

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 142

Deep Learning Based-Model Observer For Prediction Of Nonlinear

With Time-Delay System

Santo Wijaya1, Muhammad Zarlis 2*, Ford Lumban Gaol 3, Antoni Wibowo4

Submitted: 18/10/2023 Revised: 10/12/2023 Accepted: 15/12/2023

Abstract: Nonlinear time-delay systems, such as cloud-based control systems (CCS), have wide implementations, from robotics to multi-

agent systems, but data-driven research on this complex system is still in its infancy. This study presents a model observer designed for the

prediction of nonlinear time-delay systems utilizing Deep Learning (DL) methods. The time-delay Markov decision process is considered

in the augmented state as an input feature for the model observer. Furthermore, additional input features include the dynamic rate of change

to provide temporal nonlinearity and time delay for better prediction. The time-series prediction analysis is conducted on a dataset from an

arbitrary nonlinear mass spring damper system induced by a time delay in the system input and output. This study thoroughly evaluates

the performance of three DL networks, including the Feed Forward Neural Network (FFNN), Long Short Term Memory (LSTM), and

Radial Basis Function Neural Network (RBFNN). While, the model prediction performance is evaluated with Mean Absolute Percentage

Error (MAPE) and Root Mean Square Error (RMSE) performance metrics. Results show that the FFNN architecture of two hidden layers

with 15 nodes in each layer and the LeakyReLU activation function achieves the best performance, outperforming other network layers

with an average MAPE value of 8.4% and an average RMSE value of 0.0006038. The N-step ahead prediction performance of the model

observer with the proposed features in this study serves as an important fundamental model for the development of control methods based

on a data-driven approach for CCS.

Keywords: Deep learning, Model observer, Nonlinear time delay system, N-step ahead prediction, Time series prediction.

.

1. Introduction

In Industrial Revolution 4.0 and the Industrial Internet of Things

(IIoT), the demand for networked-based control systems with

scalability and interoperability according to the Cyber-Physical

System (CPS) principle is growing rapidly [1]. Nevertheless,

implementing CPS-based control in traditional control systems

presents difficulties due to the fact that the hardware controllers

and control systems, such as proportional integral derivative

(PID) control, were not originally intended for such applications.

The challenges involved in creating efficient control systems in

this context encompass user friendliness, both local and global

networking capabilities, interoperability between control

systems, high-quality control methodologies, and the

coordination of diverse controllers [2]. To overcome this

challenge, Cloud-based Control Systems (CCS) have been

developed [3]. CCS enables the replacement of hardware

controllers as a solution for CPS-based industrial control

systems [4], [5]. However, the migration from hardware

controllers to CCS controllers poses issues in the context of the

control system itself. In hardware control systems, the controlled

entity only considers the process of the system; hence, the

system's dynamics represent the controlled process. Conversely,

in CCS, the controlled entity comprises both the controlled

system and the interconnected internet network. As a result,

there are three crucial attributes in CCS: (1) process

nonlinearity; (2) communication of data with time delays [6-8].

Fig. 1. illustrates the difference in controlled entities between

traditional/ hardware control systems and CCS control systems.

(a) Control system and controlled object in classic

framework

1 Computer Science Department BINUS Graduate Program – Doctor of

Computer Science, Bina Nusantara University, Jakarta 11480,

Indonesia

ORCID ID: 0000-0001-8653-7279
2Information System Management Department BINUS Graduate

Program – Master of Information System Management, Bina Nusantara

University, Jakarta 11480, Indonesia

ORCID ID: 0000-0003-0520-7273
3Computer Science Department BINUS Graduate Program – Doctor of

Computer Science, Bina Nusantara University, Jakarta 11480,

Indonesia
4Computer Science Department BINUS Graduate Program – Master of

Computer Science, Bina Nusantara University, Jakarta 11480,

Indonesia

ORCID ID: 0000-0002-5116-5708

* Corresponding Author Email: muhammad.zarlis@binus.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 143

(b) Control system and controlled object in CCS framework

Fig. 1. Illustration of controller and controlled object comparison.

Based on the outcomes of prior research [9], it was observed that

classical control methods combined with a model-based control

system approach have been employed in the design of CCS. In

this approach, a model observer for the control system is

developed using white box modeling. However, it's evident that

the integration of internet networks with time delays and the

nonlinearity of the physical system transform the control object

of CCS into a complex system [10]. Complex systems are more

effectively modeled using data driven-based modeling

approaches [11]. This approach where decisions are made based

on data, and the behavior of the system is controlled. This strategy

is often used in various complex system, including weather

patterns [12], traffic regulation systems [13], or education [14].

