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Abstract: Vulnerable Road Users (VRUs), including pedestrians, cyclists, and motorcyclists, face a heightened risk in traffic scenarios. 

The safety enhancement for VRUs relies heavily on evolving driver assistance systems and autonomous vehicles, anchored by swift VRU 

detection and localisation. Object detection models in computer vision are pivotal for this. Deploying such models on edge devices, 

especially the NVIDIA Jetson Nano presents challenges due to computational and power constraints. Our study compares the SSD 

MobileNetV2 FPN-Lite 320x320 model on the Jetson Nano for VRU detection with models like YOLOv3 and Faster RCNN. Key findings 

indicate that the SSD MobileNetV2 FPN-Lite 320x320 model achieves a mean average precision (mAP) of 0.45, precision of 0.80, and 

recall of 0.65 at 25 FPS in baseline evaluations. With optimisation, the FPS improved to 32 with slight changes in other metrics. The 

insights also touch upon inherent challenges in VRU detection, suggesting future research directions to refine the SSD MobileNetV2 FPN-

Lite model's efficiency, ultimately striving for a safer transportation ecosystem. 
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1. Introduction 

Road safety has become a significant concern in recent years 

with the increasing number of vehicles on roads and the 

growing complexity of traffic environments. Vulnerable 

Road Users (VRUs), such as pedestrians, cyclists, bike 

riders, children, elderly or disabled people, and roadside 

workers, are particularly at risk because of their limited 

protection compared to vehicle occupants (Fig. 1). Limited 

visibility significantly contributes to accidents involving 

vulnerable road users because they lack external protective 

elements, such as airbags, bumpers, or metallic guards, and 

are less visible to drivers than other vehicles. 

 

Fig 1. Types of VRUs 

According to the World Health Organization (WHO) Global 

Status Report on Road Safety 2018, approximately 1.35 

million people die annually from road traffic crashes. 

Vulnerable road users accounted for more than half of these 

deaths. Specifically, 23% of global road traffic deaths 

involve pedestrians, 3% involve cyclists, and 28% include 

motorcyclists [1]. 

In low and middle-income countries, the proportion of 

VRU-related deaths is even higher, with pedestrians, 

cyclists, and motorcyclists accounting for 54% of road 

traffic fatalities. Additionally, road traffic injuries are the 

leading cause of death for people aged 5 to 29, posing a 

significant public health challenge. The United Nations 

General Assembly has set an ambitious target to halve 

global deaths and injuries from road traffic crashes by 2030 

to enhance traffic safety. 

Therefore, developing and implementing effective 

strategies for the real-time detection and protection of VRUs 

in various traffic environments is crucial for achieving this 

goal. Multiple advancements in artificial intelligence, 

computer vision technologies, and intense learning-based 

object detection models offer promising solutions for 

enhancing the safety of VRUs. 

Also, it is worth mentioning that with the increasing number 

of connected devices and the need for efficient data 

processing, edge computing has emerged as a promising 

solution for deploying lightweight object-detection models 

on edge-enabled platforms. These platforms enable real-

time data processing and decision-making, making them 

ideal for detecting and tracking VRUs in various traffic 

scenarios. 
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This paper discusses the benefits of using a lightweight 

object detection model on an edge-enabled platform for 

real-time detection of vulnerable road users. We also 

explore the challenges associated with limited visibility and 

the importance of improving infrastructure, raising 

awareness, enhancing VRU visibility, and employing 

technology to reduce the risk of accidents due to limited 

visibility. 

2. Literature Review 

This study aims to provide an overview of the state-of-the-

art methods for VRU detection, focusing on deep learning-

based techniques and their implementation on edge devices 

such as the Jetson Nano GPU and Raspberry Pi. 

The literature search used databases such as IEEE Xplore, 

Google Scholar, ResearchGate, and proceedings from 

relevant conferences. The search terms used included 

combinations of "vulnerable road users," "pedestrian 

detection," "cyclist detection," "motorcyclist detection," 

"object detection," "deep learning," "SSD," 

"MobileNetV2," "Jetson Nano," and "real-time detection." 

The literature included in this review focuses on recent 

(2015-2021) publications addressing VRU detection using 

deep-learning-based techniques, emphasising real-time 

detection and implementation on resource-constrained 

devices. 

Earlier approaches for VRU detection relied on handcrafted 

features and machine learning algorithms, such as Haar 

cascade classifiers [2] and Histogram of Oriented Gradients 

(HOG) [3]. However, these methods can improve their 

accuracy and scalability, making them unsuitable for 

complex urban environments. 

