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Abstract: Nonlinear time-delay systems, such as cloud-based control systems (CCS), have wide implementations, from robotics to multi-

agent systems, but data-driven research on this complex system is still in its infancy. This study presents a model observer designed for the 

prediction of nonlinear time-delay systems utilizing Deep Learning (DL) methods. The time-delay Markov decision process is considered 

in the augmented state as an input feature for the model observer. Furthermore, additional input features include the dynamic rate of change 

to provide temporal nonlinearity and time delay for better prediction. The time-series prediction analysis is conducted on a dataset from an 

arbitrary nonlinear mass spring damper system induced by a time delay in the system input and output. This study thoroughly evaluates 

the performance of three DL networks, including the Feed Forward Neural Network (FFNN), Long Short Term Memory (LSTM), and 

Radial Basis Function Neural Network (RBFNN). While, the model prediction performance is evaluated with Mean Absolute Percentage 

Error (MAPE) and Root Mean Square Error (RMSE) performance metrics. Results show that the FFNN architecture of two hidden layers 

with 15 nodes in each layer and the LeakyReLU activation function achieves the best performance, outperforming other network layers 

with an average MAPE value of 8.4% and an average RMSE value of 0.0006038. The N-step ahead prediction performance of the model 

observer with the proposed features in this study serves as an important fundamental model for the development of control methods based 

on a data-driven approach for CCS.  

Keywords: Deep learning, Model observer, Nonlinear time delay system, N-step ahead prediction, Time series prediction. 

. 

1. Introduction 

In Industrial Revolution 4.0 and the Industrial Internet of Things 

(IIoT), the demand for networked-based control systems with 

scalability and interoperability according to the Cyber-Physical 

System (CPS) principle is growing rapidly [1]. Nevertheless, 

implementing CPS-based control in traditional control systems 

presents difficulties due to the fact that the hardware controllers 

and control systems, such as proportional integral derivative 

(PID) control, were not originally intended for such applications. 

The challenges involved in creating efficient control systems in 

this context encompass user friendliness, both local and global 

networking capabilities, interoperability between control 

systems, high-quality control methodologies, and the 

coordination of diverse controllers [2]. To overcome this 

challenge, Cloud-based Control Systems (CCS) have been 

developed [3]. CCS enables the replacement of hardware 

controllers as a solution for CPS-based industrial control 

systems [4], [5]. However, the migration from hardware 

controllers to CCS controllers poses issues in the context of the 

control system itself. In hardware control systems, the controlled 

entity only considers the process of the system; hence, the 

system's dynamics represent the controlled process. Conversely, 

in CCS, the controlled entity comprises both the controlled 

system and the interconnected internet network. As a result, 

there are three crucial attributes in CCS: (1) process 

nonlinearity; (2) communication of data with time delays [6-8]. 

Fig. 1. illustrates the difference in controlled entities between 

traditional/ hardware control systems and CCS control systems.  

 
(a) Control system and controlled object in classic 

framework 
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(b)  Control system and controlled object in CCS framework 

Fig. 1. Illustration of controller and controlled object comparison. 

Based on the outcomes of prior research [9], it was observed that 

classical control methods combined with a model-based control 

system approach have been employed in the design of CCS. In 

this approach, a model observer for the control system is 

developed using white box modeling. However, it's evident that 

the integration of internet networks with time delays and the 

nonlinearity of the physical system transform the control object 

of CCS into a complex system [10]. Complex systems are more 

effectively modeled using data driven-based modeling 

approaches [11]. This approach where decisions are made based 

on data, and the behavior of the system is controlled. This strategy 

is often used in various complex system, including weather 

patterns [12], traffic regulation systems [13], or education [14].  

On the other hand, data-driven modeling research, such as neural 

network-based control for nonlinear time delay system utilizing 

adaptive backstepping or adaptive dynamic surface control 

methods, might suffer from the curse of dimensionality [15]. The 

Reinforcement Learning (RL) method has been studied in depth 

as a solution to the problem, and current research proposes 

Model-based RL (Mb-RL) for nonlinear time delay systems 

[16],17]. However, model architecture and Input-Output (I/O) 

features were not clearly defined. In our previous research [18], 

we clearly defined the I/O features with additional rate of change 

input and model architecture for the model that is used as an 

observer in the proposed Mb-RL scheme. The method is able to 

control a highly nonlinear Mass Spring Damper (MSD) system, 

but time delay was not considered in the system.In this work, we 

consider nonlinearity and time delay attributes in the MSD 

system. Time-delay phenomena are commonly encountered in 

real-world scenarios, such as systems involving network-based 

control. These time delays within nonlinear systems have been 

recognized as a factor contributing to the instability of control 

systems, as noted in previous studies [19]. The main objective of 

the paper is to derive model observer that is able to predict the 

nonlinear time delay system. We further explore the design of 

model observer in the following aspects: 1) formally define the 

model observer parameterization with input-output features to 

cope with nonlinear and time delay attributes, 2) thorough 

performance evaluation of different deep learning approaches: 

