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Abstract: For the purpose of making a preliminary diagnosis of lung cancer, computed tomography, or CT, is frequently utilized to find 

pulmonary nodules. However, as a result visual similarities among non-cancerous and cancerous nodules, identifying malignant from 

cancer nodules is not easy for doctors to accomplish. Here, a novel Convolution Neural Network architecture known as ConvNet is 

suggested to classify lung nodules as malignant or benign. A multi-scale, multi-path architecture is developed and utilized to increase 

the classification performance. This is done since there is a large variance in the nodule characteristics that are displayed in CT scan 

images, like Shape and Size. The multiple scale method makes use of filters of varying sizes to extract nodule features from local regions 

in a more efficient manner, and the multiple path architecture combines features extracted from various Convolution Network layers in 

order to improve the nodule features in relation to global regions. Both of these methods are part of the multi-path architecture. The 

LUNGx Challenge database is used to train and assess the proposed ConvNet, and it obtains specificity of 0.924, sensitivity of 0.887, 

and AUC of 0.948. The suggested Convolution Network is able to obtain an AUC improvement that is 14 percent higher than the current 

state-of-the-art unsupervised learning technique. The proposed Convolution Network also performs better than the previous state-of-the-

art Convolution Networks that were specifically created for the categorization of pulmonary nodules. The suggested Convolution 

Networks has the potential to aid radiologists in making diagnostic judgments during CT screening when it is utilized in clinical settings. 
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1. Introduction 

The most common type of cancer that results in mortality is 

lung cancer, as indicated by the statistics that were compiled 

and released by the American Cancer Society (2017). The 

ability to detect and diagnose cancer at an earlier stage is 

one of the most crucial factors in determining whether or not 

a patient will survive their illness. Computed tomography, 

sometimes known as CT, is frequently utilized by 

radiologists in the process of diagnosing  lung cancer.  

CAD tools have been created to help radiologists 

differentiate between cancerous and non- cancerous nodules 

in patients' chests. In general, these CADx systems use a 

classifier to transform the properties of the nodule into 

conclusions regarding whether or not the nodule is benign 

or cancerous. As a result of the fact that the CADx system 

helps radiologists achieve a higher level of diagnostic 

accuracy, it is an excellent option for performing 

preliminary diagnoses. Low-level features of medical 

imaging are used by early established CADx systems. 

Contour, size, and form are features image structures in the 

images. Because pulmonary nodules come in a wide variety 

of sizes and forms, as shown in Fig. 1, our techniques 

demonstrate that low-level traits can be beneficial for 

classifying pulmonary nodules. 

Unsupervised learning strategies, on the other hand, call for 

the manual extraction of features, which makes it difficult 

to determine which combination of features is best 

(Anthimopoulos et al.). 

DL has seen a significant deal of success in recent years, 

particularly in the areas of picture objective detection, 

classification, NLP and many more. Deep neural 

networks, often known as DNNs, are capable of 

approaching human levels of performance in several of 

these areas (Silver et al. 2016). 

In a traditional ConvNet, the early layers are 

responsible for the generation of global structures. When 

one reaches deeper layers, one begins to encounter 

increasingly complex local systems. A conventional 

ConvNet typically consists of a single path and is limited 

to making use of the local structures while performing 

classification. On the other hand, in the classification of 

pulmonary nodules, merging local and global structures 

by way of a skip connection is anticipated to increase the 

classification performance. Additionally, the traditional 

Convolution Network only uses a single-scale filter when 

it comes to the feature extraction process. On the other 

hand, because the sizes of the nodules might vary, it may 

be possible to obtain more accurate nodule features by 

conducting nodule image analysis using multi-scale 

filters. 

An unique CNN architecture is suggested with the goal of 

satisfying the demand for better pulmonary nodule 

classification. The suggested ConvNet makes use of a 
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multiple path feature extraction strategy in order to maintain 

the integrity of both the local and the global structures. In 

addition, the suggested ConvNet makes use of multi-scale 

convolutional layers, which include the application of 

numerous filters of varying sizes, in order to cover a greater 

number of useful nodule properties. The suggested ConvNet 

achieves a 14 percent improvement in an area under the 

ROC curves when compared to the approach (Nishio and 

Nagashima 2017). This is in comparison to the previous 

approach (AUC). 

 

 

 

 

 

 

 

 

 

2. Datasets 

[3] contains the CT scans of seventy patients, and the overall 

collection has 83 pulmonary nodules, of which 41 are 

malignant and 42 are benign. Each CT scan included in the 

LUNGx Challenge database was acquired with a tube peak 

potential energy of either 120kV or 140kV, with a tube 

current-exposure time product of between 200 and 325 mA. 

The Computed Tomography scans are reconstructed 

DICOM files, which contain a variety of 2D slice images. 

The size of each slice image is 512 pixels by 512 pixels, 

and the slice thickness is 1 millimeter. 

