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Abstract: Capsule networks have emerged as a solution to the limitations faced by convolutional neural networks. This innovative 

architecture focuses on encoding features and capturing spatial relationships within images. Instead of employing max pooling, capsule 

networks introduce a dynamic routing process. The Capsule network is trained to classify each pixel in a hyperspectral image to 

predefined categories with suitable loss functions and techniques for optimization. By effectively modeling the complex information 

embodied in hyperspectral data, capsule networks have the potential to improve the accuracy of hyperspectral image classification, 

making them an invaluable tool for applications such as remote sensing that rely significantly on spectral information. However, the 

original three-layer capsule network with dynamic routing exhibits subpar performance on intricate datasets like CIFAR-10/100, SVHN 

and PaviaU HIS dataset, primarily due to the computationally intensive nature of the dynamic routing algorithm. To tackle these 

challenges, an enhanced capsule network has been proposed, integrating a dense block layer and an "Improved Routing" algorithm. This 

improved capsule network configuration has undergone testing on CIFAR-10 and SVHN datasets, resulting in notable enhancements 

such as improved accuracy, reduced loss rates, and decreased time complexity. 

Keywords: Capsule network, Routing algorithm, Improved Routing algorithm, image classification, Convolution Neural Network, Deep 

Learning. 

1. Introduction 

The widespread application of deep learning in computer 

vision has been driven by the immense volume of 

generated images. Within this domain, a multitude of tasks 

span various domains, including but not limited to image 

classification [1]–[3], scene recognition [4], object 

detection [6], image segmentation [7], and a host of other 

endeavors. 

The hyperspectral imaging spectrometer is used to produce 

hyperspectral images (HSIs).Numerous practical 

applications, include military recognition of targets, 

discovering minerals, and agricultural production, may 

profit from the high level of sensitivity of the HSI, as each 

pixel comprises hundreds of elements of reflected 

information at various frequencies[8].   

Hyperspectral imaging is becoming more and more 

essential in remote sensing owing to the advancement of 

the technology and the distinctive features of HSI data. 

Furthermore, HSI classification—which involves 

allocating a class label to each pixel—is emerging one of 

the primary subjects of HSI research [9].Conversely, it is 

challenging to extract discriminative information from HSI 

for classification given complicated noise effects and 

spectrum variability [10], high dimensionality, 

inadequately labeled training samples ,and major spectral 

mixing of materials  

Convolutional neural networks (CNNs) are among the 

most crucial structures for accomplishing these tasks. 

Starting with the inaugural deep learning network model, 

LeNet, researchers have since crafted a multitude of 

additional CNN architectures, each building upon the last. 

[10], and new versions continue to emerge for performing 

novel visual tasks. These advancements involve the 

conception, design, oversight, and investigation of these 

models. 

In a typical CNN, pooling can significantly reduce 

computational complexity, but it comes at a cost as it 

retains only the maximum or average value of each pixel, 

causing the network to lose precise location information of 

the target. 

Moreover, the network exclusively learns to identify the 

target within the input image and isn't trained to emphasize 

the exact positional details of the target. 

While CNNs have proven effective in accomplishing 

various image tasks, convolution, as the fundamental 

architecture of deep learning image processing, still 

requires improvement. When presented with different 

angled samples of the same object, humans form 

coordinate systems to recognize the images and remember 

the patterns they have learned. In contrast, For 

Convolutional Neural Networks (CNNs) to proficiently 
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identify such variations, they need to learn new 

parameters. 

Although the dynamic routing approach for processing 

capsule information has certain drawbacks in terms of 

training duration and efficiency, particularly when 

confronted with a substantial quantity of capsules, it shares 

similarities with max-pooling, a technique employed for 

feature map handling.[1] This similarity demonstrates that 

the routing method can effectively transfer low-level 

capsule information. A unique routing technique called 

'self-routing' [13] avoids iterative approaches by using an 

additional matrix. It also applies the convolution sliding 

window technique to the input capsule, greatly accelerating 

routing. However, it processes certain information 

repeatedly while ignoring some edge capsule data. 

On traditional simple datasets like MNIST, the original 

CapsNet works admirably [14]. However, the network's 

convolution layer only employs two 9x9 convolution 

kernels, leading to insufficient feature extraction. 

Additionally, a large number of capsules constitute a 

background data entity, which can deceive routing results 

and slow down dynamic routing. 

