

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 79

An Improved Routing based Capsule Network for Hyperspectral

Image Classification

B. Thiyagarajan1, M. Thenmozhi2, K. Revathy3

Submitted: 18/09/2023 Revised: 18/11/2023 Accepted: 28/11/2023

Abstract: Capsule networks have emerged as a solution to the limitations faced by convolutional neural networks. This innovative

architecture focuses on encoding features and capturing spatial relationships within images. Instead of employing max pooling, capsule

networks introduce a dynamic routing process. The Capsule network is trained to classify each pixel in a hyperspectral image to

predefined categories with suitable loss functions and techniques for optimization. By effectively modeling the complex information

embodied in hyperspectral data, capsule networks have the potential to improve the accuracy of hyperspectral image classification,

making them an invaluable tool for applications such as remote sensing that rely significantly on spectral information. However, the

original three-layer capsule network with dynamic routing exhibits subpar performance on intricate datasets like CIFAR-10/100, SVHN

and PaviaU HIS dataset, primarily due to the computationally intensive nature of the dynamic routing algorithm. To tackle these

challenges, an enhanced capsule network has been proposed, integrating a dense block layer and an "Improved Routing" algorithm. This

improved capsule network configuration has undergone testing on CIFAR-10 and SVHN datasets, resulting in notable enhancements

such as improved accuracy, reduced loss rates, and decreased time complexity.

Keywords: Capsule network, Routing algorithm, Improved Routing algorithm, image classification, Convolution Neural Network, Deep

Learning.

1. Introduction

The widespread application of deep learning in computer

vision has been driven by the immense volume of

generated images. Within this domain, a multitude of tasks

span various domains, including but not limited to image

classification [1]–[3], scene recognition [4], object

detection [6], image segmentation [7], and a host of other

endeavors.

The hyperspectral imaging spectrometer is used to produce

hyperspectral images (HSIs).Numerous practical

applications, include military recognition of targets,

discovering minerals, and agricultural production, may

profit from the high level of sensitivity of the HSI, as each

pixel comprises hundreds of elements of reflected

information at various frequencies[8].

Hyperspectral imaging is becoming more and more

essential in remote sensing owing to the advancement of

the technology and the distinctive features of HSI data.

Furthermore, HSI classification—which involves

allocating a class label to each pixel—is emerging one of

the primary subjects of HSI research [9].Conversely, it is

challenging to extract discriminative information from HSI

for classification given complicated noise effects and

spectrum variability [10], high dimensionality,

inadequately labeled training samples ,and major spectral

mixing of materials

Convolutional neural networks (CNNs) are among the

most crucial structures for accomplishing these tasks.

Starting with the inaugural deep learning network model,

LeNet, researchers have since crafted a multitude of

additional CNN architectures, each building upon the last.

[10], and new versions continue to emerge for performing

novel visual tasks. These advancements involve the

conception, design, oversight, and investigation of these

models.

In a typical CNN, pooling can significantly reduce

computational complexity, but it comes at a cost as it

retains only the maximum or average value of each pixel,

causing the network to lose precise location information of

the target.

Moreover, the network exclusively learns to identify the

target within the input image and isn't trained to emphasize

the exact positional details of the target.

While CNNs have proven effective in accomplishing

various image tasks, convolution, as the fundamental

architecture of deep learning image processing, still

requires improvement. When presented with different

angled samples of the same object, humans form

coordinate systems to recognize the images and remember

the patterns they have learned. In contrast, For

Convolutional Neural Networks (CNNs) to proficiently

1Research Scholar, Department of Computer Science and Engineering,

Puducherry Technological University, Puducherry – 605014, India.
2Associate Professor, Department of Computer Science and Engineering,

Puducherry Technological University, Puducherry – 605014, India.
3PG Student, Department of Computer Science and Engineering,

Puducherry Technological University, Puducherry – 605014, India.

*Corresponding Author Email: thiyagarajan.b@pec.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 80

identify such variations, they need to learn new

parameters.

Although the dynamic routing approach for processing

capsule information has certain drawbacks in terms of

training duration and efficiency, particularly when

confronted with a substantial quantity of capsules, it shares

similarities with max-pooling, a technique employed for

feature map handling.[1] This similarity demonstrates that

the routing method can effectively transfer low-level

capsule information. A unique routing technique called

'self-routing' [13] avoids iterative approaches by using an

additional matrix. It also applies the convolution sliding

window technique to the input capsule, greatly accelerating

routing. However, it processes certain information

repeatedly while ignoring some edge capsule data.

On traditional simple datasets like MNIST, the original

CapsNet works admirably [14]. However, the network's

convolution layer only employs two 9x9 convolution

kernels, leading to insufficient feature extraction.

Additionally, a large number of capsules constitute a

background data entity, which can deceive routing results

and slow down dynamic routing.

A new arrangement featuring a trio of dense block layers is

suggested by the multi-level dense CapsNet.[15]. In

comparison to ResNet, it can extract richer features from

complex datasets and reduce the number of parameters by

linking the blocks of each layer [3].