Feed Forward Neural Network (FFNN), Long-Short Term 

Memory (LSTM), and Radial Basis Function Neural Network 

(RBFNN) to find the best model observer architecture, 3) 

prediction evaluation of the model observer. The work in this 

paper is important as a solid foundation for Mb-RL scheme 

research in the future. 

2. Method  

2.1. Overall framework 

Research framework of the paper is as shown in Fig. 2. To 

simulate the dynamics of an output system based on input 

supplied to the system, a model for the simulator is first created. 

To model the system, a nonlinear time-delay MSD model is built 

using differential equations that can each be solved numerically. 

To make training, validation, and testing datasets, a random seed 

controller is used to excite the simulator model. Data frames are 

used to store these datasets. 

The next step is to perform data preprocessing, which includes 

normalization. The development of input-output features for the 

model observer and the construction of various neural network 

architectures with various hyperparameter settings. Using the 

Backpropagation Gradient Descent (BGD) method, the objective 

is to identify the best fit during the training and validation phases. 

The testing stage starts if the model produced by the selected 

hyperparameters satisfies the regression best-fit criteria. 

Predictions evaluations are conducted during the testing phase to 

choose the best model observer. 

 

Fig. 2. Research framework 

2.2. System Modeling 

In the paper, the MSD system is used to represent the nonlinearity 

attribute of the CCS. The nonlinear MSD system is an oscillatory 

system composed of mass springs and damping elements that 

store kinetic and potential energy. This model is widely used in 

various modeling approaches to describe system dynamics, such 

as vehicle-bridge interaction [20], microscopic traffic model [21]. 

Specifically, it is extensively studied in control theory. An 

arbitrary generic free body diagram of the system, complying 

with Newton's second law of motion, is depicted in Fig. 3(a).  

In this context, it is assumed that the nonlinear MSD system 

comprises three masses, denoted as mi = 0.5 kg where i={1,2,3}, 

with the system's output being the positions of these masses, yi 

(m). Notably, there is no measurement data available for the 

position of mass y2. The system input is forces applied to masses 

uj (N), where j={1,3} is the I/O indexes. The system parameters 

include damping dampers di = 0.5 Ns/m and nonlinear springs 

characterized by the function ki = kL x + kNL x3. The linear inertia 

has an uncertainty factor of kL = 200 ± 5 N/m, while the nonlinear 

inertia is represented as kNL = 65 N/m3. Additionally, there is a 

disturbance in the third inertia || dist3 || ≤ 200 N. The differential 

equations of the nonlinear MSD system, formulated according to 

Newton's laws, are provided in Eq. (1), (2) and (3). 
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(1) 

 
(2) 

 
(3) 

Time delay attribute representation and its effect on system I/O 

are illustrated in Fig. 3(b), where τu denotes the system input time 

delay and τs denotes the system output time delay. The input time 

delay affected the output of the system (yt|u(t-τu)) in such a way 

that the output is yt given the input ut with delay τu. The output 

time delay affected the output of the system (y(t-τs)|u(t-τu)) in such a 

way that the output when it arrived at the controller (xt|y(t-τs)) is xt 

given the output yt with delay τs. In the case of CCS, the output 

delay is a discrete delay and does not affect the physical system 

dynamics. Then, we rearranged the differential equation with 

time delay induced system I/O as provided in Eq. (4), (5), (6), (7), 

(8). In this work, we assume that τu = τs = 1 timestep. 

