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Abstract: This research explores the application of Compressive Sensing (CS) for image reconstruction, introducing a novel approach 

based on Deep Neural Networks (DNN). Compressive Sensing is a technique employed to recover sparse signals or images from a small 

number of measurements, providing an efficient alternative to traditional image acquisition methods. In this paper, the capability of Deep 

Neural Networks to enhance the reconstruction process within the Compressive Sensing framework is proposed. The approach involves 

training a deep neural network, the intricate mapping between the matching high-resolution images and compressed measurements may 

be learned. Taking advantage of the innate patterns and structures found in pictures, the DNN aims to reconstruct the original content 

from highly under sampled measurements, demonstrating the potential of neural networks in addressing the challenges posed by sparse 

signal recovery. The paper provides an in-depth analysis of the proposed Compressive Sensing with Deep Neural Network (CS-DNN) 

approach, evaluating its performance against existing methods through comprehensive experiments. The result shows the effectiveness 

and versatility of the proposed technique, highlighting its potential to outperform traditional CS methods in terms of both image quality 

and computational efficiency. This research contributes to advancing the field of image reconstruction by integrating the power of Deep 

Neural Networks into the Compressive Sensing paradigm, opening new avenues for efficient and robust sparse signal recovery in various 

applications. 
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1. Introduction 

In the ever-evolving landscape of image processing and 

signal recovery, the quest for more efficient and effective 

methodologies has driven researchers to explore novel 

approaches. This research delves into the realm of 

Compressive Sensing (CS), a technique designed to 

reconstruct sparse signals or images from a reduced set of 

measurements [1, 2]. Traditional image acquisition 

methods often face challenges in terms of efficiency and 

computational demands [3]. Compressive Sensing offers a 

promising alternative by exploiting the inherent sparsity of 

signals, enabling the reconstruction of high-resolution 

images from a relatively small number of measurements 

[4]. This paper introduces a groundbreaking approach to 

Compressive Sensing by incorporating the capabilities of 

Deep Neural Networks (DNN). DL, especially in the form 

of neural networks, has demonstrated remarkable success 

in various domains, from natural language processing to 

computer vision. Leveraging this success, the proposed 

Compressive Sensing with Deep Neural Network (CS-

DNN) approach seeks to enhance the image reconstruction 

process within the CS framework. 

Compressive Sensing, also known as compressed sensing 

or CS, has emerged as a powerful paradigm in signal 

processing. The fundamental idea behind CS is to recover 

sparse signals or images using significantly fewer 

measurements than traditional methods would require. 

This concept has found applications in various fields, 

including medical imaging, remote sensing, and 

communication systems. The conventional approach to 

image acquisition involves capturing a large number of 

measurements to faithfully represent the image's details. 

However, this can be computationally intensive and may 

not be feasible in resource-constrained environments. CS 

addresses this challenge by exploiting the sparsity of 

signals, allowing for the reconstruction of high-quality 

images from a reduced set of measurements. The 
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application of CS has the potential to revolutionize the 

efficiency of imaging systems. 

Deep Neural Networks have become a cornerstone in 

modern machine learning and artificial intelligence [5]. 

Their ability to learn intricate patterns and representations 

from data has propelled them to the forefront of numerous 

applications. In the context of image processing, neural 

networks excel at tasks such as image classification, 

segmentation, and generation [6]. The integration of DNNs 

with CS introduces a new dimension to signal recovery, 

where the network learns the complex mapping between 

compressed measurements and the corresponding high-

resolution images. The proposed CS-DNN approach 

represents a fusion of two powerful techniques: 

Compressive Sensing and Deep Neural Networks. In this 

paradigm, a Deep Neural Network is trained to understand 

the intricate relationships between compressed 

measurements and high-resolution images. The learning 

process involves capturing the inherent structures and 

patterns within images, enabling the network to reconstruct 

the original content even from highly undersampled 

measurements. 

By combining the strengths of CS and DNNs, the CS-DNN 

approach aims to overcome the challenges associated with 

sparse signal recovery. The integration of neural networks 

introduces a level of adaptability and generalization that 

traditional CS methods may lack. This approach holds 

promise for applications where efficient and robust image 

reconstruction is crucial, such as in medical imaging or 

scenarios with limited data acquisition capabilities. The 

paper conducts a thorough analysis of the proposed CS-

DNN approach through comprehensive experiments. The 

new methodology's performance is closely assessed and 

contrasted against existing methods in the field. Key 

metrics, such as image quality and computational 

efficiency, are considered to assess the overall 

effectiveness and versatility of the CS-DNN approach. 