On the other hand, data-driven modeling research, such as neural

network-based control for nonlinear time delay system utilizing

adaptive backstepping or adaptive dynamic surface control

methods, might suffer from the curse of dimensionality [15]. The

Reinforcement Learning (RL) method has been studied in depth

as a solution to the problem, and current research proposes

Model-based RL (Mb-RL) for nonlinear time delay systems

[16],17]. However, model architecture and Input-Output (I/O)

features were not clearly defined. In our previous research [18],

we clearly defined the I/O features with additional rate of change

input and model architecture for the model that is used as an

observer in the proposed Mb-RL scheme. The method is able to

control a highly nonlinear Mass Spring Damper (MSD) system,

but time delay was not considered in the system.In this work, we

consider nonlinearity and time delay attributes in the MSD

system. Time-delay phenomena are commonly encountered in

real-world scenarios, such as systems involving network-based

control. These time delays within nonlinear systems have been

recognized as a factor contributing to the instability of control

systems, as noted in previous studies [19]. The main objective of

the paper is to derive model observer that is able to predict the

nonlinear time delay system. We further explore the design of

model observer in the following aspects: 1) formally define the

model observer parameterization with input-output features to

cope with nonlinear and time delay attributes, 2) thorough

performance evaluation of different deep learning approaches:

Feed Forward Neural Network (FFNN), Long-Short Term

Memory (LSTM), and Radial Basis Function Neural Network

(RBFNN) to find the best model observer architecture, 3)

prediction evaluation of the model observer. The work in this

paper is important as a solid foundation for Mb-RL scheme

research in the future.

2. Method

2.1. Overall framework

Research framework of the paper is as shown in Fig. 2. To

simulate the dynamics of an output system based on input

supplied to the system, a model for the simulator is first created.

To model the system, a nonlinear time-delay MSD model is built

using differential equations that can each be solved numerically.

To make training, validation, and testing datasets, a random seed

controller is used to excite the simulator model. Data frames are

used to store these datasets.

The next step is to perform data preprocessing, which includes

normalization. The development of input-output features for the

model observer and the construction of various neural network

architectures with various hyperparameter settings. Using the

Backpropagation Gradient Descent (BGD) method, the objective

is to identify the best fit during the training and validation phases.

The testing stage starts if the model produced by the selected

hyperparameters satisfies the regression best-fit criteria.

Predictions evaluations are conducted during the testing phase to

choose the best model observer.

Fig. 2. Research framework

2.2. System Modeling

In the paper, the MSD system is used to represent the nonlinearity

attribute of the CCS. The nonlinear MSD system is an oscillatory

system composed of mass springs and damping elements that

store kinetic and potential energy. This model is widely used in

various modeling approaches to describe system dynamics, such

as vehicle-bridge interaction [20], microscopic traffic model [21].

Specifically, it is extensively studied in control theory. An

arbitrary generic free body diagram of the system, complying

with Newton's second law of motion, is depicted in Fig. 3(a).

In this context, it is assumed that the nonlinear MSD system

comprises three masses, denoted as mi = 0.5 kg where i={1,2,3},

with the system's output being the positions of these masses, yi

(m). Notably, there is no measurement data available for the

position of mass y2. The system input is forces applied to masses

uj (N), where j={1,3} is the I/O indexes. The system parameters

include damping dampers di = 0.5 Ns/m and nonlinear springs

characterized by the function ki = kL x + kNL x3. The linear inertia

has an uncertainty factor of kL = 200 ± 5 N/m, while the nonlinear

inertia is represented as kNL = 65 N/m3. Additionally, there is a

disturbance in the third inertia || dist3 || ≤ 200 N. The differential

equations of the nonlinear MSD system, formulated according to

Newton's laws, are provided in Eq. (1), (2) and (3).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 144

(1)

(2)

(3)

Time delay attribute representation and its effect on system I/O

are illustrated in Fig. 3(b), where τu denotes the system input time

delay and τs denotes the system output time delay. The input time

delay affected the output of the system (yt|u(t-τu)) in such a way

that the output is yt given the input ut with delay τu. The output

time delay affected the output of the system (y(t-τs)|u(t-τu)) in such a

way that the output when it arrived at the controller (xt|y(t-τs)) is xt

given the output yt with delay τs. In the case of CCS, the output

delay is a discrete delay and does not affect the physical system

dynamics. Then, we rearranged the differential equation with

time delay induced system I/O as provided in Eq. (4), (5), (6), (7),

(8). In this work, we assume that τu = τs = 1 timestep.

