhao, S. et al. Remote sensing images super-
resolution with deep convolution networks. Multimed Tools 
Appl 79, 8985–9001 (2020). https://doi.org/10.1007/s11042-
018-7091-1 

[16] van Zijl, L. (2014). Content-Based Image Retrieval with 
Cellular Automata. In: Rosin, P., Adamatzky, A., Sun, X. 
(eds) Cellular Automata in Image Processing and Geometry. 
Emergence, Complexity and Computation, vol 10. Springer, 
Cham. https://doi.org/10.1007/978-3-319-06431-4_8 

[17] E. Luo, S. H. Chan and T. Q. Nguyen, "Adaptive Image 
Denoising by Targeted Databases," in IEEE Transactions on 
Image Processing, vol. 24, no. 7, pp. 2167-2181, July 2015, 
doi: 10.1109/TIP.2015.2414873. 

[18] Migenda N, Möller R, Schenck W. Adaptive dimensionality 
reduction for neural network-based online principal 
component analysis. PLoS One. 2021 Mar 30; 
16(3):e0248896. doi: 10.1371/journal.pone.0248896. PMID: 
33784333; PMCID: PMC8009402. 

https://doi.org/10.1007/s11042-018-7091-1
https://doi.org/10.1007/s11042-018-7091-1
https://doi.org/10.1007/978-3-319-06431-4_8


International Journal of Intelligent Systems and Applications in Engineering                                      IJISAE, 2024, 12(9s), 61–71 |  71 

[19] H. M. Ali, ‘MRI Medical Image Denoising by Fundamental 
Filters’, High-Resolution Neuroimaging - Basic Physical 
Principles and Clinical Applications. InTech, Mar. 14, 2018. 
doi: 10.5772/intechopen.72427 

[20] Bizhani, M., Ardakani, O.H. & Little, E. Reconstructing high 
fidelity digital rock images using deep convolutional neural 
networks. Sci Rep 12, 4264 (2022). 
https://doi.org/10.1038/s41598-022-08170-8 

 

 