This research significantly contributes to the advancement 

of image reconstruction methodologies. By seamlessly 

integrating the power of Deep Neural Networks into the 

Compressive Sensing paradigm, the CS-DNN approach 

opens new avenues for efficient and robust sparse signal 

recovery. The ability to reconstruct high-quality images 

from limited measurements has far-reaching implications, 

impacting fields ranging from medical imaging, where 

minimizing radiation exposure is critical, to surveillance 

and communication systems operating under resource 

constraints. The results of the experiments showcase the 

potential of the CS-DNN approach to outperform 

traditional CS methods. The enhanced image quality and 

computational efficiency observed in the reconstructions 

demonstrate the efficacy of leveraging deep learning 

within the Compressive Sensing framework. This not only 

substantiates the theoretical foundations of the CS-DNN 

approach but also positions it as a viable and superior 

alternative for sparse signal recovery. 

2. Literature Review 

[7] Suggests using network training to train a sample 

matrix rather than a manually created one. They call their 

"deep learning-based reconstruction process" seamless 

integration with this tactic. The original reconstructed 

image, which was produced by a combination layer with 

reshaping and concatenation operations, and a 

convolutional layer, is enhanced by the deep reconstruction 

sub-network. Reconstructing non-linear signals is made 

possible by this advancement. The authors draw a link 

between their deep learning architecture and “compressed 

sampling reconstruction and the traditional block 

compressed sensing smooth projected Landweber 

algorithm”. 

In [8], a pioneering method for deep learning, compressed 

sensing MR image reconstruction is presented. Clinicians' 

dependence on patient-based datasets is greatly decreased 

by this novel method, which does away with the 

requirement for pre-training or a specific training dataset. 

The technique, which is based on the Deep Image Prior 

(DIP) framework, uses a high-resolution reference 

magnetic resonance image as the convolutional neural 

network's input with the goal of introducing a structural 

prior during the learning phase. The efficiency and 

effectiveness of network learning are improved by this 

reference-driven approach.  

[9] presented the multi-scale dilated convolutional neural 

network, a cutting-edge framework for measurement and 

reconstruction in compressed sensing (CS). The 

measurement phase uses completely convolutional 

structures that are simultaneously trained with the 

reconstruction network using the input image, enabling 

them to immediately obtain all measurements using a 

trained measurement network. As a result, the block effect 

is successfully avoided and block segmentation is not 

necessary. The Multi-Scale Feature Extraction (MFE) 

architecture, which they propose for the reconstruction 

phase, is intended to emulate the capacity of the human 

visual system to extract multi-scale characteristics from a 

single feature map. This improves the framework's ability 

to extract picture features, which in turn raises the quality 

of image reconstruction as a whole. According to their 

findings, the suggested method outperforms the most 

advanced techniques in terms of SSIM and PSNR. 

Imaging systems face challenges related to lengthy data 

processing and prolonged image capture periods [10] 

presents ATResCS, an adaptive compressed sensing 

reconstruction approach based on residual learning for 

terahertz spectral pictures, in order to address these 

problems. The number of data samples is efficiently 

compressed by this approach, which lowers the amount of 

imaging data required and increases imaging speed overall. 
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The validation process employs terahertz spectral image 

data from a THz-TDS system to verify the efficacy of the 

algorithm. Peak signal-to-noise ratio (PSNR) and structural 

similarity are two areas where ATResCS outperforms 

traditional methods, leading to significant reconstruction 

time savings and real-time reconstruction capabilities.  

[11] Observes the discrepancy in priorities between human 

observers, who emphasize the image's visual quality and 

machine users, who are more interested in hidden 

measures like identification accuracy than in an image's 

subjective beauty. Drawing inspiration from this insight, 

they introduce a machine recognition-centric approach to 

image compressed sensing (CS) using a technique known 

as adversarial learning. To include recognition accuracy as 

an extra optimization goal in the CS reconstruction 

network, several adversarial models are investigated. By 

means of end-to-end training, the CS reconstruction 

network learns an image recognition pattern on its own, 

producing recovered images that have extra recognition 

metrics, making them more machine-user-friendly.  