The original CapsNet had the following drawbacks: Two

central issues require attention. Firstly, the capsule's

performance is compromised by the features extracted

from the shallow convolutional network. Secondly, the

routing technique encounters challenges in achieving

convergence due to the iterative calculation of the coupling

coefficient, prompting a reduction in the artificially

specified number of iterations. Elevating the processing

efficiency of primary capsules emerges as a critical and

essential avenue for CapsNet improvement.

While capsule networks (CapsNets) offer promising

solutions to address the limitations of traditional

convolutional neural networks (CNNs), they also face their

own challenges and limitations. One limitation is the

additional computational expense introduced by the

iterations involved in the routing process. The iterative

nature of dynamic routing increases the computational cost

compared to the feed-forward process of CNNs. This can

result in longer training and inference times, making

CapsNets less efficient for real-time applications or large-

scale datasets [33].

Another limitation is the sparsity of capsule layers in

CapsNets.Within the traditional CapsNet structure, low-

level capsules are restricted to selecting a sole high-level

capsule for voting, while ignoring the rest..This can lead to

an uneven distribution of capsules, with some high-level

capsules being highly activated while others remain

dormant.

Furthermore, CapsNets may struggle to achieve optimal

performance on datasets containing more complex items.

While CapsNets have shown good performance on simple

datasets like MNIST, they may face challenges with more

intricate and diverse datasets. This is because traditional

CapsNets have limited feature extraction capabilities, and

adding more capsule layers to improve feature extraction

can further increase computational costs and memory

usage due to the complexity of matrix multiplications [31].

To address these limitations, researchers have proposed

various improvements and extensions to CapsNets. For

example, there have been efforts to optimize the routing

algorithm to reduce computational costs and improve

scalability. Additionally, architectures such as dynamic

routing with spatially transformed capsules

(DynamicRoutings), matrix capsules with EM routing

(Matrix Capsules), and others have been introduced to

enhance the feature extraction capabilities and

performance of CapsNets on complex datasets [1] [31]. It's

worth noting that the field of CapsNets is still evolving,

and ongoing research aims to overcome these limitations

and further refine the architecture for improved

performance and efficiency.

This article centers around augmenting the classification

accuracy of CapsNet while maintaining optimal time

utilization. To achieve this goal, we must surmount three

technical hurdles outlined as follows:

• Mitigating the iteration load of the Dynamic Routing

(DR) algorithm and proficiently harnessing the

insights embedded in low-level capsules.

• Integrating the attributes of capsule vectors into the

routing algorithm to expedite model training and

obtain favorable performance.

• Facilitating feature reutilization when dense blocks

are employed as feature extractors within CapsNets.

 Considering these challenges, our article offers significant

contributions:

We introduce a novel routing algorithm called "swift

routing," which functions as a substitute for the DR

algorithm. This innovative strategy notably curtails

execution time by 71.2% on the MNIST dataset, while

marginally enhancing classification accuracy in contrast to

conventional CapsNets. Furthermore, the deployment of

CapsNet with the swift routing mechanism showcases its

resilience when facing affine distortions.

Dense blocks are incorporated prior to capsule layers to

serve as feature extractors. This choice is based on the

superior computational efficiency and feature extraction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 81

capabilities of convolutional layers within dense blocks

compared to capsule layers.

In summary, our research aims to enhance the

classification accuracy of CapsNet while maintaining

favorable time efficiency. Our notable contributions

involve introducing the improved routing algorithm and

employing dense blocks as efficient feature extractors

within CapsNets.

2. Related Literature

Capsule networks have been introduced as a potential

alternative to traditional convolutional neural networks, as

they offer a better understanding of the hierarchical

relationships between different features and entities.

Capsules in different layers work together to represent

specific features or entities, and they are connected to each

other through routing algorithms that determine their

similarity and probability of connection [1]. Dynamic

routing is a popular routing algorithm used in capsule

networks. It uses matrix multiplication with transformation

matrices to predict the similarity between capsules in

different layers. The utilization of cosine similarity

facilitates the assessment of similarity between the primary

capsule layer and the digit capsule layer. While this

algorithm offers precise predictions and enhances the

comprehension of hierarchical relationships among

capsules, it may entail a significant computational cost [2].

EM routing is another routing algorithm used in capsule

networks that is more computationally efficient than

dynamic routing. It comprises a duo of stages: the M-step

and the E-step. Activation of the high-level capsule

transpires when the variance between the low-level capsule

and the high-level capsule is minimal, while it remains

inactive when the variance is elevated. [3]. Several studies

have proposed modifications and improvements to capsule

networks for specific applications. For instance, a modified

capsule network has been used to diagnose COVID-19

from medical imaging [4].

Another study proposed capsule filter routing between the

primary capsule layer and the dense block to improve the

network's performance [5]. Another modification to

capsule networks is the addition of attention mechanisms

to improve their interpretability and robustness. Attention

mechanisms allow the network to focus on specific regions

of input and assign different weights to different features.

This can improve the network's ability to distinguish

between different objects or classes [6]. In these

applications, capsules represent different aspects of

language, such as grammar, syntax, and semantics, and are

connected to each other through routing algorithms to

capture the relationships between different aspects of

language [7].

