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Abstract: Embarking on an exploration of the symbiotic relationship between Machine Learning (ML) and the dynamic field of Nuclear 

Medicine, this comprehensive overview delves into the multifaceted roles and evolving landscape of ML within this specialized domain. 

The narrative spans from the genesis and progressive trajectory of ML, elucidating the varying algorithms that underpin its functionality, 

to a discerning delineation of scenarios where each algorithm finds unique relevance and utility in the realm of nuclear medicine. This 

discourse pivots on an examination of the profound impact ML have already exerted on this domain, elucidating the diverse contributions 

that have reshaped nuclear medicine while candidly addressing the prospects and limitations that await in the future. It unearths the latent 

potentials and realistic constraints surrounding the integration of ML, offering a critical evaluation of its current and potential capabilities, 

paving the way for a holistic understanding of its applications. Amidst the plethora of applications, a focused lens is directed towards the 

burgeoning studies in low-dose Positron Emission Tomography (PET), disease detection, image reconstruction techniques, and the 

development of prognostic and outcome prediction models. These advancements, rooted in ML methodologies, mark a pivotal milestone 

in enhancing diagnostics and prognostics within nuclear medicine, fostering a paradigm shift in patient care and treatment. The culminating 

section of this discourse sets forth a clarion call to action, advocating for standardized reporting measures in study designs and outcomes. 

It advocates for a standardized checklist, a guiding beacon for the research community, fostering consistency and coherence in the 

dissemination of knowledge. Addressing the prevalent issue of variable algorithm presentation in the literature, this segment underscores 

the pressing need for uniformity and standardized conventions in the publication of ML-driven studies within the domain of nuclear 

medicine. In essence, this discourse seeks to paint a panoramic view of the vast landscape where ML converges with nuclear medicine, 

underscoring the need for methodical precision and unified standards in the realm of knowledge dissemination correct. 

Keywords: algorithms; artificial intelligence; Machine Learning; atomic medicine; machine learning; semantic networks; nu- clear 

medicine. 

1. Introduction 

At now, it seems like every conference offers a session on 

ar Machine intelligence or Digital learning, and these terms 

are appearing more frequently in our literature. Although 

they are not new, AI and ML. The phrase” artificial 

intelligence,” which was first used in 1956, describes 

computer programmes that can carry out tasks that would 

typically need Intelligence of people (e.g., visual perception 

or decision making). Machine learning (ML), a branch of 

AI, has its origins in the electronic computers of the 1950s 

[1] and its application to healthcare in the 1960s. [2]. In its 

broadest definition, machine learning Instead of depending 

on the explicit programming experience of the 

programmers, (ML) refers to procedures that are built to 

learn from observations and can afterwards draw statistical 

conclusions based on what has been learned. Like creating 

a precise recipe for baking a cake, a programmer 

traditionally specifies every facet of an algorithm, and 

nothing else is learned after that. ML methods integrate 

analogous to a novice cook using a faulty recipe to make a 

cake, attributes with unknown values at the time of 

programming that are learned by giving the programme 

evidence. Based on his or her observations, the chef must 

choose which ingredients to utilize [3] and in what 

quantities. Why are there more ML approaches for 

diagnostic imaging now? Some of the explanations include 

advances in theory (better algorithms), microsystems (better 

hardware), and the accessibility of a vast amount of training 

data (i.e., big data). Additionally, areas like radiomics [4] 

and radio genomics have showed a lot of potential [5]. Radio 

genomics is the measurement and release of mathematical 

signifier (sometimes referred to as traits) of picture texture, 

form, and different attributes that can be associated with 

many types of data, including histopathologic results and 

clinical consequences.[6] Additionally, radio genomics 

links radiomics traits to genetic information. These 

emerging domains use ML to uncover frequently 

undiscovered links between scientific phenomena.  