In recent years, deep learning techniques have 

revolutionised the field of computer vision and significantly 

improved the performance of object detection tasks, 

including detecting vulnerable road users (VRUs) [4]. 

Various deep-learning-based object detection models have 

been proposed and extensively studied, demonstrating high 

accuracy in detecting multiple objects, including 

pedestrians, cyclists, and motorcyclists [5]. 

Faster R-CNN [6] is a widely used deep learning-based 

object detection model that has gained popularity for its high 

detection accuracy. The model comprises a Region Proposal 

Network (RPN) that generates object proposals and a Fast 

R-CNN network that classifies and refines the bounding box 

proposals. Although Faster R-CNN achieves state-of-the-art 

performance in many object detection benchmarks, its 

complex architecture and computational requirements make 

real-time performance challenging, particularly for 

resource-constrained devices [7]. 

You Only Look Once (YOLO) [8] is another popular object 

detection model that addresses the real-time performance 

limitations of models such as Faster R-CNN. YOLO divides 

the input image into grids and predicts each grid cell's 

bounding boxes and class probabilities. This model is 

known for its fast processing speed, which enables real-time 

object detection. However, YOLO tends to have lower 

detection accuracy than models such as Faster R-CNN, 

especially for small objects and scenes with a high degree 

of object occlusion [9]. 

The single-shot multi-box detector (SSD) [10] is a 

prominent object detection model that balances detection 

accuracy and real-time performance. Like YOLO, SSD 

performs object detection in a single forward pass through 

the network, enabling faster processing times. However, 

SSD employs multiple feature maps at different scales to 

detect objects of varying sizes. This multiscale approach 

allows SSD to achieve a higher detection accuracy than 

YOLO while maintaining real-time performance [11]. 

Although these deep-learning-based object detection 

models have demonstrated their ability to detect VRUs 

accurately, their computational requirements and real-time 

performance capabilities vary [12]. Consequently, selecting 

the most suitable model for a specific application, such as 

VRU detection on resource-constrained devices, 

necessitates careful consideration of the trade-offs between 

accuracy and computational efficiency [13]. 

MobileNet [14] and MobileNetV2 [15] are lightweight 

convolutional neural network architectures designed for 

mobile devices. These models offer high accuracy with 

reduced computational complexity, making them suitable 

for real-time applications and edge device deployment. 

Several studies have investigated implementing deep 

learning-based object detection models on edge devices, 

such as the NVIDIA Jetson Nano [16]. These studies often 

focused on optimising the model performance for real-time 

processing capabilities while maintaining high detection 

accuracy [17]. Researchers have also compared the 

performances of three different single-board computers, 

namely NVIDIA Jetson Nano, NVIDIA Jetson TX2, and 

Raspberry Pi4, regarding their power consumption, 

accuracy, and cost for deep learning applications [18]. 

Huy-Hung Nguyen et al. presented the implementation and 

performance evaluation of two object detectors, 

EfficientDet-Lite and Yolov3-tiny, on the Nvidia Jetson 

TX2 mobile embedded platform for real-time and highly 

accurate object detection on edge devices with constrained 

resources [19]. This has practical implications for 

developing driver assistance systems for autonomous 

vehicles, where efficient object detection is necessary. The 

study also explored the benefits of TensorRT optimisation 

and post-training quantisation. 

The literature shows a clear trend towards deep learning-
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based techniques for VRU detection, with recent studies 

focusing on optimising these models for real-time 

performance on resource-constrained devices. Combining 

lightweight architectures, such as MobileNetV2, with object 

detection models, such as SSD, presents a promising 

approach for balancing accuracy and computational 

efficiency. 

Deep-learning techniques often require substantial 

computational resources, which can be challenging for real-

time applications and deployment on edge devices [20]. 

Table 1 highlights the trade-offs between detection 

performance and computational efficiency for different 

object detection models. 

Table 1 Comparison of different object detection models 

Model Key Features 

Detection 

Performan

ce 

Computatio

nal 

Efficiency 

SSD 

MobileNet

V1 

Lightweight, 

depth-wise 

separable 

convolutions 

Moderate High 

SSD 

MobileNet

V2 

Lightweight, 

inverted 

residuals, linear 

bottlenecks 

Moderate High 

YOLOv3 

Real-time 

performance, 

unified detection 

High Medium 

TinyYOLO 

Real-time 

performance, 

reduced 

complexity 

Moderate High 

EfficientDe

t 

Scalable 

architecture, 

compound 

scaling, BiFPN 

High High 

Faster R-

CNN 

Two-stage 

detection, high 

accuracy 

High Low 

 

The reviewed literature demonstrates the progress made in 

VRU detection using deep-learning techniques (Table 1). 