Some researchers have delved into amalgamating capsule

networks with other categories of neural networks,, such as

recurrent neural networks (RNNs) and attention networks,

to improve their performance on specific tasks. For

instance, a capsule-based RNN has been used for time

series prediction [8], while a capsule-based attention

network has been used for document classification [9].

One recent paper that explores the potential of capsule

networks for a specific application is "Improved capsule

routing for weakly labelled sound event detection." In this

study, parallel convolution layers were used for feature

extraction, and the output was fed into two capsule layers.

Subsequently, a recurrent layer was introduced following

the capsule layer to grasp temporal context information.

This recurrent layer, in tandem with a fully connected

layer, was leveraged to compute event activity

probabilities and acquire understanding of temporal

context details.[10]. These modifications and

improvements to capsule networks highlight their

versatility and potential for a wide range of applications.

Through enabling a more comprehensive comprehension

of the hierarchical connections among distinct features and

entities, capsule networks have the potential to enhance the

precision and interpretability of neural networks across a

wide array of domains, spanning from medical imaging to

natural language processing. Moreover, by combining

capsule networks with other types of neural networks,

researchers can create even more powerful models for

specific tasks, further expanding the range of applications

for these innovative networks.

In conclusion, capsule networks offer a promising

alternative to traditional neural networks, as they provide a

better understanding of the hierarchical relationships

between different features and entities. Dynamic routing

and EM routing are two popular routing algorithms used in

capsule networks, with EM routing being more

computationally efficient. Finally, combining capsule

networks with other types of neural networks, such as

RNNs and attention networks, has shown improved

performance on specific tasks. With ongoing research and

advancements, capsule networks are poised to play an

important role in the future of deep learning.

CapsNet has numerous uses in various areas [38][40].

Examples include few-shot learning [41], unsupervised

learning [42], and GANs [43]. In a study by [44], better

dynamic routing was employed for legal judgment in

charge prediction. Yang et al. [45] utilized CapsNet to aid

in the extraction of hierarchical graph features using

3. Proposed Methodology

Consider an input image x0 with dimensions 32x32x3. The

network consists of four layers. The initial layer is a

convolutional one, characterized by a filter size of 3, a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 82

kernel size of 3, a stride of 1, and padding of 1. This

specific layer generates an output featuring 32 channels.

The second layer is an Improved Dense Block layer, which

contains three blocks. Each block consists of three layers,

and each layer performs two convolutional operations. In

the first convolution, the kernel size is 1, the stride is 1,

and the number of output channels is calculated by

multiplying bn_sizewithgrowth_rate. The subsequent

convolution employs a kernel size of 3, a stride of 1, and

padding of 1. The output of each layer in the dense block is

calculated using the following formula (Eq. 1).

 k*(β /(n*l)) …….. (1)

Where k is the input feature maps, β is hyper parameter (it

should be selected in the range from 2 to 6), n is number of

layers, l is current layer and also constant values are for

bn_size(hyperparameter)=4, growth rate = 32. After

each dense block, there is a transition layer, which includes

a convolutional layer and an average pooling layer.

The number of output features from the DenseNet is

462.Subsequently, the output of the DenseNet is fed into

the T_caps layer, featuring a kernel size of 3, a stride of

2,no padding. and a caps_size of 9 (the output channel

should be multiples of caps_size). The resultant of this

layer has 32x9 channels. The output of the T_caps layer is

then given to the high-level capsule layer, which has a

kernel size of 3, a caps_in_size of 9, and a caps_out_size

of 9. The resultant of this layer has ten channels,

representing the ten classes of the output.

The high-level capsule layer refers to a specific layer in a

neural network architecture that utilizes capsule networks.

Capsule networks are designed to overcome some

limitations of traditional convolutional neural networks

(CNNs) in capturing spatial hierarchies and handling

viewpoint variations.

 In a high-level capsule layer, the outputs of lower-level

capsules are grouped together to form higher-level

capsules. Each capsule represents a specific

3.1. Proposed Routing Algorithm

3.1.1 Dynamic Routing

The Dynamic Routing (DR) mechanism in CapsNet aims

to dynamically generate a sparse tree-like structure,

imposing a constraint on the weights of capsules. During

iterative iterations, capsules in a layer allocate their votes

to a singular parent capsule in the subsequent layer,

excluding others. This procedure is known as "routing."

However, this strategy has drawbacks, including potential

information loss as the routing algorithm may prioritize

specific capsules over others. For example, when

considering hand capsules, the algorithm might favor

finger capsules while overlooking toe capsules. Moreover,

the routing process imposes a significant computational

burden due to its iterative nature.

To address these routing concerns, our goal is to create an

innovative algorithm that reduces information loss and

minimizes the computational load tied to iterative

procedures.

3.1.2 Improved Routing

Precisely, the total of votes cast by a low-level capsule

towards high-level capsules is required to equate to 1. To

attain this, the softmax function is employed, enabling a

low-level capsule to primarily allocate its vote to the high-

level capsule with the most significant resemblance.