(4

)

(5

)

(6

)

(7

)

(8

)

(a) Free-body diagram of the

MSD model

(b) Illustration of time

delay induced system I/O

Fig. 3. System modeling of the MSD system and

illutstration of time delay induced I/O

2.3. Data Collection

The equations are dynamically simulated using the SciPy library

with a timestep ∆k = 0.001 seconds, an absolute error of 1.0×10-

8, and a relative error of 1.0×10-6 as a simulator of the nonlinear

time delay MSD model for data collection. The initial conditions

of the system are steady-state with zero movement and xj = 0. The

training dataset is collected for 20.000 timesteps/ datapoints with

a random seed (Fibonacci no. 8) as input. The validation dataset

is collected for 100.000 timesteps with a random seed (Fibonacci

no. 10) as input. The testing dataset is collected for 5.000

timesteps with a random seed (Fibonacci no. 98) as input. Fig. 4

shows the dataset visualization obtained from the simulator. It is

notable that the system is highly oscillated and unstable, which

makes prediction difficult.

(a) Training dataset

(b) Validation dataset

(c) Testing dataset

Fig. 4. Dataset visualization obtained from the MSD system

simulator.

2.4. Data Preprocessing

The paper employed Z-score normalization [22] to preprocess the
input dataset, aiming to expedite the training of the LSTM model
by standardizing it with a mean of 0 and a standard deviation of
1. This standardization process is represented as 𝑥′ = (𝑥 − 𝜇) / 𝜎,
where 𝑥′ represents the normalized data, 𝑥 stands for the source
data, 𝜇 is the dataset's mean, and 𝜎 represents the dataset's
standard deviation. Z-score normalization was chosen because
the dataset from the nonlinear time delay MSD system do not
exhibit extreme outliers in its feature distribution.

2.5. Model Architecture

The goal of this study is to make a model observer that can predict

nonlinearity and time delay in systems like the MSD system that

are meant for network-based control. This work explores two

important parts of the data-driven model observer, which are the

input-output features and the neural network architecture of the

model. The design of input-output features of the model considers

a Time Delay Markov Decision Process (TD-MDP), and the

development of this model observer will be part of the Mb-RL

research in the future. The TD-MDP formalism with regards to

the environment and time delay in system input-output, as

illustrated in Fig. 3(b) is stated in Definition 1 [23].

𝑚𝑦 1𝑡
= 𝑘𝐿 −2𝑦1𝑡

+ 𝑦2𝑡
 + 𝑘𝑁𝐿 −𝑦1𝑡

3 + 𝑦2𝑡
− 𝑦1𝑡

3
 + 𝑑 𝑦 2𝑡

− 2𝑦 1𝑡
 + 𝑢1𝑡

𝑚𝑦 2𝑡 = 𝑘𝐿 𝑦1𝑡 − 2𝑦2𝑡 + 𝑦3𝑡 + 𝑘𝑁𝐿 𝑦3𝑡
− 𝑦2𝑡

3
− 𝑦2𝑡 − 𝑦1𝑡

3
 + 𝑑 𝑦 1𝑡 − 2𝑦 2𝑡 + 𝑦 3𝑡

𝑚𝑦 3𝑡
= 𝑘𝐿 𝑦2𝑡 − 𝑦3𝑡 + 𝑘𝑁𝐿 𝑦2𝑡 − 𝑦3𝑡

3
+ 𝑑 𝑦 2𝑡 − 𝑦 3𝑡 + 𝑢3𝑡

− 𝑑𝑖𝑠𝑡3𝑡

𝑣 1𝑡
=

1

𝑚
 𝑘𝐿 −2𝑦1𝑡

+ 𝑦2𝑡
 + 𝑘𝑁𝐿 −𝑦1𝑡

3 + 𝑦2𝑡
− 𝑦1𝑡

3
 + 𝑑 𝑣2𝑡

− 2𝑣1𝑡
 + 𝑢1(𝑡−𝜏𝑢)

𝑣 2𝑡
=

1

𝑚
 𝑘𝐿 𝑦1𝑡

− 2𝑦2𝑡
+ 𝑦3𝑡

 + 𝑘𝑁𝐿 𝑦3𝑡
− 𝑦2𝑡

3
− 𝑦2𝑡

− 𝑦1𝑡

3
 + 𝑑 𝑣1𝑡

− 2𝑣2𝑡
+ 𝑣3𝑡

𝑣 3𝑡
=

1

𝑚
 𝑘𝐿 𝑦2𝑡

− 𝑦3𝑡
 + 𝑘𝑁𝐿 𝑦2𝑡

− 𝑦3𝑡

3
+ 𝑑 𝑣2𝑡

− 𝑣3𝑡
 + 𝑢3(𝑡−𝜏𝑢)