A new arrangement featuring a trio of dense block layers is 

suggested by the multi-level dense CapsNet.[15]. In 

comparison to ResNet, it can extract richer features from 

complex datasets and reduce the number of parameters by 

linking the blocks of each layer [3]. 

The original CapsNet had the following drawbacks: Two 

central issues require attention. Firstly, the capsule's 

performance is compromised by the features extracted 

from the shallow convolutional network. Secondly, the 

routing technique encounters challenges in achieving 

convergence due to the iterative calculation of the coupling 

coefficient, prompting a reduction in the artificially 

specified number of iterations. Elevating the processing 

efficiency of primary capsules emerges as a critical and 

essential avenue for CapsNet improvement. 

While capsule networks (CapsNets) offer promising 

solutions to address the limitations of traditional 

convolutional neural networks (CNNs), they also face their 

own challenges and limitations. One limitation is the 

additional computational expense introduced by the 

iterations involved in the routing process. The iterative 

nature of dynamic routing increases the computational cost 

compared to the feed-forward process of CNNs. This can 

result in longer training and inference times, making 

CapsNets less efficient for real-time applications or large-

scale datasets [33]. 

Another limitation is the sparsity of capsule layers in 

CapsNets.Within the traditional CapsNet structure, low-

level capsules are restricted to selecting a sole high-level 

capsule for voting, while ignoring the rest..This can lead to 

an uneven distribution of capsules, with some high-level 

capsules being highly activated while others remain 

dormant. 

Furthermore, CapsNets may struggle to achieve optimal 

performance on datasets containing more complex items. 

While CapsNets have shown good performance on simple 

datasets like MNIST, they may face challenges with more 

intricate and diverse datasets. This is because traditional 

CapsNets have limited feature extraction capabilities, and 

adding more capsule layers to improve feature extraction 

can further increase computational costs and memory 

usage due to the complexity of matrix multiplications [31].  

To address these limitations, researchers have proposed 

various improvements and extensions to CapsNets. For 

example, there have been efforts to optimize the routing 

algorithm to reduce computational costs and improve 

scalability. Additionally, architectures such as dynamic 

routing with spatially transformed capsules 

(DynamicRoutings), matrix capsules with EM routing 

(Matrix Capsules), and others have been introduced to 

enhance the feature extraction capabilities and 

performance of CapsNets on complex datasets [1] [31]. It's 

worth noting that the field of CapsNets is still evolving, 

and ongoing research aims to overcome these limitations 

and further refine the architecture for improved 

performance and efficiency. 

This article centers around augmenting the classification 

accuracy of CapsNet while maintaining optimal time 

utilization. To achieve this goal, we must surmount three 

technical hurdles outlined as follows: 

• Mitigating the iteration load of the Dynamic Routing 

(DR) algorithm and proficiently harnessing the 

insights embedded in low-level capsules. 

• Integrating the attributes of capsule vectors into the 

routing algorithm to expedite model training and 

obtain favorable performance. 

• Facilitating feature reutilization when dense blocks 

are employed as feature extractors within CapsNets. 

 Considering these challenges, our article offers significant 

contributions: 

We introduce a novel routing algorithm called "swift 

routing," which functions as a substitute for the DR 

algorithm. This innovative strategy notably curtails 

execution time by 71.2% on the MNIST dataset, while 

marginally enhancing classification accuracy in contrast to 

conventional CapsNets. Furthermore, the deployment of 

CapsNet with the swift routing mechanism showcases its 

resilience when facing affine distortions. 

Dense blocks are incorporated prior to capsule layers to 

serve as feature extractors. This choice is based on the 

superior computational efficiency and feature extraction 
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capabilities of convolutional layers within dense blocks 

compared to capsule layers. 

In summary, our research aims to enhance the 

classification accuracy of CapsNet while maintaining 

favorable time efficiency. Our notable contributions 

involve introducing the improved routing algorithm and 

employing dense blocks as efficient feature extractors 

within CapsNets. 

2. Related Literature 

Capsule networks have been introduced as a potential 

alternative to traditional convolutional neural networks, as 

they offer a better understanding of the hierarchical 

relationships between different features and entities. 

Capsules in different layers work together to represent 

specific features or entities, and they are connected to each 

other through routing algorithms that determine their 

similarity and probability of connection [1]. Dynamic 

routing is a popular routing algorithm used in capsule 

networks. It uses matrix multiplication with transformation 

matrices to predict the similarity between capsules in 

different layers. The utilization of cosine similarity 

facilitates the assessment of similarity between the primary 

capsule layer and the digit capsule layer. While this 

algorithm offers precise predictions and enhances the 

comprehension of hierarchical relationships among 

capsules, it may entail a significant computational cost [2]. 