The concept of utilizing variance as a measure to evaluate

the consistency among predictions is easy to grasp. When

the predictions from lower-level capsules are tightly

grouped, it implies a consensus in their connection with a

specific higher-level capsule. In contrast, higher variance

could signify greater ambiguity or reduced consensus

among the predictions. This approach provides a

straightforward way to gauge the level of agreement within

a system of capsules, offering insights into their overall

reliability and cohesion.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 83

Fig. 1. Proposed Capsule Network Architecture

Fig. 2. Capsule Network Activation Filter

3.1.3 Improved Routing Algorithm

According to Improved Routing, the variance of votes is

used to determine the activation of high-level capsules in

the proposed "Improved Routing" method. Thus, the sum

of votes and the distribution of votes are considered

simultaneously.

Algorithm 1 Improved Routing

Input: ui

Output: vj

1. Require:ci,pi, Φi,j

2. pri,j,Φi,jci

3. for r iteration, do

4. meanj = ∑ipipri,j/ ∑i pi

5. std_devj= ∑i,(pi,j- meanj)2 / ∑i,pi

6. correlation = ∑i,(pi,j- meanj)/std_devj

7. pj =correlationj

8. cj=meanj

9. Return: cj,pj

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 84

3.2 Components of Improved Routing

Input: The algorithm takes the child capsule vectors (ci)

from the previous layer and the transformation matrix (Φi,j)

that provides spatial information about the features. The

transformation matrix is a 4x4 matrix with 16 values

representing features such as position, size, orientation,

colour, and texture. These values act as weights for the

low-level capsules in relation to the high-level capsules.

Computation of pri,j: The algorithm calculates pri,jby

multiplying the child capsule vectors (ci) with the

corresponding transformation matrix (Φi,j). This step

combines the information from the child capsules with the

spatial information provided by the transformation matrix.

Iterative computation of mean, standard deviation, and

correlation: The algorithm iteratively computes the mean

(mean), standard deviation (std_devj), and correlation

(correlation) for each high-level capsule. The mean is

calculated as the sum of the products of pri,jand the high-

level capsule values, divided by the sum of pri,j. The

standard deviation is calculated based on the deviation of

each pri,jfrom the mean, and the correlation is the ratio of

the deviation to the standard deviation.

Calculation of pj and cj: The algorithm sets the values of

the high-level capsule (pj) as the calculated correlation

(correlation) and the mean (cj) as the calculated mean

(mean). These values represent the direction and degree of

the relationship between the high-level capsule and the

child capsules.

Output: The algorithm returns the values of cj and pj for

each high-level capsule. The final layer is the Parent

Capsule Layer, which is activated if the predictions of the

child capsule cluster tightly in the high-dimensional space

of the parent capsule. For example, if the features present

in the child capsules match the features of a cat image,

then the cat image in the parent capsule will be activated.

Additionally, the output of the DenseNet is fed into the

T_caps layer, also known as the Primary layer. This layer

uses a kernel size of 3, a stride of 2, padding of 0, and a

caps_size of 9 (the output channel should be multiples of

caps_size). The T_caps layer outputs 32x9 channels. The

output of this layer is then fed into the high-level capsule

layer, which uses a kernel size of 3, a caps_in_size of 9,

and a caps_out_size of 9. The resulting output of this layer

has ten channels, representing the ten classes of the output.

3.3 Advantages of the Improved Routing

Improved Routing: The algorithm introduces a new routing

process that utilizes correlation instead of variance used in

existing routing algorithms. Correlation measures the

strength of the relationship between capsules, providing a

more accurate representation of the capsule clusters.

Reduced Loss and Time Efficiency: By using correlation

and the iterative process, the algorithm aims to reduce loss

and improve time efficiency compared to traditional

routing algorithms. This is achieved by better capturing the

relationships and dependencies between capsules, leading

to more effective clustering.

Improvised Dense Block: The algorithm proposes an

improved dense block that addresses the issue of redundant

features in traditional DenseNet. By utilizing Eq. (1), the

algorithm removes redundant features, leading to a more

efficient and compact representation of features.

The new Routing algorithm has been proposed and tested

on PaviaU, CIFAR-10 and SVHN datasets. In this Routing

algorithm, we have used correlation and iteration processes

by comparison with the Existing Routing algorithm. In

existing routing algorithms, they have used the variance to

form the cluster [3].

The variance measures the spread between the capsules.

But the correlation measures the strength of the

relationship between the capsules. By this algorithm, we

have reduced the Loss and Time efficiency on the datasets

PaviaU, CIFAR-10/100 ,FMNIST and SVHN. An

Improvised Dense block has been proposed to reduce the

redundant features, which is the main drawback of

traditional denseness.

Table 1. Comparison of Algorithms for Time Efficiency

Datasets
Dynamic

Routing

EM

Routing

Fast

Routing

Improved

Routing

CIFAR-10 2.85 3.15 3.00 2.73

SVHN 3.79 3.32 3.44 2.32

CIFAR-100 2.85 3.15 3.00 2.73

PaviaU 3.55 3.85 3.47 2.64

Fig. 3. Comparison of Algorithms for Time Efficiency

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 85

When comparing time efficiency on the CIFAR-10 dataset,

the Improved Routing algorithm exhibits increased

computation time compared to the Fast Routing algorithm.