− 𝑑𝑖𝑠𝑡3𝑡

𝑦 1𝑡
= 𝑣1𝑡

; 𝑦
2𝑡

= 𝑣2𝑡; 𝑦 3𝑡
= 𝑣3𝑡

𝑥𝑗 𝑡
= 𝑦𝑗 (𝑡−𝜏𝑠)

|𝑢𝑗 𝑡−𝜏𝑢

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 145

Definition 1. TD-MDP(E, τu , τs), E denotes the environment of

the reinforcement learning agent/ controller, τu denotes the

system input time delay, and τs denotes the system output time

delay, represents a nonlinearity, and time delay of CCS can be

parameterized with a 6-tuple is an

augmented version of standard MDP with a 4-tuple

:

o Augmented state-spaces: X = Y × U τs+τu, where (τs, τu) ∈

N. (9)

o Action spaces: U = U (10)

o Initial state distribution:

(11)

where is initial action sequence, and δ is

the Dirac delta function.

o State transition distribution: (12)

where y ∈ Y is the delayed system output, u ∈ U τs+τu is a buffer of

system input from the last (τu + τs) timestep delay. The reward

function is excluded from the formalism due to the fact that the

reward/ cost function parameters value can be provided by the

model observer and not by the environment.

With the TD-MDP frame, at each timestep, the model observer

received the most recent available delayed system output,

augmented with the buffer of system input from the last (τu + τs)

timestep delay. Hence, we reformulate the system output received

by the model observer from Eq. (8) into Eq. (9). The augmented

state space provides important information about system outputs

and the sequence of system inputs applied to the system as a result

of past experience for the model observer. Based on the

augmented state space formulation, we propose the input-output

features and architecture layer of the model observer, as shown

in Error! Reference source not found..

(9

)

The parameterization of the dynamic model observer function is

defined as Fw (ujt, xjt, Δxjt-1,..., Δxjt-(τs+τu)), where w is the neural

network weights, and there are 4 inputs to the function with 1

output. ujt is the control data/ input from the controller, xjt is the

system output received from the environment, Δxjt-1 is the rate of

change of the system output from previous 1 timestep and

formulate as Δxjt-1 = xjt − xjt-1, Δxjt-(τs+τu) is the rate of change of

the system output from previous (τu + τs) timestep and formulate

as Δxjt-(τs+τu)= xjt − xjt-(τs+τu). The use of dynamics rate of change

to provide better prediction results for small time steps has been

shown in previous work by Nagabandi [24]. We utilize the

dynamics rate of change of the system output from the previous

1, ..., (τu + τs) time step to provide temporal context of the

nonlinearity and time delay characteristics for better model-

observer prediction. Since in this work, we assume that τu = τs =

1 timestep, then there are totally 20 input features to the model,

and 6 output features from the model.

Fig. 5. Model observer input-output features and layer

architecture

The model observer architecture consists of three layers: the

lambda layer, the network layer, and the dense layer. There are

three types of network layers that will be considered in the paper:

FFNN, LSTM, and RBFNN. The FFNN or Multi Layer

Perceptron (MLP) has been widely employed as a fundamental

deep learning model. It has demonstrated favorable outcomes in

capturing intricate relationships among variables and making

good predictions even in the presence of noisy data [25], [26].

The LSTM model is a variant of the Recurrent Neural Network

(RNN) architecture that is frequently employed in the domain of

time-series forecasting. An advantageous characteristic of LSTM

models in the context of time-series forecasting lies in their

capability to effectively capture and model long-term

dependencies within the data. This attribute renders LSTMs

particularly valuable for accurately predicting trends and cycles

[27]. The RBFNN model is a type of neural network extensively

considered in neural controller design from the control theory

community [28]. RBFNN uses a radial basis kernel as an

activation function with excellent function approximation with

fewer neurons and robustness to outliers.

To obtain the best-fit model observer for prediction of nonlinear

and time-delay systems, comparative analyses of the neural

network types are conducted. Hyperparameter tuning, employing

random search, is employed to establish the optimal parameter

values for various existing methods [29]. The parameter

configurations for all methods are detailed in Table 1.

Table 1. Hyperparameter Settings

Hyperparameter
Options

Optimizer Adam (Learning Rate = 0.0003)

Loss function Mean Squared Error (MSE)

Training epochs / batch
size

100 / 32

Activation function (all
layers)

FFNN, LSTM - Sigmoid, Tanh,

Leaky ReLU (0.5)

RBFNN - Radial Basis Function

Number of nodes (each

layer)
5, 10, 15, 25, 50, 75

Number of hidden layers 1, 2, 3

Source: Prepared by the author, (2023).