2. Mathematical Model 

A mathematical model can be used to translate input 

observations into outputs and to explain correlations 

between data. A mathematical model, for instance, a 
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function that transforms input information from an image 

[6] into an output determination (for example, the 

classification of a scan as either negative or positive for 

amyloid deposition)). [7] Choosing a model is frequently 

based on balancing factors such as accuracy, task fit, and 

practical implementation considerations. Regression issues 

are those where the output observation of the model is 

valued continuously (e.g., the deposits of amyloid), [7] 

whereas classification problems are those where the output 

observation or categories are discrete-valued. Various 

mathematical structures have varying degrees of intricacy or 

propensity for prediction. 

[7] Many models have so-called hyperparameters, 

which are pre-selected parameters that can be changed if 

output falls short. For instance, it might be decided initially 

that each amyloid brain PET result would be categorized as 

either positive or negative for amyloid deposition (i.e., two 

outcomes allowed); however, training may reveal that 

certain scans are ambiguous. [8] A supervised technique is 

ideal for using an ML algorithm to appropriately classify 

data into arcs and triangles because the classification 

scheme is established. Assign- ing data to categories in a 

situation where the categorization scheme is unknown calls 

for an unsupervised method. There may be two clusters of 

data points, according to an observer. [8] A different 

individual, however, may add more clusters to the data 

points. In the end, it could be required to make a preliminary 

educated guess regarding the number of categories. 

Potential models for each scenario are depicted in Figures 

1D–1F. A straight line in Figure 1D draws a distinction 

between the circles and triangles. In this scenario, 

 [5] the mathematical model is linear, axe first b, and the 

machine learning system will discover both the values a and 

b that minimize the amount of incorrect groupings 

(diminishes the price factor). Because there are fewer 

triangles in the vicinity of the circles in Figure 1D, line 2 

costs less than line 1. [9] A potent ML algorithm could 

change a and b to the more advantageous outcome. A linear 

model will invariably result in a large number of incorrect 

classifications in Figure 1E. In this situation, a more 

intricate nonlinear model may be more appropriate for this 

purpose. 

3. Cost Function 

 How closely the model’s output matches the desired out- 

come is determined by a cost function (also known as a loss 

function). The mean square error [7] or misclassification 

rate, for instance, may be the cost function. 

3.1. Data  

Utilizing data, an ML algorithm is trained. Data may consist 

of survival information, image measurements (like as 

SUVRs for a PET study on amyloid), or a mix of these and 

other results. Subgroups of data are frequently established 

for coaching, evaluation, and assessment. Using training 

dataset, the trained model's efficacy is verified., the 

hyperparameters are adjusted using validation data, and the 

model is trained using training data [10]. Known outcomes 

are typically included in the data. For instance, a physician 

may have labelled all of the available amyloid PET scans as 

either. A positive or negative result for amyloidosis. 

Sometimes the conclusions are unknown. Whether the 

results of the scan are either amyloid-positive or -negative, 

[11] they may, for instance, have all the SUVRs for the 

ROIs. Whether the data contain known outputs separates 

two general algorithms in ML. 

3.2. Supervised and Unsupervised Learning 

The algorithms in ML that are trained using predetermined 

results are referred to as supervised learning. [12] For 

instance, an ML algorithm could predict neurologic 

consequences based on earlier SUVR/ROI data. 

Neurological findings and com- bination’s. Supervised 

algorithms, in a sense, establish a mathematical structure's 

unknown parameters. Based on training data with the 

intention of forecasting results for future test results Typical 

supervised machine learning algorithms. [13] Neural 

networks that use artificial neural networks, forests, and 

support vector machines using linear regression are shown 

here. (ANNs). Un- supervised learning describes machine 

learning techniques that use training data with unknowable 

results. These algorithms frequently resolve issues as 

figuring out how to data compaction (lowering the variety 

of attributes required to predict an outcome) or seeing trends 

in the data (e.g., clustering amyloid PET into amyloid-

positive or -negative without prior understanding of the PET 

scan's category). [11] Unsupervised machine learning (ML) 

methods include decomposition of singular values, analysis 

of primary components, and grouping. Theoretically, Figure 

1 demonstrates these ideas. The data points in Figures-1A 

and 1B are divided into shapes and spheres. There is no 

categorization of the data points in Fig.1C. A overseen 

strategy is advised if the goal is to properly train an ML 

system. [12] to classify data into rounds and triangular and 

the classification algorithm is assigning data to categories in 

a situation where the categorization scheme is unknown 

calls for an unsupervised method. There may be two clusters 

of data points, according to an observer. Different user, 

however, may as well add more clusters to the data points.  