 

(4

) 

 

(5

) 

 

(6

) 

 
(7

) 

 
(8
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(a) Free-body diagram of the 

MSD model  

(b) Illustration of time 

delay induced system I/O 

Fig. 3. System modeling of the MSD system and 

illutstration of time delay induced I/O 

2.3. Data Collection 

The equations are dynamically simulated using the SciPy library 

with a timestep ∆k = 0.001 seconds, an absolute error of 1.0×10-

8, and a relative error of 1.0×10-6 as a simulator of the nonlinear 

time delay MSD model for data collection. The initial conditions 

of the system are steady-state with zero movement and xj = 0. The 

training dataset is collected for 20.000 timesteps/ datapoints with 

a random seed (Fibonacci no. 8) as input. The validation dataset 

is collected for 100.000 timesteps with a random seed (Fibonacci 

no. 10) as input. The testing dataset is collected for 5.000 

timesteps with a random seed (Fibonacci no. 98) as input. Fig. 4 

shows the dataset visualization obtained from the simulator. It is 

notable that the system is highly oscillated and unstable, which 

makes prediction difficult. 

(a) Training dataset 

(b) Validation dataset 

(c) Testing dataset 

Fig. 4. Dataset visualization obtained from the MSD system 

simulator. 

2.4. Data Preprocessing 

The paper employed Z-score normalization [22] to preprocess the 
input dataset, aiming to expedite the training of the LSTM model 
by standardizing it with a mean of 0 and a standard deviation of 
1. This standardization process is represented as 𝑥′ = (𝑥 − 𝜇) / 𝜎, 
where 𝑥′ represents the normalized data, 𝑥 stands for the source 
data, 𝜇 is the dataset's mean, and 𝜎 represents the dataset's 
standard deviation. Z-score normalization was chosen because 
the dataset from the nonlinear time delay MSD system do not 
exhibit extreme outliers in its feature distribution. 

2.5. Model Architecture 

The goal of this study is to make a model observer that can predict 

nonlinearity and time delay in systems like the MSD system that 

are meant for network-based control. This work explores two 

important parts of the data-driven model observer, which are the 

input-output features and the neural network architecture of the 

model. The design of input-output features of the model considers 

a Time Delay Markov Decision Process (TD-MDP), and the 

development of this model observer will be part of the Mb-RL 

research in the future. The TD-MDP formalism with regards to 

the environment and time delay in system input-output, as 

illustrated in Fig. 3(b) is stated in Definition 1 [23].  

𝑚𝑦 1𝑡
= 𝑘𝐿 −2𝑦1𝑡
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Definition 1. TD-MDP(E, τu , τs), E denotes the environment of 

the reinforcement learning agent/ controller, τu denotes the 

system input time delay, and τs denotes the system output time 

delay, represents a nonlinearity, and time delay of CCS can be 

parameterized with a 6-tuple  is an 

augmented version of standard MDP with a 4-tuple 

: 

o Augmented state-spaces: X = Y × U τs+τu, where (τs, τu) ∈ 

N. (9) 

o Action spaces: U = U                                   (10) 

o Initial state distribution:  

(11)  

where  is initial action sequence, and δ is 

the Dirac delta function. 

o State transition distribution: (12) 

where y ∈ Y is the delayed system output, u ∈ U τs+τu is a buffer of 

system input from the last (τu + τs) timestep delay. The reward 

function is excluded from the formalism due to the fact that the 

reward/ cost function parameters value can be provided by the 

model observer and not by the environment.  

With the TD-MDP frame, at each timestep, the model observer 

received the most recent available delayed system output, 

augmented with the buffer of system input from the last (τu + τs) 

timestep delay. Hence, we reformulate the system output received 

by the model observer from Eq. (8) into Eq. (9). The augmented 

state space provides important information about system outputs 

and the sequence of system inputs applied to the system as a result 

of past experience for the model observer. Based on the 

augmented state space formulation, we propose the input-output 

features and architecture layer of the model observer, as shown 

in Error! Reference source not found.. 

 

(9

) 

The parameterization of the dynamic model observer function is 

defined as Fw (ujt, xjt, Δxjt-1,..., Δxjt-(τs+τu)), where w is the neural 

network weights, and there are 4 inputs to the function with 1 

output. ujt is the control data/ input from the controller, xjt is the 

system output received from the environment, Δxjt-1 is the rate of 

change of the system output from previous 1 timestep and 

formulate as Δxjt-1 = xjt − xjt-1, Δxjt-(τs+τu) is the rate of change of 

the system output from previous (τu + τs) timestep and formulate 

as Δxjt-(τs+τu)= xjt − xjt-(τs+τu). The use of dynamics rate of change 

to provide better prediction results for small time steps has been 

shown in previous work by Nagabandi [24]. We utilize the 

dynamics rate of change of the system output from the previous 

1, ..., (τu + τs) time step to provide temporal context of the 

nonlinearity and time delay characteristics for better model-

observer prediction. Since in this work, we assume that τu = τs = 

1 timestep, then there are totally 20 input features to the model, 

and 6 output features from the model.  