2.6. Evaluation

The evaluation process for a model observer is split into two

stages: training and testing. During training, the model's

performance is assessed using the Mean Squared Error (MSE) as

a key metric, with a lower MSE indicating better accuracy in

predicting data points, as seen in Eq. (10). In the testing stage,

two performance metrics, Root Mean Square Error (RMSE) and

Mean Absolute Percentage Error (MAPE), are used, as seen in

Eq. (11) and (12), respectively. RMSE helps identify outliers and

 𝑋, 𝑈, 𝜇 , 𝑃 , 𝜏𝑠 , 𝜏𝑢
 𝑌, 𝑈, 𝜇, 𝑃

𝜇 𝑥0 = 𝜇 𝑦0−𝜏𝑠
, 𝑢0−1, ⋯ , 𝑢0−𝜏𝑠−𝜏𝑢

 = 𝜇 𝑦0−𝜏𝑠
 𝛿 𝑢0−𝑖 − 𝑐0−𝑖

𝑢

𝜏𝑢 +𝜏𝑠

𝑖=1

 𝑐0−𝑖
𝑢 𝑖=1:𝜏𝑠+𝜏𝑢

𝑥𝑗 𝑡
= 𝑦𝑗 (𝑡−𝜏𝑠)

 𝑢𝑗 (𝑡−(𝜏𝑠+𝜏𝑢))
 𝑢𝑗 (𝑡− 𝜏𝑠+𝜏𝑢 +1)

 … 𝑢𝑗 (𝑡−𝜏𝑠)

𝑇

𝑃 𝑥𝑡+1|𝑥𝑡 , 𝒖𝒕 = 𝑃 𝑦𝑡+1−𝜏𝑠
, 𝑢𝑡

 𝑡+1
, ⋯ , 𝑢𝑡−𝜏𝑢−𝜏𝑠

 𝑡+1
|𝑦𝑡−𝜏𝑠

, 𝑢𝑡−1
(𝑡)

, ⋯ , 𝑢𝑡−𝜏𝑢−𝜏𝑠−1
(𝑡)

, 𝒖𝒕

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 146

measures data processing efficiency as it approaches zero. MAPE

assesses model accuracy, with different categories like MAPE <

10%, 10% ≤ MAPE < 20%, 20% ≤ MAPE < 50%, and MAPE ≥

50% indicating the prediction ability is very good, good, feasible,

and poor, respectively. Here, N denotes the total dataset, t denotes

the timestep, x denotes the groundtruth state, denotes the

predicted state.

(10)

(11)

(12)

3. Results and Discussion

The training dataset is standardized before being fed to the neural

network layer. Both the mean and standard deviation are sampled

from 20.000 data points. Fig. 5 shows that all 20 input features

have been normalized with a mean of 0 and a standard deviation

of 1. The process of balancing the input states on a common scale

facilitates efficient training of the neural network.

Fig. 5. Normalization result using Z-score method

Overall, the RBFNN architecture cannot converge to a lower

MSE, and there was a wide gap in the MSE value between

training and validation, given the hyperparameter setting values.

The best performance result of training and validation given the

hyperparameter settings in each layer is shown in Fig. 6. The

selection criteria for the best result are not only based on a lower

MSE but also on the rate of convergence and stability in training

epochs. It is notable that the best-fit FFNN architecture has two

hidden layers and 15 nodes for each layer with the LeakyReLU

activation function. On the other hand, the best-fit LSTM

architecture is one hidden layer and 25 nodes with the

LeakyReLU activation function. In summary, considering the

training result exhibits small fluctuations, the most stable FFNN

architecture with two hidden layers and 15 nodes is selected to

test model prediction performance.

1. FFNN 2. LSTM

𝑅𝑀𝑆𝐸 =
1

𝑁
 𝑥𝑡 − 𝑥 𝑡

2

𝑁

𝑡=1

𝑀𝐴𝑃𝐸 =
1

𝑁

 𝑥𝑡 − 𝑥 𝑡

𝑥𝑡

𝑁

𝑡=1

× 100%

𝑀𝑆𝐸 =
1

𝑁
 𝑥𝑡 − 𝑥 𝑡

2

𝑁

𝑡=1

∑ layers = 1,

∑ nodes = 15,

LeakyReLU,

MSE = 1.9726e-4

∑ layers = 1,

∑ nodes = 25,

LeakyReLU,

MSE = 2.3226e-4

∑ layers = 2,

∑ nodes = 15,

LeakyReLU,

MSE = 2.5163e-4

∑ layers = 2,

∑ nodes = 25,

TanH,

MSE = 4.5929e-4

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 147

Fig. 6. Training and validation results

The prediction output for one step ahead of the model observer

compared to the testing dataset from timestep 1 to 5000 is

shown in Fig. 7. It is notable that the model prediction output

follows ground truth for x1 and x3. The FFNN architecture

achieved prediction performance for x1 with a RMSE of

0.0003476 and a MAPE of 8.004%, and prediction

performance for x3 with a RMSE of 0.0008600 and a MAPE

of 8.981%. Thus, according to the MAPE performance

category, the model's prediction ability is very good.