However, on the PaviaU and SVHN datasets, the Improved

Routing algorithm demonstrates less computation time.

Table 2. Accuracy of Algorithms

Datasets Dynamic

Routing

EM

Routing

Fast

Routing

Improved

Routing

CIFAR-10 0.69 0.46 0.91 0.97

SVHN 0.83 0.55 0.95 0.95

CIFAR-

100

0.69 0.46 0.91 0.94

PaviaU 0.72 0.52 0.86 0.93

 Fig. 4. Accuracy of Algorithms

By comparing the accuracy on the CIFAR-10/100 dataset,

the Improved Routing algorithm achieves a higher

accuracy, increasing by 0.2 percentage points compared to

the Fast Routing algorithm. Similarly, on the PaviaU,

SVHN datasets, the Improved Routing algorithm

demonstrates improved accuracy, increasing by 0.1

percentage points compared to the Fast Routing algorithm.

By comparing the error rate on both the PaviaU, CIFAR-

10/100 , FMNIST and SVHN datasets, the Improved

Routing algorithm yields the same results as the Fast

Routing algorithm. There is no significant difference in the

error rates between the two algorithms for these datasets.

Table 3 . Loss

.Datasets Dynamic

Routing

EM

Routing

Fast

Routing

Improved

Routing

CIFAR-10 7.51 5.12 1.23 0.47

SVHN 6.36 4.95 0.41 0.05

CIFAR -

100
7.50 5.09 1.11 0.49

Pavia

U
5.37 5.02 1.05 0.09

Fig. 5 . Loss Rate

By comparing the loss on the CIFAR-10 dataset, the

Improved Routing algorithm shows improved results,

reducing the loss by a difference of 0.76 compared to the

Fast Routing algorithm. Similarly, on the PaviaU and

SVHN datasets, the Improved Routing algorithm

demonstrates improved results, reducing the loss by a

difference of 0.36 compared to the Fast Routing algorithm.

3.4 Comparison results on Improvised Dense Block by

varying Bn_size value

In the evaluation of the Improvised Dense Block, we

assessed the impact of varying the Bn_size value on the

performance. The Bn_size parameter determines the

number of channels in the bottleneck layer of the block. By

altering this value, we can adjust the capacity and

complexity of the block.

Our goal was to examine how different Bn_size values

affect the accuracy, error rate, loss, and number of

parameters in the model. By analyzing these metrics, we

can understand the trade-offs and determine the optimal

Bn_size value for the specific task.

We conducted the evaluation on the PaviaU, CIFAR-10

and SVHN datasets using the proposed Improved Routing

algorithm. We compared the performance of the model

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 86

across different Bn_size values, including 2, 4, and 6. This

range of values allowed us to assess the impact of

increasing Bn_size on the model's performance.

Now, let's explore the comparison results obtained by

varying the Bn_size value in the Improvised Dense Block.

Table 4. Time Efficiency of Learning Parameters

Datasets Bn_size=2 Bn_size=4 Bn_size=6

CIFAR-10 5.35 3.00 2.71

SVHN 3.48 2.90 2.34

CIFAR -

100

5.38 3.07
2.74

PaviaU 2.78 2.56 2.62

Table 5. Accuracy

Datasets Bn_size=2 Bn_size=4 Bn_size=6

CIFAR-10 0.91 0.91 0.97

SVHN 0.95 0.95 0.95

CIFAR-

100

0.87 0.87 0.94

PaviaU 0.95 0.95 0.93

Table 6.Error Rate

Datasets Bn_size=2 Bn_size=4 Bn_size=6

CIFAR-10 0.08 1.23 0.08

SVHN 0.07 0.04 0.04

CIFAR -

100

0.09 1.10 0.08

PaviaU 0.08 0.09 0.06

Table 7. Loss

Datasets Bn_size=2 Bn_size=4 Bn_size=6

CIFAR-10 0.47 0.42 0.47

SVHN 0.10 0.31 0.05

CIFAR-100 0.45 0.40 0.49

PaviaU 0.12 0.12 0.09

When the Bn_size value is increased in the Improvised

Dense Block, it allows for capturing and processing more

information within each block. This increased capacity can

lead to improved performance as the model can learn

more intricate patterns and features. However, it comes at

the cost of increased computational and memory

requirements due to the larger number of parameters.

By increasing the Bn_size, the model becomes more

capable of capturing fine-grained details and nuances in

the data, which can contribute to a reduction in both loss

and error rates. The additional parameters enable the model

to better fit the training data, resulting in improved

generalization and lower error rates. It's important to strike

a balance between model complexity and performance.

While a higher Bn_size may lead to better results in terms

of loss and error rate, it also increases the risk of

overfitting, especially if the dataset is limited. Therefore,

it's crucial to consider the available resources,

computational constraints, and the specific requirements of

the application when deciding on the appropriate Bn_size

value for the Improvised Dense Block.