 

Fig. 5. Model observer input-output features and layer 

architecture 

The model observer architecture consists of three layers: the 

lambda layer, the network layer, and the dense layer. There are 

three types of network layers that will be considered in the paper: 

FFNN, LSTM, and RBFNN. The FFNN or Multi Layer 

Perceptron (MLP) has been widely employed as a fundamental 

deep learning model. It has demonstrated favorable outcomes in 

capturing intricate relationships among variables and making 

good predictions even in the presence of noisy data [25], [26]. 

The LSTM model is a variant of the Recurrent Neural Network 

(RNN) architecture that is frequently employed in the domain of 

time-series forecasting. An advantageous characteristic of LSTM 

models in the context of time-series forecasting lies in their 

capability to effectively capture and model long-term 

dependencies within the data. This attribute renders LSTMs 

particularly valuable for accurately predicting trends and cycles 

[27]. The RBFNN model is a type of neural network extensively 

considered in neural controller design from the control theory 

community [28]. RBFNN uses a radial basis kernel as an 

activation function with excellent function approximation with 

fewer neurons and robustness to outliers. 

To obtain the best-fit model observer for prediction of nonlinear 

and time-delay systems, comparative analyses of the neural 

network types are conducted. Hyperparameter tuning, employing 

random search, is employed to establish the optimal parameter 

values for various existing methods [29]. The parameter 

configurations for all methods are detailed in Table 1.  

Table 1. Hyperparameter Settings 

Hyperparameter 
Options 

Optimizer Adam (Learning Rate = 0.0003) 

Loss function Mean Squared Error (MSE) 

Training epochs / batch 
size 

100 / 32 

Activation function (all 
layers) 

FFNN, LSTM - Sigmoid, Tanh, 

Leaky ReLU (0.5)  

RBFNN - Radial Basis Function  

Number of nodes (each 

layer) 
5, 10, 15, 25, 50, 75 

Number of hidden layers 1, 2, 3 

Source: Prepared by the author, (2023). 

2.6. Evaluation 

The evaluation process for a model observer is split into two 

stages: training and testing. During training, the model's 

performance is assessed using the Mean Squared Error (MSE) as 

a key metric, with a lower MSE indicating better accuracy in 

predicting data points, as seen in Eq. (10). In the testing stage, 

two performance metrics, Root Mean Square Error (RMSE) and 

Mean Absolute Percentage Error (MAPE), are used, as seen in 

Eq. (11) and (12), respectively. RMSE helps identify outliers and 

  𝑋, 𝑈, 𝜇 , 𝑃 , 𝜏𝑠 , 𝜏𝑢   
 𝑌, 𝑈, 𝜇, 𝑃  
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  𝛿 𝑢0−𝑖 − 𝑐0−𝑖
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𝑇
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, 𝑢𝑡

 𝑡+1 
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, 𝑢𝑡−1
(𝑡)

, ⋯ , 𝑢𝑡−𝜏𝑢−𝜏𝑠−1
(𝑡)

, 𝒖𝒕  
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measures data processing efficiency as it approaches zero. MAPE 

assesses model accuracy, with different categories like MAPE < 

10%, 10% ≤ MAPE < 20%, 20% ≤ MAPE < 50%, and MAPE ≥ 

50% indicating the prediction ability is very good, good, feasible, 

and poor, respectively. Here, N denotes the total dataset, t denotes 

the timestep, x denotes the groundtruth state,  denotes the 

predicted state. 

 

 

(10) 

 

(11) 

 

(12) 

3. Results and Discussion 

The training dataset is standardized before being fed to the neural 

network layer. Both the mean and standard deviation are sampled 

from 20.000 data points. Fig. 5 shows that all 20 input features 

have been normalized with a mean of 0 and a standard deviation 

of 1. The process of balancing the input states on a common scale 

facilitates efficient training of the neural network. 

 

Fig. 5. Normalization result using Z-score method 

Overall, the RBFNN architecture cannot converge to a lower 

MSE, and there was a wide gap in the MSE value between 

training and validation, given the hyperparameter setting values. 

The best performance result of training and validation given the 

hyperparameter settings in each layer is shown in Fig. 6. The 

selection criteria for the best result are not only based on a lower 

MSE but also on the rate of convergence and stability in training 

epochs. It is notable that the best-fit FFNN architecture has two 

hidden layers and 15 nodes for each layer with the LeakyReLU 

activation function. On the other hand, the best-fit LSTM 

architecture is one hidden layer and 25 nodes with the 

LeakyReLU activation function. In summary, considering the 

training result exhibits small fluctuations, the most stable FFNN 

architecture with two hidden layers and 15 nodes is selected to 

test model prediction performance.  