Fig. 7. One-step ahead prediction result compared to the testing
dataset.

Additionally, we propagate (Np - step ahead prediction) the

learned dynamics forward in order to make multistep predictions,

where Np is the length of the propagation horizon. This is an

important feature to be used for planning the optimal control

signal for system input in the Mb-RL framework [30], [31]. The

Np -step ahead prediction of the model is shown in Fig. 8. In this

case, Np = 5 is chosen as an example for propagation. It is notable

that with Np = 5, there are visible errors. Further exploration of

the optimal hyperparameter selection using heuristic algorithms,

such as Particle Swarm Optimization (PSO) [32], is needed to

minimize the propagation error and be able to do longer

propagation. However, the model can predict the trend of the

dynamic trajectories. Therefore, we can obtain knowledge on

how long the prediction horizon can be used for control signal

optimization planning in the Mb-RL framework. The Mb-RL

uses temporal dynamics learning, in which propagation is done

over and over again at each timestep to update the calculated

control signal and make up for the model observer's long

propagation error.

Fig. 8. 5-step ahead prediction result compared to the testing dataset.

4. Conclusion

Nonlinear time-delay systems, such as cloud-based control

systems (CCS), have widespread applications, including robotics

and multi-agent systems, but data-driven research that provides

an advantage in this complex system is in its infancy. Using Deep

Learning (DL) techniques, this study presents a model observer

for the prediction of nonlinear time-delay systems. In the context

of the model observer, the augmented state incorporates the time-

delay Markov decision process as one of its input features.

Additionally, the model also takes into account other input

features, including the dynamic rate of change. These additional

features are included to introduce temporal nonlinearity and

account for time delays, ultimately improving prediction

accuracy. Comparative study of DL networks, including FFNN,

LSTM, RBFNN provide evaluation of predictive performance of

the model observer. In case of the nonlinear time delay mass

spring damper system, the FFNN performed better thanother DL

networks and the model observer also shown to be robust under

different time delay environment, but it has small fluctuations in

the predicted data. The study focused on the design of input-

∑ layers = 3,

∑ nodes = 15,

LeakyReLU,

MSE = 3.4977e-4

∑ layers = 3,

∑ nodes = 25,

TanH,

MSE = 5.5307e-4

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 148

output features and DL networks of the model observer using

arbitrary system. Future research should include real-world

system modeled into the simulator, and utilization of Extended

Kalman Filter as a conjunction with a trained model to post-

process the model's predictions to improve their smoothness, and

also to estimate state that is unmeasurable, in this case state y2.

Acknowledgment

This research is funded by the DRTPM PDD and Bina Nusantara

University with Grant Number [149/VR.RTT/VII/2023].

Author contribution

Conceptualization: Santo Wijaya, Muhammad Zarlis;

Methodology: Santo Wijaya, Muhammad Zarlis; Literature

Search and Data Analysis: Santo Wijaya; Writing: Santo Wijaya;

Review and Editing: Santo Wijaya, Muhammad Zarlis, Ford

Lumban Gaol, Antoni Wibowo; Supervision: Muhammad Zarlis.

Funding statement

This research is funded by the DRTPM PDD and Bina Nusantara

University with Grant Number [149/VR.RTT/VII/2023].

Conflict of interest

The authors declare that they have no known competing financial

interests or personal relationships that could be perceived as

having influenced the work described in this paper.

Additional information

No additional information is available for this paper.

Data and Software Availability Statements

All of the material is owned by the authors, and/or no permissions
are required. The authors will provide the data and software
repository link in case it is requested by the reviewers.

References

[1] P. Zheng et al., “Smart manufacturing systems for Industry 4.0:

Conceptual framework, scenarios, and future perspectives,”

Frontiers of Mechanical Engineering, vol. 13, no. 2, pp. 137–150,

2018, doi: 10.1007/s11465-018-0499-5.