In the end, [13] it could be required to make a preliminary 

educated guess regarding the number of categories. 

Potential models for each scenario are depicted in Figures 

1D–1F. A straight line in Figure 1D draws a distinction 

between the circles and triangles. In this scenario, the 

mathematical model is linear, and the machine learning 

system must discover the total values that [14] minimize the 

variety of incorrect categories (reduces the expense factor). 
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Fig. 1. Tasks ML. input measurements in (A and B) 

3.3.  Common ML Algorithms 

There are numerous ML algorithms mostly with created 

assistance developed in various programming languages [6]. 

(e.g., as libraries, toolkits, or packages). The ideal approach 

to employ frequently relies the complexity of the statistical 

model, the task, and the data (The quantity of inclusions and 

operations such as addition that must be made). These 

algorithms vary greatly from one another. [15] 

3.4. Naïve Bayes Classification and Linear Regression 

The automated Bayes classification method technique that 

categorizes traits which adhere to an easily understood 

probabilistic model (For instance, a multivariate regression 

or Normal distribution.) and assumes that the qualities are 

unrelated to one another (allowing for mathematical 

solutions). [10] The distribution's properties, such as the 

average for each class, as well as the deviation of the 

attributes, [13] are known as hyper-parameters. In order to 

classify something, features are examined, and the method 

improves a probabilistic functional category is determined. 

Low computational costs are involved. For instance, Mehta 

et al- retrospective’s [11] investigation utilized a  

 

Fig. 2. Illustration of support vector machine 

multinomial nave Bayes classifier to forecast 90Y 

radioembolization response characteristics. The use of 22 

training scenarios, 8 test cases, and the precision for 

predicting the reaction was probably around 80%. 

Regression line offers the most optimal system. simply to 

the dataset among n-dimensional classifications (thus the 

linearity). [13] regression, which is a super- vised technique 

for regression issues with n-dimensional constant datasets 

characteristics. Total mean square difference between actual 

results and those predicted by the model is used to define 

the cost function. [14] The cost of computing is little. 

3.5. Hierarchical Clustering 

A well-liked machine learning approach for classification 

and regression analysis is called a Support Vector Machine 

(SVM). They function by identifying the ideal decision 

border that divides the various data classes [22]. An SVM 

looks for a hyperplane in a binary classification problem that 

optimizes the margin between the two classes. The margin 

is the separation between the hyperplane and each class's 

nearest points. In addition to decreasing the 

misclassification error, the SVM seeks to identify the 

hyperplane that optimizes this distance. SVMs can still be 

employed even if the data cannot be separated linearly by 

translating it into a higher-dimensional space using a 

process known as the kernel trick. Finding non-linear 

decision boundaries that can better separate the data is made 

possible as a result. [8]. SVMs are superior to other machine 

learning algorithms in a number of ways. They work well in 

high-dimensional spaces, use little memory, and are 

theoretically sound according to the max-margin principle. 

They are also capable of handling tiny and medium-sized 

datasets with ease. They are less prone to overfitting than 

other algorithms and are able to handle non-linear decision 

boundaries through the use of kernel functions the difficulty 

of deciphering the model's decision-making process and the 

sensitivity to the selection [24] of the kernel function and 

hyperparameters are two drawbacks of SVMs. 