EM routing is another routing algorithm used in capsule 

networks that is more computationally efficient than 

dynamic routing. It comprises a duo of stages: the M-step 

and the E-step. Activation of the high-level capsule 

transpires when the variance between the low-level capsule 

and the high-level capsule is minimal, while it remains 

inactive when the variance is elevated. [3]. Several studies 

have proposed modifications and improvements to capsule 

networks for specific applications. For instance, a modified 

capsule network has been used to diagnose COVID-19 

from medical imaging [4].  

Another study proposed capsule filter routing between the 

primary capsule layer and the dense block to improve the 

network's performance [5]. Another modification to 

capsule networks is the addition of attention mechanisms 

to improve their interpretability and robustness. Attention 

mechanisms allow the network to focus on specific regions 

of input and assign different weights to different features. 

This can improve the network's ability to distinguish 

between different objects or classes [6]. In these 

applications, capsules represent different aspects of 

language, such as grammar, syntax, and semantics, and are 

connected to each other through routing algorithms to 

capture the relationships between different aspects of 

language [7]. 

Some researchers have delved into amalgamating capsule 

networks with other categories of neural networks,, such as 

recurrent neural networks (RNNs) and attention networks, 

to improve their performance on specific tasks. For 

instance, a capsule-based RNN has been used for time 

series prediction [8], while a capsule-based attention 

network has been used for document classification [9]. 

One recent paper that explores the potential of capsule 

networks for a specific application is "Improved capsule 

routing for weakly labelled sound event detection." In this 

study, parallel convolution layers were used for feature 

extraction, and the output was fed into two capsule layers. 

Subsequently, a recurrent layer was introduced following 

the capsule layer to grasp temporal context information. 

This recurrent layer, in tandem with a fully connected 

layer, was leveraged to compute event activity 

probabilities and acquire understanding of temporal 

context details.[10]. These modifications and 

improvements to capsule networks highlight their 

versatility and potential for a wide range of applications. 

Through enabling a more comprehensive comprehension 

of the hierarchical connections among distinct features and 

entities, capsule networks have the potential to enhance the 

precision and interpretability of neural networks across a 

wide array of domains, spanning from medical imaging to 

natural language processing. Moreover, by combining 

capsule networks with other types of neural networks, 

researchers can create even more powerful models for 

specific tasks, further expanding the range of applications 

for these innovative networks. 

In conclusion, capsule networks offer a promising 

alternative to traditional neural networks, as they provide a 

better understanding of the hierarchical relationships 

between different features and entities. Dynamic routing 

and EM routing are two popular routing algorithms used in 

capsule networks, with EM routing being more 

computationally efficient. Finally, combining capsule 

networks with other types of neural networks, such as 

RNNs and attention networks, has shown improved 

performance on specific tasks. With ongoing research and 

advancements, capsule networks are poised to play an 

important role in the future of deep learning. 

CapsNet has numerous uses in various areas [38][40]. 

Examples include few-shot learning [41], unsupervised 

learning [42], and GANs [43]. In a study by [44], better 

dynamic routing was employed for legal judgment in 

charge prediction. Yang et al. [45] utilized CapsNet to aid 

in the extraction of hierarchical graph features using  

3. Proposed Methodology 

Consider an input image x0 with dimensions 32x32x3. The 

network consists of four layers. The initial layer is a 

convolutional one, characterized by a filter size of 3, a 
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kernel size of 3, a stride of 1, and padding of 1. This 

specific layer generates an output featuring 32 channels. 

The second layer is an Improved Dense Block layer, which 

contains three blocks. Each block consists of three layers, 

and each layer performs two convolutional operations. In 

the first convolution, the kernel size is 1, the stride is 1, 

and the number of output channels is calculated by 

multiplying bn_sizewithgrowth_rate. The subsequent 

convolution employs a kernel size of 3, a stride of 1, and 

padding of 1. The output of each layer in the dense block is 

calculated using the following formula (Eq. 1).  

     k*( β /(n*l))     ……..                                 (1)  

Where k is the input feature maps, β is hyper parameter (it 

should be selected in the range from 2 to 6), n is number of 

layers, l is current layer and also constant values are for 

bn_size(hyperparameter)=4, growth rate = 32. After 

each dense block, there is a transition layer, which includes 

a convolutional layer and an average pooling layer. 