[2] R. Langmann and M. Stiller, “The PLC as a smart service in industry

4.0 production systems,” Applied Sciences, vol. 9, no. 18, p. 3815,

Sep. 2019, doi: 10.3390/app9183815.

[3] Y. Xia, “Cloud control systems,” IEEE/CAA Journal of Automatica

Sinica, vol. 2, no. 2, pp. 134–142, Apr. 2015, doi:

10.1109/jas.2015.7081652.

[4] P. Papcun, E. Kajati, C. Liu, R. Y. Zhong, J. Koziorek, and I.

Zolotova, “Cloud-based control of industrial cyber-physical

systems,” Proceedings of International Conference on Computers

and Industrial Engineering, CIE, pp. 1–14, 2018.

[5] P. Skarin and K.-E. Årzén, “Explicit MPC recovery for cloud

control systems,” 2021 60th IEEE Conference on Decision and

Control (CDC), pp. 5394–5401, Dec. 2021, doi:

10.1109/cdc45484.2021.9683307.

[6] M. S. Darup and T. Jager, “Encrypted Cloud-based Control using

Secret Sharing with One-time Pads,” 2019 IEEE 58th Conference

on Decision and Control (CDC), pp. 7215–7221, Dec. 2019, doi:

10.1109/cdc40024.2019.9029342.

[7] J. Zhang, Y. Xia, Z. Sun, and D. Chen, “Event-Triggered

Disturbance Rejection control for CPSs,” in CRC Press eBooks,

2021, pp. 153–180. doi: 10.1201/9781003260882-12.

[8] H. Yang, S. Ju, Y. Xia, and J. Zhang, “Predictive cloud control for

networked multiagent systems with quantized signals under DOS

attacks,” IEEE Transactions on Systems, Man, and Cybernetics, vol.

51, no. 2, pp. 1345–1353, Feb. 2021, doi:

10.1109/tsmc.2019.2896087.

[9] S. Wijaya, A. Ramadhan, and A. Andhika, “Cloud-based control

systems: a systematic literature review,” International Journal of

Reconfigurable & Embedded Systems (IJRES), vol. 12, no. 1, p. 135,

Mar. 2023, doi: 10.11591/ijres.v12.i1.pp135-148.

[10] A. Dong, Z. Du, and Z. Yan, “Round trip time prediction using

recurrent neural networks with minimal gated unit,” IEEE

Communications Letters, vol. 23, no. 4, pp. 584–587, Apr. 2019,

doi: 10.1109/lcomm.2019.2899603.

[11] W. Hao and Y. Han, “Data Driven Control with Learned Dynamics:

Model-Based versus Model-Free Approach.,” arXiv (Cornell

University), Jun. 2020, [Online]. doi: 10.48550/ARXIV.2006.09543

[12] N. Verba, K.-M. Chao, J. Lewandowski, N. Shah, A. James, and F.

Tian, “Modeling industry 4.0 based fog computing environments for

application analysis and deployment,” Future Generation Computer

Systems, vol. 91, pp. 48–60, Feb. 2019, doi:

10.1016/j.future.2018.08.043.

[13] N. N. Hasibuan, M. Zarlis, and S. Efendi, “Detection and tracking

different type of cars with YOLO model combination and deep sort

algorithm based on computer vision of traffic controlling,” Jurnal

Dan Penelitian Teknik Informatika, vol. 6, no. 1, pp. 210–221, 2021,

doi: 10.33395/sinkron.v6i1.11231.

[14] F. Izhari, M. Zarlis, and S. Sutarman, “Analysis of backpropagation

neural neural network algorithm on student ability based cognitive

aspects,” IOP Conference Series, vol. 725, no. 1, p. 012103, 2020,

doi: 10.1088/1757-899x/725/1/012103.

[15] S. F. Wijaya, F. L. Gaol, A. Wibowo, and L. Wang, “Neural

controller design for a class of nonlinear systems with time-varying

delay: A bibliometric analysis-based short literature review,” 2023

International Conference on Computer Science, Information

Technology and Engineering (ICCoSITE), Feb. 2023, doi:

10.1109/iccosite57641.2023.10127776.

[16] S. Ramstedt, “Real-Time Reinforcement learning,” arXiv.org, Nov.

11, 2019. http://arxiv.org/abs/1911.04448

[17] B. Chen, M. Xu, L. Zhang, and D. Zhao, “Delay-aware model-based

reinforcement learning for continuous control,” Neurocomputing,

vol. 450, pp. 119–128, Aug. 2021, doi:

10.1016/j.neucom.2021.04.015.