However, there is still room for improvement and 

optimisation to ensure the safety of VRUs in various urban 

environments. The real-time computational requirements 

often exceed the capabilities of edge devices, necessitating 

lightweight models that can maintain high accuracy while 

being computationally efficient. Therefore, developing and 

evaluating such models is a pertinent research direction. 

3. Methodology 

The proposed SSD-based vulnerable road user detection 

system comprises hardware and software. The hardware 

components included the Jetson Nano GPU [16], MIPI CSI 

camera, and HDMI display. In contrast, the software 

components implemented the SSD algorithm in Python 

using the TensorFlow library [21] and a graphical user 

interface (GUI) for user interaction. The methodology used 

for the data collection, preprocessing, and training of the 

SSD algorithm is described below. 

3.1. Data Collection 

We used a dataset of images containing vulnerable and non-

vulnerable road users to develop and evaluate the proposed 

vulnerable road user detection system. We used a 

combination of publicly available datasets and our dataset 

to create a diverse and representative set of images. Publicly 

available datasets include KITTI [22], Cityscapes [23], and 

COCO [24]. 

Our dataset collected images using a camera mounted on a 

vehicle driving on city roads under different lighting and 

weather conditions. The camera was positioned to provide a 

wide field of view and capture the surrounding environment, 

including other vehicles, pedestrians, road signs, and 

obstacles, to obtain a comprehensive and diverse set of 

visual data. 

The data were split into training, validation, and test sets at 

a ratio of 70:15:15, ensuring a representative distribution of 

samples across different conditions. Data augmentation 

techniques such as rotation, scaling, and horizontal flipping 

have been applied to increase the dataset's size and improve 

the model's generalisation capabilities. This process helped 

create a more robust model by exposing it to various 

scenarios during training. 

3.2. Model Implementation and Configuration 

SSD MobileNetv2 FPN Lite is an object detection model 

that combines the Mo-bileNetv2 architecture for feature 

extraction and the single-shot detector (SSD) architecture 

for object detection, with the addition of a Feature Pyramid 

Network Lite (FPN Lite) module. 

MobileNetv2 is a lightweight convolutional neural network 

(CNN) architecture designed to compute mobile and 

embedded devices efficiently. It uses depth-wise separable 

convolutions and residual connections to reduce the number 

of parameters and improve network performance. 

SSD architecture is responsible for detecting objects in an 

image. It predicts the class and location of objects in a single 

forward pass, making it suitable for real-time object 

detection tasks. 

The FPN Lite module was used to combine the outputs of 

the MobileNetv2 and SSD layers. It is a feature extractor 
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that takes a single-scale image of arbitrary size as input and 

outputs proportionally sized feature maps at multiple levels 

in a fully convolutional manner (Fig. 2). 

 

Fig 2. Feature map generation 

The model architecture, including the base MobileNetV2 

network and SSD layer, was configured according to the 

specifications in the literature [10],[11]. Hyperparameters, 

such as learning rate, batch size, and number of training 

epochs, were optimised through experiments to achieve the 

best accuracy and computational efficiency. 

The SSD algorithm's prediction module (Fig. 3) utilises 

convolutional layers and predefined anchor boxes to 

pinpoint object locations in images or video frames. SSD 

adopts a single-shot method, processing the entire frame in 

one go, enhancing efficiency and speed. These 

convolutional layers interpret features from the extractor to 

forecast class labels and bounding box coordinates for each 

anchor box. 

 

Fig 3. Prediction Module 

The predicted scores for each class 𝑗 in each location 𝑖 and 

anchor box k are given by, 

𝑆𝑗
𝑖,k = (𝑥𝑗

𝑖,k)
𝑇
𝑢(𝑐)+𝑏𝑗

(𝑐)
 (1) 

where 𝑥𝑗
𝑖,k

 is the k -th anchor box at location 𝑖, 𝑢(𝑐) is the 

weight vector for class 𝑐, and 𝑏𝑗
(𝑐)

 is the bias term for class 

𝑐. 