[12] Examines -wavelet compressed sensing (CS) 

reconstruction by leveraging modern tools. Incorporating 

concepts Combining classical insights from wavelet 

representations and CS theory with algorithm unrolling 

and sophisticated optimization techniques, which are 

frequently used by deep learning algorithms on large 

datasets, the study shows that -wavelet CS can be precisely 

adjusted to nearly match the performance level of deep 

learning reconstruction for accelerated MRI. Compared to 

approximately 500,000 parameters in deep learning, the 

optimized -wavelet CS approach uses just 128. employs 

convex reconstruction during inference, and achieves 

results within less than 1% deviation from a deep learning 

approach extensively used in various studies, based on 

quantitative quality metrics. 

In paper [13], an innovative deep-learning approach is 

developed for image reconstruction using a collection of 

MRI scans. The process involves both MRI acquisition and 

subsampling to decrease the image size for enhanced 

analysis. A convolution layer is employed to replicate the 

compressed sampling process, allowing the model to learn 

the sampling matrix without the need for intricate designs. 

Furthermore, another convolution layer is employed to 

perform the initial reconstruction. With low MSE and 

maximal PSNR, the proposed FSO-based CSNet 

performed better than alternative approaches. 

3. Methodology 

Every row in the sampling matrix ∉ can be thought of as a 

filter in the context of compressed sensing. In the case of a 

m x n sampling matrix, a convolutional layer can be used 

to simulate the sampling procedure. In practical terms, if 

presented with an image I measuring w x h, the 

compressive measurements, denoted as Y, can be 

generated by executing a convolutional operation over the 

image. 

 

Every row in the sampling matrix ∅ can be thought of as a 

filter in compressed sensing. One can use a convolutional 

layer to simulate the sampling process for a given 

sampling matrix of dimensions m X n. Put another way, if 

we have an image I of size wxh, we can use a convolution 

technique to acquire the compressive measurements, Y.  

𝑌 = 𝐴𝑘(𝐼)                                                        (1) 

Where, A(.) denotes the convolution process with kernel of 

size k x k where the aspect of the dimensions for each 

block is  

𝑛𝑘 =
𝑚

𝑛
𝑁𝐾                       (2) 

Therefore, the block size to be compressively sensed is 

determined by the size of the kernel and the stride, 

ensuring non-overlapping blocks. In this context, the 

compression ratio can be formulated as: 
𝑛𝑘

𝑁𝐾

                                   (3) 

In precise, n can be written as 𝑛 = ∅𝑐 with c sparse. 

Following constraints are imposed for generating a sparse 

sampling matrix.  

3.1 Sparsity Restraints 

Each row in the sampling matrix ∅ corresponds to a single 

channel and is an unrolled iteration of the weight matrix. 

The weights connected to different channels are stacked 

horizontally, forming a sampling matrix with dimensions 

𝑛𝑘 × 𝑁𝐾. Here, 𝑁𝐾 signifies the overall count of elements 

in a block measuring K × K, while 𝑛𝑘 represents the total 

number of measurements or output channels. The degree 

of sparsity is determined by the ratio of the total number of 

non-zero elements in this matrix to the total number of 

elements within the matrix. The sparsity constraint is 

defined as follows in order to obtain the appropriate 

sample matrix with a predefined sparsity degree (𝜇): 

𝑆(𝜇𝑘,𝑖) = 0                                 (4) 

3.2 Normalization Constraint 

To regulate the measurement range within to get a unit 

norm, all of the weights connected to the kth kernel in the 

sensing matrix are normalized. To do this, the 

convolutional layer's parameters in the sample network 

must be normalized channel-by-channel. ensuring that the 

total norm for each channel equals 1. Mathematically, this 

process can be formulated as: 

𝑁(𝑆𝑘,𝑗) =
𝑆𝑘,𝑗

1
∑ 𝑆2

𝑘,𝑖
𝑛𝑘
𝑖=1

⁄
         𝑗 = 1,2, … , 𝑁𝐾                   (5) 
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3.3 Image Recognition Sub-network 

In order to obtain discriminative non-linear features from 

compressed measurements for image identification, an 

image recognition sub-network is utilised. The compressed 

measurements are first rearranged into spatial order using a 

convolutional layer in the image-recognition sub-network 

(K × K × nk). This restructuring enables the subsequent 

feeding of measurements into any standard deep neural 

network designed for typical images. The objective is to 

assess the classifier's performance across various deep 

learning outlines under diverse compression situations. As 

stated in the equation below, sparse categorical cross-

entropy is the loss function used to train each network. 

𝐹𝐿𝑜𝑠𝑠 = −
∑ 𝑙𝑜𝑔𝑡(𝑠𝜖𝑐)𝑐𝜖𝐶

𝑁
                                   (6) 

Figure 1 shows the proposed network architecture.  