4 Results and Discussions

4.1 Dataset

Numerous experiments were conducted on two datasets to

substantiate the efficacy of our model. In place of MNIST,

we opted for the CIFAR-10 dataset, which shares the same

image size, training set division, and test set division. The

CIFAR-10 dataset encompasses 60,000 training images

and 10,000 test images, each measuring 32x32 pixels.

Diverging from MNIST, CIFAR-10 presents a greater

complexity due to its diverse object composition.

Furthermore, the SVHN dataset, a collection of digit

images, was also employed, featuring 73,257 training

images and 26,032 test images. The Pavia University

Hyperspectral Image (HSI) dataset finds widespread

application in the domain of remote sensing and analysis of

hyperspectral imagery. It is frequently employed for the

assessment and validation of algorithms pertaining to tasks

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 87

such as image classification, identification of targets, and

various other analyses within the framework of

hyperspectral imaging. The spectral composition differs

between Pavia Centre, with 102 bands, and Pavia

University, with 103 bands. Pavia Centre presents an

image size of 1096 by 1096 pixels, while Pavia University

is 610 by 610 pixels.

4.2 Experimental Setup

Within our model, we designated the total number of

epochs as 40, set the batch size at 50, and initialized the

learning rate to 0.001. The complete network architecture

was implemented using PyTorch, executed on a Tesla T4

with 16GB RAM within Google Colaboratory.Employing

data augmentation methods, we subjected the input images

to techniques such as random horizontal flipping. To

ensure robustness, we conducted numerous experiments

for each scenario, omitting the extreme values from the

outcomes and subsequently computing the average value to

establish the final result.

4.3 Experiment Metrics

When conducting research or comparing routing

algorithms in capsule networks, some common metrics to

consider might be:

1. Classification Accuracy: The proportion of correctly

classified instances (e.g., images) in the test set.

2. Reconstruction Loss: Capsule networks often include

a reconstruction task to ensure that important

information is preserved during encoding.The

reconstruction loss gauges the difference between the

input data and the data reconstructed from the capsule

representations.

3. Routing Iterations: The number of routing iterations

used during the dynamic routing process. More

iterations might lead to more accurate results, but it

could also increase computational overhead.

4. Training Time: The time it takes to train the capsule

network with a specific routing algorithm. This metric

is important for practical implementation

considerations.

 4.4 Experiment Results

We applied the improved Routing algorithm in conjunction

with refined dense blocks to the CIFAR-10 and SVHN

datasets. The CIFAR-10 dataset encompasses 60,000 color

images, each measuring 32x32 pixels, divided across ten

classes with 6,000 images per class. This dataset is further

segregated into 50,000 training images and 10,000 test

images. On the other hand, the SVHN dataset is tailored

for digit classification and comprises 600,000 color

images, also measuring 32x32 pixels.

We implemented and compared the proposed algorithm

with an improvised Dense Block against the CIFAR-10

and SVHN datasets. The assessment encompassed

conventional Dynamic Routing, EM Routing, Fast

Routing, and Improved Routing, with evaluations

conducted using metrics such as time efficiency, error rate,

accuracy, and loss. The outcomes conclusively illustrated

that the proposed method surpassed the performance of the

other techniques.

5 Conclusion and future work

As Capsule Networks can extract contextual and

hierarchical information from hyperspectral data they are

able to offer enhanced processing efficiency for

hyperspectral images (HSI).The time and effort needed for

data preparation can be decreased by using feature learning

process to generate preprocessing which is more automated

and efficient.By inevitably supporting the spectral

parameters, CapsNets can better take advantage of the

multi-dimensional characteristics of HSI, resulting in

enhanced information extraction. Additionally, they only

focus on extracting features from images and do not

consider their position, size, and orientation.

To tackle these challenges, we suggest the utilization of

capsule networks for image classification. Nevertheless,

the dynamic routing algorithm employed between the

primary and digit capsule layers within capsule networks

necessitates intricate computations. To reduce the

computational burden, we propose an Improved Routing

algorithm.

 By comparing the existing and proposed algorithms, we

infer that the capsule network with the proposed algorithm

outperforms traditional dynamic routing, EM routing, and

fast routing algorithms. We observe an improvement in

classification performance compared to the original

capsule network. In forthcoming endeavors, our objective

is to refine the feature extraction phase of the capsule

network to effectively manage intricate datasets.

Acknowledgements

None.

Author contributions

B. Thiyagarajan and K.Revathy : Conceptualization,

research, writing, first draft revision, data collection,

analysis, and result interpretation. M. Thenmozhi:

creation, supervision, and examination of the study.

Conflicts of interest

The authors declare no conflict of interest.

References

[1] Zhang Y, Li W, Zhang M, Qu Y, Tao R, Qi H.

Topological structure and semantic information

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 88

transfer network for cross-scene hyperspectral image

classification. IEEE Transact Neural Networks Learn

Syst 2021. In press.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

‘‘ImageNet classification with deep convolutional

neural networks,’’ in Proc. Adv. Neural Inf. Pro-

cess. Syst., vol. 25, 2012, pp. 1097–1105.

[3] S. Huang, F. Lee, R. Miao, Q. Si, C. Lu, and Q. Chen,

''A deep convolutional neural network architecture for

interstitial lung disease pattern classification,'' Med.