The number of output features from the DenseNet is 

462.Subsequently, the output of the DenseNet is fed into 

the T_caps layer, featuring a kernel size of 3, a stride of 

2,no padding. and a caps_size of 9 (the output channel 

should be multiples of caps_size). The resultant of this 

layer has 32x9 channels. The output of the T_caps layer is 

then given to the high-level capsule layer, which has a 

kernel size of 3, a caps_in_size of 9, and a caps_out_size 

of 9. The resultant of this layer has ten channels, 

representing the ten classes of the output. 

The high-level capsule layer refers to a specific layer in a 

neural network architecture that utilizes capsule networks. 

Capsule networks are designed to overcome some 

limitations of traditional convolutional neural networks 

(CNNs) in capturing spatial hierarchies and handling 

viewpoint variations. 

 In a high-level capsule layer, the outputs of lower-level 

capsules are grouped together to form higher-level 

capsules. Each capsule represents a specific 

3.1. Proposed Routing Algorithm 

3.1.1 Dynamic Routing 

The Dynamic Routing (DR) mechanism in CapsNet aims 

to dynamically generate a sparse tree-like structure, 

imposing a constraint on the weights of capsules. During 

iterative iterations, capsules in a layer allocate their votes 

to a singular parent capsule in the subsequent layer, 

excluding others. This procedure is known as "routing." 

However, this strategy has drawbacks, including potential 

information loss as the routing algorithm may prioritize 

specific capsules over others. For example, when 

considering hand capsules, the algorithm might favor 

finger capsules while overlooking toe capsules. Moreover, 

the routing process imposes a significant computational 

burden due to its iterative nature. 

To address these routing concerns, our goal is to create an 

innovative algorithm that reduces information loss and 

minimizes the computational load tied to iterative 

procedures. 

3.1.2 Improved Routing 

Precisely, the total of votes cast by a low-level capsule 

towards high-level capsules is required to equate to 1. To 

attain this, the softmax function is employed, enabling a 

low-level capsule to primarily allocate its vote to the high-

level capsule with the most significant resemblance. 

The concept of utilizing variance as a measure to evaluate 

the consistency among predictions is easy to grasp. When 

the predictions from lower-level capsules are tightly 

grouped, it implies a consensus in their connection with a 

specific higher-level capsule. In contrast, higher variance 

could signify greater ambiguity or reduced consensus 

among the predictions. This approach provides a 

straightforward way to gauge the level of agreement within 

a system of capsules, offering insights into their overall 

reliability and cohesion. 
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Fig. 1.  Proposed Capsule Network Architecture 

 

Fig. 2. Capsule Network Activation Filter 

3.1.3 Improved Routing Algorithm 

According to Improved Routing, the variance of votes is 

used to determine the activation of high-level capsules in 

the proposed "Improved Routing" method. Thus, the sum 

of votes and the distribution of votes are considered 

simultaneously. 

Algorithm 1 Improved Routing 

Input: ui 

Output: vj 

1. Require:ci,pi, Φi,j 

2. pri,j,Φi,jci 

3. for r iteration, do 

4. meanj = ∑ipipri,j/ ∑i pi 

5. std_devj= ∑i,(pi,j- meanj)2  / ∑i,pi 

6. correlation = ∑i,(pi,j- meanj)/std_devj 

7. pj =correlationj 

8. cj=meanj 

9. Return: cj,pj 
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3.2 Components of Improved Routing 

Input: The algorithm takes the child capsule vectors (ci) 

from the previous layer and the transformation matrix (Φi,j) 

that provides spatial information about the features. The 

transformation matrix is a 4x4 matrix with 16 values 

representing features such as position, size, orientation, 

colour, and texture. These values act as weights for the 

low-level capsules in relation to the high-level capsules. 

Computation of pri,j: The algorithm calculates pri,jby 

multiplying the child capsule vectors (ci) with the 

corresponding transformation matrix (Φi,j). This step 

combines the information from the child capsules with the 

spatial information provided by the transformation matrix. 

Iterative computation of mean, standard deviation, and 

correlation: The algorithm iteratively computes the mean 

(mean), standard deviation (std_devj), and correlation 

(correlation) for each high-level capsule. The mean is 

calculated as the sum of the products of pri,jand the high-

level capsule values, divided by the sum of pri,j. The 

standard deviation is calculated based on the deviation of 

each pri,jfrom the mean, and the correlation is the ratio of 

the deviation to the standard deviation. 