Data Preprocessing: 

It aims to furnish a comprehensive explanation of the 

preprocessing steps applied to the data, preparing and 

transforming them into the input for the auto-encoder.  

 

Fig. 1. Proposed Network Structure 

CNN Autoencoder: 

Deep Reconstruction Network: 

This section will expound on the three primary layers: 

Sampling, Initial Reconstruction, and Deep Reconstruction 

Network, as illustrated in Figure 1. The network is 

designed with hierarchical layers, facilitating input 

reconstruction for various Compressed Sensing (CS) 

Ratios. Each layer capitalizes on the initial reconstruction 

from the preceding layer to augment performance. 

Sampling: Initiating with the Sampling block, it resembles 

a Keras layer, specifically utilizing a conventional 

convolutional layer to replicate the sampling function. The 

strides parameter is set equal to the filter's size, and the 

kernel_size and kernel_initializer parameters are adjusted 

to 32 to maintain dimensionality. 

Initial Reconstruction: The initial phase involves obtaining 

a CS reconstruction, processed through the Deep 

Reconstruction Network (DRN). Comprising three 

layers—two convolutional and one combination layer—

this network transforms the sub-sampled image into n 

feature maps, followed by conversion into higher-level 

abstraction feature maps. Each layer enhances performance 

by leveraging the initial reconstruction from the prior 

layer. 

The pivotal component of this work is the Deep 

Reconstruction Network, despite its seemingly 

straightforward structure. The DRN comprises a sequence 

of cascading Convolutional layers and is employed to 

execute six operations: “feature extraction, shrinking, non-

linear mapping, expanding, feature aggregation, and skip 

connection”. 

Data Post processing: 

This section will discuss the post-processing that is done 

on the data after the network. This procedure closely 

resembles the concatenation of patches within a CNN to 

construct the complete image. In reality, the image 

discussed in earlier sections is not the entire image but 

rather a patch. The input to the CNN consists of a batch of 

such patches, each processed individually before being 

reassembled. Consequently, in an almost recursive manner, 

the patches must be concatenated at the conclusion of the 

CNN to obtain the reconstructed image. 

4. Results and Discussion 

Compressive Sensing (CS) is a technique designed to 

efficiently obtain compressed output universally, 

minimizing time, memory, and computational resource 

utilization, and facilitating simplified data transmission. In 

this study, experiments were conducted across various 

Compressive Sensing ratios (CS ratios) with repeated trials 

for different block sizes. The employed CS ratios include 

0.1, 0.2, 0.3, 0.4, and 0.5, each corresponding to a layer in 

the stack. The sensing matrix implemented in the initial 

Conv2D layer of Keras. The considered block sizes are 

(16, 16), (32, 32), and (48, 48), representing the entire 

image. These experiments explore the impact of varying 
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CS ratios, sensing matrices, and block sizes on the 

effectiveness of Compressive Sensing in image 

reconstruction. 

After obtaining the initial reconstruction, the goal is to 

refine it for superior image quality. This involves the 

implementation of a Deep Reconstruction Network (DRN), 

designed in an hourglass shape following contemporary 

best practices. The unique hourglass configuration, 

featuring "bigger" first and last layers compared to the 

intermediate layers, enhances the network's ability to 

capture intricate features. This structural choice facilitates 

the refinement process, contributing to the achievement of 

high-quality image reconstruction. The DRN proves 

crucial in iteratively enhancing the reconstruction and 

ensuring optimal visual outcomes, aligning with advanced 

techniques in image processing. 

The training period for a Convolutional Deep Neural 

Network is frequently time-consuming, requiring careful 

design to optimize efficiency. The essential Keras 

commands for implementing the training phase are limited, 

specifically: “Model”, “Model.compile”, and “Model.fit”. 

The initial command, "Model," is used to instantiate the 

Model class.  

 

Training Phase  

{ 

     Model = model (inputs=I, outputs= O) 

     Model.compile (loss= ‘mean-squared_error’, 

optimizer= ‘my_adam_1’) 

     Model.fit (train_36, epochs=20, batch_size=6, 

validation_data=(val_36), rearrange=true) 

     Model.compile (loss= ‘mean_squared_error’, 

optimizer= my_adam_1) 

     Model.fit (train_36, epochs=20, batch_size=10, 

validation_data= (val_36), rearrange=true) 

     Model.compile (loss= ‘mean_squared_error’, 

optimizer=my_adam_1) 

     Model.fit (train_36, epochs=15, batch_size=10, 

validation_data= (val_36), rearrange=true) 

} 

 

After constructing the model, it must be compiled, 

necessitating the definition of both the optimizer to be used 

and the loss function. "Mean Squared Error" is the loss 

function that was selected in this instance. 