Biol. Eng. Comput., vol. 58, no. 4, pp. 725–737, Jan.

2020.

[4] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual

learning for image recognition,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,

pp. 770–778.

[5] L. Xie, F. Lee, L. Liu, K. Kotani, and Q. Chen,

''Scene recognition: A comprehensive survey,''

Pattern Recognit., vol. 102, Jun. 2020, Art. no.

107205.

[6] L. Xie, F. Lee, L. Liu, Z. Yin, and Q. Chen,

‘‘Hierarchical coding of convolutional features for

scene recognition,’’ IEEE Trans. Multimedia, vol. 22,

no. 5, pp. 1182–1192, May 2020.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

‘‘You only look once: Unified, real-time object

detection,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jun. 2016, pp. 779–788.

[8] J. Cai, F. Lee, S. Yang, C. Lin, H. Chen, K. Kotani,

and Q. Chen, ''Pedes- train as points: An improved

anchor-free method for centre-based pedestrian

detection,'' IEEE Access, vol. 8, pp. 179666–179677,

Sep. 2020.

[9] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully

convolutional networks for semantic segmentation,’’

IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no.

4, pp. 640–651, Apr. 2017.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

‘‘Gradient-based learn- ing applied to document

recognition,’’ Proc. IEEE, vol. 86, no. 11, pp. 2278–

2324, Nov. 1998.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan,V. Vanhoucke, and A.

Rabinovich, ‘‘Going deeper with convolutions,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit.

(CVPR), Jun. 2015, pp. 1–9.

[12] G. E. Hinton, A. Krizhevsky, and S. D. Wang,

''Transforming auto-encoders,'' in Proc. Int. Conf.

Artif. Neural Netw., 2011, pp. 44–51.

[13] S. Sabour, N. Frosst, and G. E. Hinton, ‘‘Dynamic

routing between capsules,’’ in Proc. 31st Int. Conf.

Neural Inf. Process. Syst., 2017, pp. 3859–3869.

[14] T. Hahn, M. Pyeon, and G. Kim, ‘‘Self-routing

capsule networks,’’ in Proc. Adv. Neural Inf. Process.

Syst., 2019, pp. 7656–7665.

[15] Y. LeCun, C. Cortes, and C. J. Burges.

(1998). The MNIST Database of Handwritten

Digits. [Online]. Available:

http://yann.lecun.com/exdb/mnist/

[16] S. S. R. Phaye, A. Sikka, A. Dhall, and D. R. Bathula,

‘‘Multi-level dense capsule networks,’’ in Proc.

Asian Conf. Comput. Vis., Dec. 2018, pp. 577–592.

[17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q.

Weinberger, ‘‘Densely connected convolutional

networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[18] X. Wang, R. Girshick, A. Gupta, and K. He, ‘‘Non-

local neural networks,’’ in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7794–

7803.

[19] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon,

‘‘CBAM: Convolutional block attention module,’’ in

Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 3–

19.

[20] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation

networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit., Jun. 2018, pp. 7132–7141.

[21] S. Anwar, K. Hwang, and W. Sung, ''Structured

pruning of deep convolutional neural networks,''

ACM J. Emerg. Technol. Comput. Syst., vol. 13, no.

3, pp. 1–18, 2017.

[22] J.-H. Luo, J. Wu, and W. Lin, ‘‘ThiNet: A filter level

pruning method for deep neural network

compression,’’ in Proc. IEEE Int. Conf. Comput. Vis.

(ICCV), Oct. 2017, pp. 5058–5066.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I.

Sutskever, and

R. Salakhutdinov, ‘‘Dropout: A simple way to prevent

neural networks from overfitting,’’ J. Mach. Learn.

Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[24] S. Yang, F. Lee, R. Miao, J. Cai, L. Chen, W. Yao, K.

Kotani, and Q. Chen, ‘‘RS-CapsNet: An advanced

capsule network,’’ IEEE Access, vol. 8, pp. 85007–

85018, 2020.

[25] Sara Sabour, Nicholas Frosst and Geoffrey E Hinton,

“Dynamic Routing Between Capsules” in arXiv,

https://doi.org/10.48550/arXiv.1710.09829.

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.48550/arXiv.1710.09829

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 79–89 | 89

[26] Geoffrey Hinton, Sara Sabour and Nicholas Frosst“

Matrix Capsules with EM Routing” Published as a

conference paper at ICLR 2018, vol. 15,

https://openreview.net/pdf?id=HJWLfGWRb.

[27] BodhisatwaMandal, SwarnenduGhosh,

RiteshSarkhel, Nibaran Das, MitaNasipuri "Using

dynamic routing to extract intermediate features for

developing scalable capsule network" in the

international conference on advanced computational

and communication, 2018

[28] S. K. Sahu, P. Kumar and A. P. Singh, "Dynamic

Routing Using Inter Capsule Routing Protocol

between Capsules," 2018 UKSim-AMSS 20th

International Conference on Computer Modelling and

Simulation (UKSim), Cambridge, UK, 2018, pp. 1-5,

doi: 10.1109/UKSim.2018.00012.