The predicted bounding box coordinates for each anchor 

box 𝑘 and each class 𝑗 are given by, 

(𝑏𝑥
𝑖,𝑘 , 𝑏𝑦

𝑖,𝑘, 𝑏𝑤
𝑖,𝑘 , 𝑏ℎ

𝑖,𝑘)
𝑗
=

(𝜎(𝑡𝑥
𝑖,𝑘), 𝜎(𝑡𝑦

𝑖,𝑘), exp(𝑡𝑤
𝑖,𝑘) , exp(𝑡ℎ

𝑖,𝑘)) (2) 

where (𝑏𝑥
𝑖,𝑘, 𝑏𝑦

𝑖,𝑘 , 𝑏𝑤
𝑖,𝑘, 𝑏ℎ

𝑖,𝑘)
𝑗
 are the predicted bounding box 

coordinates for class 𝑗, 𝜎 is the sigmoid function, and 𝑡𝑥
𝑖,𝑘

, 

𝑡𝑦
𝑖,𝑘

, 𝑡𝑤
𝑖,𝑘

, and 𝑡ℎ
𝑖,𝑘

 are the predicted offsets for the 𝑥 - 

coordinate, 𝑦 - coordinate, width, and height of anchor box 

𝑘 at location 𝑖. 

The loss function for the SSD algorithm is a combination of 

the localisation loss and the confidence loss, given by, 

𝐿(𝑥, 𝑐, 𝑏, 𝑔) =
1

𝑁
(𝐿𝑐𝑜𝑛𝑓(𝑥, 𝑐)+∝ 𝐿𝑙𝑜𝑐(𝑥, 𝑏, 𝑔)) (3) 

where 𝑥 is the input data, 𝑐 is the predicted class scores, 𝑏 is 

the predicted bounding box coordinates, 𝑔 is the ground-

truth bounding box coordinates, 𝑁 is the number of positive 

examples and ∝ is a weighting factor for the localisation 

loss. 

3.3. Hardware and Software Implementation 

The object detection model was implemented using the 

TensorFlow open-source machine learning framework 

owing to its flexibility, scalability, and extensive support for 

deep-learning models. The TensorFlow Object Detection 

API, a robust framework built on top of TensorFlow that 

simplifies the construction, training, and deployment of 

object detection models, was also utilised. 

Jetson Nano, an embedded system for edge-computing 

applications, was set up with the necessary hardware and 

software components, including a camera module for real-

time video input. The trained object detection model was 

deployed on the Jetson Nano, and the inference pipeline was 

configured for real-time video stream processing. 

In the proposed SSD-based vulnerable road user detection 

system, the camera captures the video feed of the traffic 

scene, which is processed using the SSD algorithm to detect 

vulnerable road users. The GUI displays a video feed with 

bounding boxes around the detected objects and alerts the 

driver when a vulnerable road user is detected. This real-

time detection system is crucial for the safety of vulnerable 

road users as it alerts drivers to their presence and reduces 

the likelihood of accidents. The low cost and low power 

consumption of the Jetson Nano platform make it an ideal 

solution for deployment in various settings, such as onboard 

vehicles or at intersections. 

3.4. Evaluation 

The model’s performance was evaluated regarding its object 

detection metrics and real-time performance characteristics 

(Fig. 4). We also compared the performance of our SSD 

MobileNetv2 algorithm with other state-of-the-art object 

detection algorithms, such as YOLOv3 and Faster R-CNN. 

We evaluated the algorithms' performance in terms of 

accuracy, speed, and memory consumption. 
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Fig 4. Experimental setup 

4. Results 

This study chose a 320 × 320 resolution because it balances 

accuracy and computational efficiency well, making it 

suitable for real-time object detection tasks on resource-

constrained devices such as the Jetson Nano. 

4.1. Baseline Evaluation vs Model Optimisation 

The Baseline Evaluation refers to the performance of the 

SSD MobileNetV2 FPN-Lite 320 × 320 models before any 

optimisation techniques were applied. On the other hand, 

Model Optimisation refers to the performance after various 

optimisation techniques are applied, such as TensorRT 

optimisation, adjusting input resolution, image 

preprocessing optimisation, and using lower precision 

(FP16). 

Table 2 Results of performance optimisation 

Experiment mAP Precision Recall 

Baseline 

Evaluation 
0.45 0.80 0.65 

Model 

Optimisation 
0.44 0.79 0.64 

 

In the optimisation experiment, the mAP, precision, and 

recall slightly decreased compared to the baseline model. 

However, the inference speed, measured as frames per 

second (FPS), increased significantly from 25 to 32 FPS 

(Table 2). 