3.6. Resolution  

An unsupervised clustering algorithm is hierarchical 

clustering. By pairing and clustering the closest surrounding 

data points until there are no more free data points, 

hierarchical clustering searches for data commonalities.[15] 

A dendrogram is the name given to the resulting structure. 

For instance, Tsujikawa et al. suggested linked findings on 

induced neurotoxicity PET in individuals with cervical 

cancer using a dendrogram [16]. 

3.7. Random Forest  

A machine learning approach called Random Forest can be 

applied to both classification and regression applications. It 

is an ensemble learning technique that creates several 

decision trees during training, then combines their 

predictions during testing to produce a final result. [17] The 

method selects a random selection of features and cases to 

create each tree in the forest (These subsets' sizes can be 

thought of as hyperparameters.) In our example, the 

available ROIs are used to randomly select the subset of 
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instances and the subset of features. [18] and the clinical 

values from amyloid PET scans, respectively. For the left 

pile of cases, the left branch is produced, and for the right 

pile, the right branch is created. The property and attribute 

value that, according to accuracy of classification, most 

effectively distinguishes the cases in the subset into a left 

stack and a right heap is initially identified before each tree 

is formed iteratively. The tree's endpoints, which can also 

be classes, are reached and serve as [12] the outputs when a 

pile only contains examples that belong to a single class (for 

example, all negative or all positive cases) (for classification 

problems). They are all distinct since each tree deals with a 

certain collection of data. Fresh data are provided to each 

tree for classification after the forest has been built; the 

decision is determined by the majority of the trees. [19] 

3.8. ANN’s 

ANNs can solve classification or regression problems and 

are typically (but not always) supervised. ANNs go through 

data in stages (called layers). [20] The micro functional 

units, or neurons, at each layer transmit the outputs to the 

neurons at the level below after they process the input data. 

The weighted summation of the inputs and a bias are 

typically used to start a neuron's calculation. After that, the 

result undergoes a nonlinear transformation. An algorithm 

called backpropagation is employed for training [17] 

(learning weights' values). The most efficient but also 

computationally intensive ML techniques are often ANNs. 

Each cell in a layer is usually linked to just about every 

neuron in the layer above it, which boosts computation time. 

Together, DNNs and CNNs have enabled the current ML 

boom (in fact, The bulk of ANNs used today are both deep 

and multilayer, and there is no distinction between the two 

in the literature. Compared to more conventional ML 

techniques, deep learning often requires less human input 

during the training process. [18] Deep learning is 

unfortunately more difficult and typically involves a lot of 

training data to work well. For instance, more than      a 

million annotated photos were utilized in the ImageNet 

challenge [13]. It is frequently challenging to obtain such a 

huge number of training samples in medical imaging. 

4. Considerable Issues and Discussion 

Which ML algorithm to select or the rationale behind a 

particular algorithm’s use in a publication are two issues that 

can be difficult. There are Several algorithms that actually 

need massive databases [17] particularly when splitting up 

them into groupings for coaching, verification, and 

certification). To start, each machine learning (ML) method 

focuses on a certain task (such as classification, regression, 

dimensionality reduction, or any, other strategies, such as 

data augmentation, have been developed to address this 

issue. Potential biases in datasets are one danger. ANNs 

were accidentally tricked by seemingly unimportant factors 

like lighting conditions in the early days of machine 

learning! [20] The conclusion is that when subgroups are too 

small, even the most merciful Machine learning algorithms 

and the best augmentation techniques will fall short. 