𝑀𝑆𝐸 =
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1

𝑛
                               (7) 

 

The selected optimizer is the Adam (Adaptive Moment 

Estimation) Optimizer, a Stochastic Gradient Descent 

variant created with the gradient's moments in mind. 

To assess the performance of a Deep Learning algorithm, 

especially in the context of image processing, three 

common metrics are utilized in current research. The 

primary metric, accuracy, is widely employed for Neural 

Networks, though in this case, it corresponds to a simple 

MSE and is not the most crucial. The second metric, Peak 

Signal-to-Noise Ratio, holds significant importance for 

evaluating the quality of a compressed or reconstructed 

image concerning the ground-truth. In this specific context, 

this stands out as the most crucial metric. The third and 

final metric is the execution time, a valuable measure as 

time is a critical resource, especially in Deep Learning for 

image processing, where substantial time investments are 

necessary. The considered time factors encompass both the 

Training point time and the reconstruction time, with the 

latter being the more pivotal. 

For single image, the peak signal to noise ratio is depicted 

as: 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
𝑀𝐴𝑋2{𝐼}

√𝑀𝑆𝐸
)                                 (8) 

Where, 

I - is the original image 

𝑀𝐴𝑋2{𝐼} - Maximum value among pixels 

And the MSE is the error assessed between original image 

(I) and the reconstructed image (R). MSE in images 

evaluated as: 

𝑀𝑆𝐸 =
1

𝑀. 𝑁
∑ ∑||𝐼(𝑝, 𝑞)

𝑁−1

𝑞=0

𝑀−1

𝑝=0

− 𝑅(𝑝, 𝑞)||
2

                                 (9) 

As a fractional number, it is evident that if the 

reconstruction is flawless, meaning the Mean Squared 

Error (MSE) is zero, the Peak Signal-to-Noise Ratio 

(PSNR) attains an infinite value.  

 

 

Fig. 2. Reconstructed Images with Various PSNR Values 

PSNR=14dB PSNR=16dB PSNR=28dB PSNR=50dB 
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In Figure 2, the reconstructed image is presented with 

diverse Peak Signal-to-Noise Ratio (PSNR) rates, 

demonstrating a clear relationship between increasing 

PSNR rates and enhanced image quality. The visual 

representation underscores the importance of higher PSNR 

values in achieving superior reconstruction quality, 

highlighting the significance of PSNR as a metric for 

assessing the fidelity and precision of the reconstructed 

image. 

 

 

Fig. 3. Performance Comparison (Sampling rate=0.1) 

 

 

Fig. 4. Performance Comparison (Sampling rate=0.5) 

 

The suggested model's efficacy is evaluated by comparing 

it to well-established methods with a particular emphasis 

on Peak Signal-to-Noise Ratio (PSNR). The performance 

comparison at a sample rate of 0.1 is shown in Figure 3, 

and the performance at a sampling rate of 0.5 is shown in 

Figure 4. The outcomes show that the suggested CS-DNN 

strategy outperforms the compared methods in both 

scenarios. While some approaches exhibit accuracy levels 

similar to the proposed technique, none outperform it. This 

underscores the superiority of the CS-DNN method in 

achieving higher fidelity and accuracy in image 

reconstruction, particularly at lower sampling rates, 

substantiating its effectiveness as a robust approach in 

comparison to established methods. 
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5. Conclusion  

In the current scenario, the foremost challenges in image 

processing and, particularly, transmission pertain to 

resource constraints, notably in terms of memory and time. 

This has prompted an increased focus on the exploration 

and utilization of Deep Learning and Compressed Sensing 

within the realm of image processing. Currently, the 

significant challenges in image processing and 

transmission revolve around resource limitations such as 

memory and time constraints. Deep Learning (DL) and 

Compressed Sensing have become increasingly vital in 

addressing these challenges within the image processing 

domain. This paper delves into DL-based methods applied 

to compressed sensed images, aiming to achieve efficient 

reconstruction in a short timeframe. The primary emphasis 

is on the sensing process using a stable sensing matrix. 

Two distinct approaches were explored, involving 

experiments with both block-based and full-image-based 

methodologies. Reconstructed images are provided with 

step by step process. Results indicate that a block-based 

approach exhibits significantly better performance than the 

trained sensing matrices. The performance comparison 

shows that the implemented algorithm showed better 

performances than the compared algorithms.  
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