Calculation of pj and cj: The algorithm sets the values of 

the high-level capsule (pj) as the calculated correlation 

(correlation) and the mean (cj) as the calculated mean 

(mean). These values represent the direction and degree of 

the relationship between the high-level capsule and the 

child capsules. 

Output: The algorithm returns the values of cj and pj for 

each high-level capsule. The final layer is the Parent 

Capsule Layer, which is activated if the predictions of the 

child capsule cluster tightly in the high-dimensional space 

of the parent capsule. For example, if the features present 

in the child capsules match the features of a cat image, 

then the cat image in the parent capsule will be activated. 

Additionally, the output of the DenseNet is fed into the 

T_caps layer, also known as the Primary layer. This layer 

uses a kernel size of 3, a stride of 2, padding of 0, and a 

caps_size of 9 (the output channel should be multiples of 

caps_size). The T_caps layer outputs 32x9 channels. The 

output of this layer is then fed into the high-level capsule 

layer, which uses a kernel size of 3, a caps_in_size of 9, 

and a caps_out_size of 9. The resulting output of this layer 

has ten channels, representing the ten classes of the output. 

3.3  Advantages of the Improved Routing 

Improved Routing: The algorithm introduces a new routing 

process that utilizes correlation instead of variance used in 

existing routing algorithms. Correlation measures the 

strength of the relationship between capsules, providing a 

more accurate representation of the capsule clusters. 

Reduced Loss and Time Efficiency: By using correlation 

and the iterative process, the algorithm aims to reduce loss 

and improve time efficiency compared to traditional 

routing algorithms. This is achieved by better capturing the 

relationships and dependencies between capsules, leading 

to more effective clustering. 

Improvised Dense Block: The algorithm proposes an 

improved dense block that addresses the issue of redundant 

features in traditional DenseNet. By utilizing Eq. (1), the 

algorithm removes redundant features, leading to a more 

efficient and compact representation of features. 

The new Routing algorithm has been proposed and tested 

on PaviaU, CIFAR-10 and SVHN datasets. In this Routing 

algorithm, we have used correlation and iteration processes 

by comparison with the Existing Routing algorithm. In 

existing routing algorithms, they have used the variance to 

form the cluster [3].  

The variance measures the spread between the capsules. 

But the correlation measures the strength of the 

relationship between the capsules. By this algorithm, we 

have reduced the Loss and Time efficiency on the datasets 

PaviaU, CIFAR-10/100 ,FMNIST and SVHN. An 

Improvised Dense block has been proposed to reduce the 

redundant features, which is the main drawback of 

traditional denseness.  

Table 1. Comparison of Algorithms for Time Efficiency 

Datasets 
Dynamic 

Routing 

EM 

Routing 

Fast 

Routing 

Improved  

Routing 

CIFAR-10  2.85 3.15 3.00 2.73 

SVHN  3.79 3.32 3.44 2.32 

CIFAR-100 2.85 3.15 3.00 2.73 

PaviaU 3.55 3.85 3.47 2.64 

 

Fig. 3. Comparison of Algorithms for Time Efficiency 
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When comparing time efficiency on the CIFAR-10 dataset, 

the Improved Routing algorithm exhibits increased 

computation time compared to the Fast Routing algorithm. 

However, on the PaviaU and SVHN datasets, the Improved 

Routing algorithm demonstrates less computation time. 

Table 2. Accuracy of Algorithms 

Datasets Dynamic 

Routing 

EM 

Routing 

Fast 

Routing 

Improved 

Routing 

CIFAR-10  0.69   0.46   0.91   0.97 

SVHN  0.83   0.55   0.95   0.95 

CIFAR-

100 

0.69   0.46   0.91   0.94 

PaviaU 0.72   0.52 0.86 0.93 

 

 Fig. 4. Accuracy of Algorithms 

By comparing the accuracy on the CIFAR-10/100 dataset, 

the Improved Routing algorithm achieves a higher 

accuracy, increasing by 0.2 percentage points compared to 

the Fast Routing algorithm. Similarly, on the PaviaU, 

SVHN datasets, the Improved Routing algorithm 

demonstrates improved accuracy, increasing by 0.1 

percentage points compared to the Fast Routing algorithm. 