Machine Learning (ML) has remarkably contributed to the 

evolution of nuclear medicine, fundamentally reshaping 

diagnostic and therapeutic approaches. ML's impact in this 

domain is multifaceted, revolutionizing diagnostics through 

advanced imaging techniques. ML algorithms, particularly 

in Positron Emission Tomography (PET) and Single-Photon 

Emission Computed Tomography (SPECT), have enabled 

superior image reconstructions, offering clearer and more 

precise visualizations. Moreover, ML innovations have 

substantially reduced radiation exposure in these imaging 

processes, presenting low-dose imaging solutions without 

compromising diagnostic accuracy, thereby ensuring safer 

protocols for patients. The application of ML algorithms, 

including support vector machines and neural networks, has 

significantly enhanced [25] disease detection and 

classification. By deciphering intricate data patterns, these 

algorithms empower early disease detection and 

classification, critical for timely interventions. Moreover, 

ML’s predictive prowess has led to the development of 

prognosis models and outcome predictions, allowing for 

personalized treatment strategies tailored to individual 

patient needs, improving overall patient care. Furthermore, 

ML has spurred research and development, propelling the 

discovery of new biomarkers and innovative imaging 

methodologies. Collectively, these contributions underscore 

ML’s pivotal role in enhancing the precision and efficacy of 

nuclear medicine, promising a future of more accurate 

diagnostics and tailored therapeutic [23] interventions for 

improved patient outcomes. 

5. Future Scope 

The future scope of Machine Learning (ML) in the context 

of nuclear medicine and medical imaging holds tremendous 

promise yet is confronted by certain challenges that warrant 

attention for advancement. While ML applications in 

medical imaging are still relatively nascent, the fusion of 

hybrid imaging, particularly PET/MR, presents an ideal 

terrain for ML due to its capacity to gather diverse data 

concurrently. However, limitations persist, primarily the 

requirement for vast, high-quality medical databases to 

ensure the accuracy and reliability of ML-driven findings. 

Thrall et al. (2018) [22] proposed the establishment of 

global and national image sharing networks, reference 

databases for evaluating AI programs, and standardized 

practices for refining and validating advanced testing 

protocols, all of which could significantly bolster ML in 

medical imaging. Additionally, as ML becomes more 

pervasive in nuclear medicine, several pertinent issues 

surface, including individual patient responsibilities, data 

privacy, ethical considerations, and the necessity for 
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unbiased procedures [23]. The process for assessing 

algorithms and their applicability to wider patient 

populations with differing data availability remains a critical 

concern that demands resolution for the broader integration 

of ML technologies. Addressing these challenges will be 

crucial for the successful proliferation and responsible 

deployment of ML in medical imaging and nuclear 

medicine. However, the comprehensive exploration and 

resolution of these complexities lie beyond the scope of this 

study and necessitate focused research and collaborative 

efforts for further development in the field. 

6. Conclusion 

This article serves as an introductory exploration of the 

intersection between Machine Learning (ML) and nuclear 

medicine, offering a comprehensive insight into the 

developmental trajectory of ML, a discussion on prevalent 

algorithms, and practical examples illustrating their 

applications within nuclear medicine. Delving into the 

existing contributions of ML in this specialized field, it 

scrutinizes the prospects and constraints shaping the future 

landscape of nuclear medicine. An extraordinary 

breakthrough appears imminent in the medical application 

of nuclear medicine, particularly with the rising popularity 

[26] of Artificial Neural Networks (ANNs) and the 

emergence of novel algorithmic families specifically 

tailored for nuclear medicine applications. The growing 

momentum in shared picture databases is poised to enhance 

the availability of expansive datasets essential for training, 

testing, and validation purposes. Nonetheless, unresolved 

issues loom large, notably pertaining to data ownership, 

deidentification, and the ethical considerations surrounding 

data privacy. Amidst this, the standardized reporting of ML 

algorithm metrics emerges as a crucial necessity for 

establishing a collective understanding of the current status 

quo. The study also envisions recommendations for data 

collection methodologies that can construct infographics, 

elucidating the most suitable machine learning techniques 

for varied applications within nuclear medicine. It 

anticipates providing comprehensive insights into the 

operational scope of ANNs, their diverse therapeutic 

applications, and envisions potential future directions for 

this evolving synergy between ML and nuclear medicine. 

This informative study paves the way for understanding the 

intricate interplay between ML and nuclear medicine, 

aiming to shape future advancements and foster responsible 

integration within this specialized domain. 
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