1. FFNN 2. LSTM 

  

  

𝑅𝑀𝑆𝐸 =  
1

𝑁
  𝑥𝑡 − 𝑥 𝑡 

2

𝑁

𝑡=1

 

𝑀𝐴𝑃𝐸 =
1

𝑁
 

 𝑥𝑡 − 𝑥 𝑡  

𝑥𝑡

𝑁

𝑡=1

× 100% 

𝑀𝑆𝐸 =
1

𝑁
  𝑥𝑡 − 𝑥 𝑡 

2

𝑁

𝑡=1

 

∑ layers = 1, 

∑ nodes = 15,  

LeakyReLU, 

MSE = 1.9726e-4 

∑ layers = 1, 

∑ nodes = 25,  

LeakyReLU, 

MSE = 2.3226e-4 

∑ layers = 2, 

∑ nodes = 15,  

LeakyReLU, 

MSE = 2.5163e-4 

∑ layers = 2, 

∑ nodes = 25,  

TanH, 

MSE = 4.5929e-4 
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Fig. 6. Training and validation results 

The prediction output for one step ahead of the model observer 

compared to the testing dataset from timestep 1 to 5000 is 

shown in Fig. 7. It is notable that the model prediction output 

follows ground truth for x1 and x3. The FFNN architecture 

achieved prediction performance for x1 with a RMSE of 

0.0003476 and a MAPE of 8.004%, and prediction 

performance for x3 with a RMSE of 0.0008600 and a MAPE 

of 8.981%. Thus, according to the MAPE performance 

category, the model's prediction ability is very good. 

 

 

Fig. 7. One-step ahead prediction result compared to the testing 
dataset. 

Additionally, we propagate (Np - step ahead prediction) the 

learned dynamics forward in order to make multistep predictions, 

where Np is the length of the propagation horizon. This is an 

important feature to be used for planning the optimal control 

signal for system input in the Mb-RL framework [30], [31]. The 

Np -step ahead prediction of the model is shown in Fig. 8. In this 

case, Np = 5 is chosen as an example for propagation. It is notable 

that with Np = 5, there are visible errors. Further exploration of 

the optimal hyperparameter selection using heuristic algorithms, 

such as Particle Swarm Optimization (PSO) [32], is needed to 

minimize the propagation error and be able to do longer 

propagation. However, the model can predict the trend of the 

dynamic trajectories. Therefore, we can obtain knowledge on 

how long the prediction horizon can be used for control signal 

optimization planning in the Mb-RL framework. The Mb-RL 

uses temporal dynamics learning, in which propagation is done 

over and over again at each timestep to update the calculated 

control signal and make up for the model observer's long 

propagation error. 

 

Fig. 8. 5-step ahead prediction result compared to the testing dataset. 

4. Conclusion 

Nonlinear time-delay systems, such as cloud-based control 

systems (CCS), have widespread applications, including robotics 

and multi-agent systems, but data-driven research that provides 

an advantage in this complex system is in its infancy. Using Deep 

Learning (DL) techniques, this study presents a model observer 

for the prediction of nonlinear time-delay systems. In the context 

of the model observer, the augmented state incorporates the time-

delay Markov decision process as one of its input features. 

Additionally, the model also takes into account other input 

features, including the dynamic rate of change. These additional 

features are included to introduce temporal nonlinearity and 

account for time delays, ultimately improving prediction 

accuracy. Comparative study of DL networks, including FFNN, 

LSTM, RBFNN provide evaluation of predictive performance of 

the model observer. In case of the nonlinear time delay mass 

spring damper system, the FFNN performed better thanother DL 

networks and the model observer also shown to be robust under 

different time delay environment, but it has small fluctuations in 

the predicted data. The study focused on the design of input-

∑ layers = 3, 

∑ nodes = 15,  

LeakyReLU, 

MSE = 3.4977e-4 

∑ layers = 3, 

∑ nodes = 25,  

TanH, 

MSE = 5.5307e-4 
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output features and DL networks of the model observer using 

arbitrary system. Future research should include real-world 

system modeled into the simulator, and utilization of Extended 

Kalman Filter as a conjunction with a trained model to post-

process the model's predictions to improve their smoothness, and 

also to estimate state that is unmeasurable, in this case state y2. 
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