By comparing the error rate on both the PaviaU, CIFAR-

10/100 , FMNIST and SVHN datasets, the Improved 

Routing algorithm yields the same results as the Fast 

Routing algorithm. There is no significant difference in the 

error rates between the two algorithms for these datasets. 

 

 

 

 

Table 3 . Loss 

.Datasets Dynamic 

Routing 

EM 

Routing  

Fast 

Routing  

Improved  

Routing 

CIFAR-10 7.51 5.12 1.23 0.47 

SVHN 6.36 4.95 0.41 0.05 

CIFAR -

100 
7.50 5.09 1.11 0.49 

Pavia

U 
5.37 5.02 1.05 0.09 

 

Fig. 5 . Loss Rate 

By comparing the loss on the CIFAR-10 dataset, the 

Improved Routing algorithm shows improved results, 

reducing the loss by a difference of 0.76 compared to the 

Fast Routing algorithm. Similarly, on the PaviaU and 

SVHN datasets, the Improved Routing algorithm 

demonstrates improved results, reducing the loss by a 

difference of 0.36 compared to the Fast Routing algorithm. 

3.4 Comparison results on Improvised Dense Block by 

varying Bn_size value 

In the evaluation of the Improvised Dense Block, we 

assessed the impact of varying the Bn_size value on the 

performance. The Bn_size parameter determines the 

number of channels in the bottleneck layer of the block. By 

altering this value, we can adjust the capacity and 

complexity of the block. 

Our goal was to examine how different Bn_size values 

affect the accuracy, error rate, loss, and number of 

parameters in the model. By analyzing these metrics, we 

can understand the trade-offs and determine the optimal 

Bn_size value for the specific task. 

We conducted the evaluation on the PaviaU, CIFAR-10 

and SVHN datasets using the proposed Improved Routing 

algorithm. We compared the performance of the model 
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across different Bn_size values, including 2, 4, and 6. This 

range of values allowed us to assess the impact of 

increasing Bn_size on the model's performance. 

Now, let's explore the comparison results obtained by 

varying the Bn_size value in the Improvised Dense Block. 

Table 4. Time Efficiency of Learning Parameters 

Datasets Bn_size=2 Bn_size=4 Bn_size=6 

CIFAR-10  5.35  3.00  2.71 

SVHN  3.48  2.90  2.34 

CIFAR -

100 

5.38 3.07 
2.74 

PaviaU 2.78 2.56 2.62 

Table 5. Accuracy 

Datasets Bn_size=2 Bn_size=4 Bn_size=6 

CIFAR-10  0.91 0.91 0.97 

SVHN  0.95 0.95 0.95 

CIFAR-

100 

0.87 0.87 0.94 

PaviaU 0.95 0.95 0.93 

 

Table 6.Error Rate 

Datasets Bn_size=2 Bn_size=4 Bn_size=6 

CIFAR-10  0.08 1.23 0.08 

SVHN  0.07 0.04 0.04 

CIFAR - 

100 

0.09 1.10 0.08 

PaviaU 0.08 0.09 0.06 

 

 

Table 7. Loss 

Datasets Bn_size=2 Bn_size=4 Bn_size=6 

CIFAR-10  0.47 0.42 0.47 

SVHN  0.10 0.31 0.05 

CIFAR-100 0.45 0.40 0.49 

PaviaU 0.12 0.12 0.09 

 

When the Bn_size value is increased in the Improvised 

Dense Block, it allows for capturing and processing more 

information within each block. This increased capacity can 

lead to improved  performance as the model can learn 

more intricate patterns and features. However, it comes at 

the cost of increased computational and memory 

requirements due to the larger number of parameters. 

By increasing the Bn_size, the model becomes more 

capable of capturing fine-grained details and nuances in 

the data, which can contribute to a reduction in both loss 

and error rates. The additional parameters enable the model 

to better fit the training data, resulting in improved 

generalization and lower error rates. It's important to strike 

a balance between model complexity and performance.  

While a higher Bn_size may lead to better results in terms 

of loss and error rate, it also increases the risk of 

overfitting, especially if the dataset is limited. Therefore, 

it's crucial to consider the available resources, 

computational constraints, and the specific requirements of 

the application when deciding on the appropriate Bn_size 

value for the Improvised Dense Block. 

4   Results and Discussions 

4.1 Dataset 

Numerous experiments were conducted on two datasets to 

substantiate the efficacy of our model. In place of MNIST, 

we opted for the CIFAR-10 dataset, which shares the same 

image size, training set division, and test set division. The 

CIFAR-10 dataset encompasses 60,000 training images 

and 10,000 test images, each measuring 32x32 pixels. 