[18] S. F. Wijaya, Y. Heryadi, Y. Arifin, W. Suparta, and L. Lukas,

“Long short-term memory (LSTM) model-based reinforcement

learning for nonlinear mass spring damper system control,”

Procedia Computer Science, vol. 216, pp. 213–220, Jan. 2023, doi:

10.1016/j.procs.2022.12.129.

[19] S. J. Yoo, “Neural-Network-Based adaptive resilient dynamic

surface control against unknown deception attacks of uncertain

nonlinear Time-Delay cyberphysical systems,” IEEE Transactions

on Neural Networks and Learning Systems, vol. 31, no. 10, pp.

4341–4353, Oct. 2020, doi: 10.1109/tnnls.2019.2955132.

[20] J. P. Yang, “Theoretical formulation of Three-Mass vehicle model

for Vehicle–Bridge Interaction,” International Journal of Structural

Stability and Dynamics, vol. 21, no. 07, p. 2171004, Apr. 2021, doi:

10.1142/s0219455421710048.

[21] Z. Li, F. A. Khasawneh, X. Yin, A. Li, and Z. Song, “A new

microscopic traffic model using a Spring-Mass-Damper-Clutch

system,” IEEE Transactions on Intelligent Transportation Systems,

vol. 21, no. 8, pp. 3322–3331, Aug. 2020, doi:

10.1109/tits.2019.2926146.

[22] E. I. Altman, “Applications of Distress Prediction Models: What

Have We Learned After 50 Years from the Z-Score Models?,”

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(9s), 142–149 | 149

International Journal of Financial Studies, vol. 6, no. 3, p. 70, Aug.

2018, doi: 10.3390/ijfs6030070.

[23] LiTeng, XuZhiyuan, TangJian, and WangYanzhi, “Model-free

control for distributed stream data processing using deep

reinforcement learning,” Proceedings of the VLDB Endowment, vol.

11, no. 6, pp. 705–718, Feb. 2018, doi: 10.14778/3199517.3199521.

[24] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural

Network Dynamics for Model-Based Deep Reinforcement Learning

with Model-Free Fine-Tuning,” 2018 IEEE International

Conference on Robotics and Automation (ICRA), May 2018, doi:

10.1109/icra.2018.8463189.

[25] F. Kurniawan, S. Sulaiman, S. Konate, and M. A. A. Abdalla, “Deep

learning approaches for MIMO time-series analysis,” International

Journal of Advances in Intelligent Informatics, vol. 9, no. 2, p. 286,

Jul. 2023, doi: 10.26555/ijain.v9i2.1092.

[26] A. H. Fath, F. Madanifar, and M. Abbasi, “Implementation of

multilayer perceptron (MLP) and radial basis function (RBF) neural

networks to predict solution gas-oil ratio of crude oil systems,”

Petroleum, vol. 6, no. 1, pp. 80–91, Mar. 2020, doi:

10.1016/j.petlm.2018.12.002.

[27] Y. Mao, A. Pranolo, A. P. Wibawa, A. B. P. Utama, and F. A.

Dwiyanto, “Robust LSTM with Tuned-PSO and Bifold-Attention

mechanism for analyzing multivariate Time-Series,” IEEE Access,

vol. 10, pp. 78423–78434, Jan. 2022, doi:

10.1109/access.2022.3193643.

[28] B. Jiang, D. Liu, H. R. Karimi, and B. Li, “RBF Neural Network

Sliding Mode Control for Passification of Nonlinear Time-Varying

Delay Systems with Application to Offshore Cranes,” Sensors, vol.

22, no. 14, p. 5253, Jul. 2022, doi: 10.3390/s22145253.

[29] L. Wu, G. Perin, and S. Picek, “I choose you: Automated

hyperparameter tuning for deep learning-based side-channel

analysis,” IEEE Transactions on Emerging Topics in Computing,

pp. 1–12, Jan. 2022, doi: 10.1109/tetc.2022.3218372.

[30] Z. Wu, A. Tran, D. Rincón, and P. D. Christofides, “Machine

learning‐based predictive control of nonlinear processes. Part I:

Theory,” AIChE Journal, vol. 65, no. 11, Aug. 2019, doi:

10.1002/aic.16729.

[31] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced

model predictive control (RL-MPC) for building energy

management,” Applied Energy, vol. 309, p. 118346, Mar. 2022, doi:

10.1016/j.apenergy.2021.118346.

[32] S. Sabzevari, R. Heydari, M. Mohiti, M. Savaghebi, and J.

Rodríguez, “Model-Free neural Network-Based predictive control

for robust operation of power converters,” Energies, vol. 14, no. 8,

p. 2325, Apr. 2021, doi: 10.3390/en14082325.