[29] J. Chen and Z. Liu, "Mask Dynamic Routing to

Combined Model of Deep Capsule Network and U-

Net," in IEEE Transactions on Neural Networks and

Learning Systems, vol. 31, no. 7, pp. 2653-2664, July

2020, doi: 10.1109/TNNLS.2020.2984686.

[30] F. M. Saif, T. Imtiaz, S. Rifat, C. Shahnaz, W. -P.

Zhu and M. O. Ahmad, "CapsCovNet: A Modified

Capsule Network to Diagnose COVID-19 From

Multimodal Medical Imaging," in IEEE Transactions

on Artificial Intelligence, vol. 2, no. 6, pp. 608-617,

Dec. 2021, doi: 10.1109/TAI.2021.3104791.

[31] W. Wang, F. Lee, S. Yang and Q. Chen, "An

Improved Capsule Network Based on Capsule Filter

Routing," in IEEE Access, vol. 9, pp. 109374-

109383, 2021, doi: 10.1109/ACCESS.2021.3102489.

[32] Mandal, B., Sarkhel, R., Ghosh, S., Das, N.,

&Nasipuri, M. (2021). Two-phase Dynamic Routing

for Micro and Macro-level Equivariance in Multi-

Column Capsule Networks. Pattern Recognition, 109.

https://doi.org/10.1016/j.patcog.2020.107595

[33] R. Zeng and Y. Song, "A Fast Routing Capsule

Network With Improved Dense Blocks," in IEEE

Transactions on Industrial Informatics, vol. 18, no. 7,

pp. 4383-4392, July 2022, doi:

10.1109/TII.2021.3128412.

[34] Li, H., Yang, S. & Wang, W. Improved capsule

routing for weakly labelled sound event detection. J

AUDIO SPEECH MUSIC PROC. 2022, 5 (2022).

https://doi.org/10.1186/s13636-022-00239-6

[35] Gao Huang, Zhuang Liu, Laurens van der Maaten,

Kilian Q. Weinberger “Densely Connected

Convolutional Networks” 2018

https://doi.org/10.48550/arXiv.1608.06993

[36] https://blog.paperspace.com/capsule-networks/

[37] https://towardsdatascience.com/capsule-networks-the-

new-deep-learning-network-bd917e6818e8

[38] https://www.researchgate.net/figure/a-Routing-by-

agreement-in-CapsNets-A-capsule-is-a-group-of-

neurons-whose-

activity_fig2_343116827#:~:text=In%20this%20case

%2C%20capsules%20agree,activity%20in%20the%2

0boat%20capsule.

[39] T. Liu, X. Lin, W. Jia, M. Zhou, and W. Zhao,

``Regularized attentive capsule network for

overlapped relation extraction,'' in Proc. 28th

Int.Conf. Comput. Linguistics, 2020, pp. 6388_6398.

[40] H. Lin, F. Meng, J. Su, Y. Yin, Z. Yang, Y. Ge, J.

Zhou, and J. Luo, ``Dynamic context-guided capsule

network for multimodal machine translation,'' in Proc.

28th ACM Int. Conf. Multimedia, Oct. 2020, pp.

1320_1329.

[41]] M. Edraki, N. Rahnavard, and M. Shah, ``Subspace

capsule network,'' in Proc. AAAI Conf. Artif. Intell.,

Apr. 2020, vol. 34, no. 7, pp. 10745_10753.

[42] F. Wu, J. S. Smith, W. Lu, C. Pang, and B. Zhang,

``Attentive prototype few-shot learning with capsule

network-based embedding,'' in Proc. Eur.Conf.

Comput. Vis., Aug. 2020, pp. 237_253.

[43] S. Sabour, A. Tagliasacchi, S. Yazdani, G. E. Hinton,

and D. J. Fleet, ``Unsupervised part representation by

_ow capsules,'' 2020,

[44] arXiv:2011.13920. [Online]. Available:

http://arxiv.org/abs/2011.13920

[45] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P.

Natarajan, ``CapsuleGAN: Generative adversarial

capsule network,'' in Proc. Eur. Conf. Comput.Vis.

(ECCV), 2018, pp. 526_535.

[46] Y. Le, C. He, M. Chen, Y. Wu, X. He, and B. Zhou,

``Learning to predict charges for legal judgment via

self-attentive capsule network,'' Frontiers Artif. Intell.

Appl., vol. 325, pp. 1802_1809, May 2020.

[47] J. Yang, P. Zhao, Y. Rong, C. Yan, C. Li, H. Ma, and

J. Huang, ``Hierarchical graph capsule network,''

2020, arXiv:2012.08734. [Online]. Available:

http://arxiv.org/abs/2012.08734

https://openreview.net/pdf?id=HJWLfGWRb
https://doi.org/10.1016/j.patcog.2020.107595
https://doi.org/10.1186/s13636-022-00239-6
https://blog.paperspace.com/capsule-networks/
https://towardsdatascience.com/capsule-networks-the-new-deep-learning-network-bd917e6818e8
https://towardsdatascience.com/capsule-networks-the-new-deep-learning-network-bd917e6818e8
http://arxiv.org/abs/2012.08734