Diverging from MNIST, CIFAR-10 presents a greater 

complexity due to its diverse object composition. 

Furthermore, the SVHN dataset, a collection of digit 

images, was also employed, featuring 73,257 training 

images and 26,032 test images. The Pavia University 

Hyperspectral Image (HSI) dataset finds widespread 

application in the domain of remote sensing and analysis of 

hyperspectral imagery. It is frequently employed for the 

assessment and validation of algorithms pertaining to tasks 
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such as image classification, identification of targets, and 

various other analyses within the framework of 

hyperspectral imaging. The spectral composition differs 

between Pavia Centre, with 102 bands, and Pavia 

University, with 103 bands. Pavia Centre presents an 

image size of 1096 by 1096 pixels, while Pavia University 

is 610 by 610 pixels. 

4.2 Experimental Setup 

Within our model, we designated the total number of 

epochs as 40, set the batch size at 50, and initialized the 

learning rate to 0.001. The complete network architecture 

was implemented using PyTorch, executed on a Tesla T4 

with 16GB RAM within Google Colaboratory.Employing 

data augmentation methods, we subjected the input images 

to techniques such as random horizontal flipping. To 

ensure robustness, we conducted numerous experiments 

for each scenario, omitting the extreme values from the 

outcomes and subsequently computing the average value to 

establish the final result. 

4.3 Experiment Metrics 

When conducting research or comparing routing 

algorithms in capsule networks, some common metrics to 

consider might be: 

1. Classification Accuracy: The proportion of correctly 

classified instances (e.g., images) in the test set. 

2. Reconstruction Loss: Capsule networks often include 

a reconstruction task to ensure that important 

information is preserved during encoding.The 

reconstruction loss gauges the difference between the 

input data and the data reconstructed from the capsule 

representations. 

3. Routing Iterations: The number of routing iterations 

used during the dynamic routing process. More 

iterations might lead to more accurate results, but it 

could also increase computational overhead. 

4. Training Time: The time it takes to train the capsule 

network with a specific routing algorithm. This metric 

is important for practical implementation 

considerations. 

   4.4  Experiment Results 

We applied the improved Routing algorithm in conjunction 

with refined dense blocks to the CIFAR-10 and SVHN 

datasets. The CIFAR-10 dataset encompasses 60,000 color 

images, each measuring 32x32 pixels, divided across ten 

classes with 6,000 images per class. This dataset is further 

segregated into 50,000 training images and 10,000 test 

images. On the other hand, the SVHN dataset is tailored 

for digit classification and comprises 600,000 color 

images, also measuring 32x32 pixels. 

We implemented and compared the proposed algorithm 

with an improvised Dense Block against the CIFAR-10 

and SVHN datasets. The assessment encompassed 

conventional Dynamic Routing, EM Routing, Fast 

Routing, and Improved Routing, with evaluations 

conducted using metrics such as time efficiency, error rate, 

accuracy, and loss. The outcomes conclusively illustrated 

that the proposed method surpassed the performance of the 

other techniques. 

5   Conclusion and future work 

As Capsule Networks can extract contextual and 

hierarchical information from hyperspectral data they are 

able to offer enhanced processing efficiency for 

hyperspectral images (HSI).The time and effort needed for 

data preparation can be decreased by using feature learning 

process to generate preprocessing which is more automated 

and efficient.By inevitably supporting the spectral 

parameters, CapsNets can better take advantage of the 

multi-dimensional characteristics of HSI, resulting in 

enhanced information extraction. Additionally, they only 

focus on extracting features from images and do not 

consider their position, size, and orientation. 

To tackle these challenges, we suggest the utilization of 

capsule networks for image classification. Nevertheless, 

the dynamic routing algorithm employed between the 

primary and digit capsule layers within capsule networks 

necessitates intricate computations. To reduce the 

computational burden, we propose an Improved Routing 

algorithm. 

 By comparing the existing and proposed algorithms, we 

infer that the capsule network with the proposed algorithm 

outperforms traditional dynamic routing, EM routing, and 

fast routing algorithms. We observe an improvement in 

classification performance compared to the original 

capsule network. In forthcoming endeavors, our objective 

is to refine the feature extraction phase of the capsule 

network to effectively manage intricate datasets. 
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