4.2. Comparison with Other Models 

In the experiment, we compared the performance of the SSD 

MobileNetV2 FPN-Lite 320 × 320 model with other object 

detection models and configurations on the Jetson Nano. 

The object detection models were trained on the COCO 

2017 dataset with images scaled to a 320 × 320 resolution. 

The comparison included models such as MobileNetV1, 

MobileNetV2, and YOLOv3 (Fig. 5). 

 

Fig 5. Comparison chart for different models 

The comparison results showed that the SSD MobileNetV2 

FPN-Lite 320 × 320 model provided a good balance 

between accuracy and speed, outperforming others in terms 

of FPS while maintaining competitive mAP, precision, and 

recall values (Table 3). 

Table 3. Comparison of results of different models 

Model mAP 
Precisio

n 

Reca

ll 
FPS 

Resourc

e 

Efficien

cy 

      

SSD 

MobileNet

V1 

0.30 0.70 0.55 20 High 

SSD 

MobileNet

V2 

0.33 0.72 0.58 22 High 

SSD 

MobileNet

V2 FPN-

Lite 

0.44 0.79 0.64 32 High 

YOLOv3 0.57 0.85 0.75 15 Medium 

Faster R-

CNN 
0.50 0.80 0.70 10 Low 

 

Experimental conditions. The performance of SSD varied 

depending on the specific characteristics of the dataset and 

the experimental conditions (Table 4). In some cases, SSD 

had a higher rate of false positive detections, which resulted 

in unnecessary alerts or warnings. 
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Table 4. Performance under different weather conditions  

Conditions 
Detection 

Accuracy 

False 

Positive 

False 

Negativ

e 

Daytime, clear 

weather 95% 5% 0% 

Nighttime, clear 

weather 85% 10% 5% 

Daytime, rainy 

weather 90% 10% 10% 

Nighttime, rainy 

weather 75% 15% 10% 

 

The results of using the SSD for vulnerable road user 

detection suggest that it has the potential to be an effective 

tool for improving the safety of road users. However, further 

research is required to optimise the algorithm's performance 

and address any limitations or challenges that may arise in 

real-world applications. 

5. Discussion 

SSD-based vulnerable road user detection system, 

implemented on the Jetson Nano platform, presents 

promising findings but also reveals areas of potential 

enhancement. The system's primary limitation is relying on 

high-quality cameras with fixed positions. Such 

requirements could pose challenges in scenarios demanding 

versatility. Additionally, the current system operates within 

a two-dimensional spectrum. Future exploration could 

incorporate depth sensors for a more comprehensive 

detection, enabling three-dimensional vulnerable road user 

detection. 

5.1. Discussion on Model Performance 

The model's performance indicators, namely FPS and 

memory consumption, reveal satisfactory outcomes. An 

elevated FPS signifies the model's efficiency in processing 

extensive frames within seconds, a pivotal attribute for real-

time object detection tasks. Simultaneously, the model's 

modest memory consumption ensures uninterrupted and 

stable operations on the device. 

Yet, these promising outcomes highlight the imperative of 

meticulous model selection and optimisation, especially for 

devices with inherent constraints, such as the Jetson Nano. 

The intricate balance between model constraints and 

performance attributes stems from deliberate selection and 

adaptative adjustments. 

5.2. Reflection on Jetson Nano Limitations 

While commendable, the Jetson Nano's capabilities present 

certain restrictions when managing extensive neural 

networks. Nano's memory confines thwarted our initial 

inclination towards the Faster R-CNN Inception ResNet V2 

640 × 640 models, a notably intricate architecture. This 

realisation underscores the significance of a forward-

thinking approach in AI model design, emphasising the 

'thinking lite' principle. Thus, it is evident that there is a 

paramount need for continued exploration of model 

optimisation strategies tailored for devices with operational 

restrictions. 

6. Conclusion 

We assessed the SSD MobileNetV2 FPN-Lite 320 × 320 

models on the Jetson Nano for Vulnerable Road User 

(VRU) detection. Our results highlight the model's 

effectiveness for real-time VRU detection on devices like 

the Jetson Nano, striking a balance between accuracy, 

speed, and resource needs. Despite challenges like scale and 

pose variations, occlusions, and varying conditions, there 

are avenues for optimisation, including multiscale feature 

extraction and robustness to environmental factors. 

Addressing these can boost VRU detection performance, 

advancing safer transportation systems. 
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