In Figure 2, a selection of the bounding boxes are depicted 

as red rectangles for your viewing pleasure. (3) The nodule 

patches are retrieved by cropping the slice images in a way 

that respects the bounding boxes. Different patches obtained 

the same nodules had distinct visual manifestations, as seen 

in Figure 2 (see also Fig. 1). 

 

 

 

 

 

 

 

2.1. Data augmentation 

In order for ConvNets to attain good classification 

performance, they require a substantial dataset on which to 

train their vast number of learnable parameters. For 

instance, there are 1.2 million training photos in the 

ImageNet database, which was used to train AlexNet. 

According to what was covered in Section 2, the LUNGx 

Challenge database only has 1131 nodule patches retrieved 

from it. When there is a finite amount of data, the trained 

network is unable to model the training data accurately nor 

can it generalise its performance to make accurate 

predictions for new data. In most cases, a data augmentation 

strategy is utilised in order to accomplish the goal of 

increasing the total number of training photos.  

In this paper, the data augmentation involves several 

techniques by randomly selecting image flipping, image 

rotation and image translation. The goal of this is to achieve 

a unique spatial variance for each enhanced nodule patch. 

The rotation is accomplished by rotating the nodule patches 

at an arbitrary angle that ranges from 0 to 359 degrees.  

The orientation of the nodule patches in either the vertical 

or horizontal plane is arbitrary. The translation causes a 

haphazard movement of the nodules closer to the boundaries 

of the bounding boxes. As can be seen in Figure 3b, the 

initial bounding box must be expanded by twenty percent in 

order for translation to be performed.  

 

 

 

 

 

 

 

 

2.2. Image Normalization and Contrasting 

When applying the contrast normalization technique, the 

global mean is subtracted from each pixel in each image 

before applying the technique. The intensities of all pixels 

are averaged in order to calculate the global mean. This is 

accomplished by first adding up the intensities of all pixels 

in all of the photos, then dividing this total by the total 

number of images. The performance of the ConvNet may be 

negatively impacted when a big gradient is present since this 

may force the network to converge toward a local minimum. 

3. Proposed Convolution Network 

The suggested ConvNet utilizes two strategies that have been 

developed in order to increase classification performance: 

(1) The Multiple path Feature Extraction creates one extra 

path to combine features from other layers and later layers 

 
Fig 1. The definition of pulmonary nodules with 

examples. The nodules can be found in the middle of 

the image boxes that are 80mm by 80mm. These 

examples show that classifying pulmonary nodules can 

be difficult due to the wide range of sizes, forms, and 

comparable visual representations shared by malignant 

and benign nodules. 

 

 

 
Fig.2. The nodule patches were extracted using 

bounding boxes. A. 2 different benign nodule patches 

photographed after being cut from the same non-

cancerous nodule twice. B. 2 different malignant nodule 

patches taken from different slices. 

 

 
Fig.3.  A visual representation of the translating process. 

A. Nodule patch that was removed according to the 

original bounding box. B. The extracted nodule patch 

twice the original. C. Nodule patch translation 
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preserve from loss of features. (2) In order to provide multi-

scale features, the traditional conv. layer is removed and 

replaced with the proposed multiple scale Conv. layer. The 

multi-scale conv. layer makes use of numerous filters of 

varying sizes. 

 

 

 

 

 

 

 

 

 

 

 

3.1. Architecture 

The Figure 4a depicts architecture that would be used for 

the proposed ConvNet. The suggested ConvNet has a size 

of input that is 96*96. Two feed-forward routes are 

included in the proposed ConvNet design. The main path 

is responsible for performing multiple scale for extraction 

of features, and its fundamental structure is founded on 

the hierarchical neural network. The main path's 

fundamental structure is made up of four consecutive 

single-scale convolutional layers, which are then followed 

by three fully connected layers. On the other hand, the 

second path is the one that is utilized for multi-path feature 

extraction. This is accomplished by establishing a direct 

connection between the first single-scale conv. layer and 

the first FC layer along the main path. In relation to the 

primary path, the multiple scale extraction of features 

occurs after the two conv. layers that are only of the 

single-scale variety. In the 1st single-scale convolutional 

layer, a convolution operation with a size of 7*7 is carried 

out in order to obtain 12 output feature maps. 

In a similar manner, the second single-scale convolutional 

layer generates 24 output layer feature maps by utilizing 

the same filter size. Then, after this, there are two multi-

scale convolutional layers that come after this. In the end, 

the two different routes will be combined and linked to the 

initial layer that will be entirely connected. 

Following the completion of three layers that are FC, the 

final output features are analyzed in order to divide 

pulmonary nodules into two categories: benign and 

malignant. There are 256 neurons that are concealed in the 

first layer that is fully linked. In order to match the number 

of output classes, the last fully connected layer has only 

two hidden neurons, whereas the second fully connected 

layer contains 128 hidden neurons. After the last layer that 

is completely connected, the results that were predicted 

are normalized using SoftMax (Bishop 2006). 

The activation function of each convolutional layer is the 

ReLU layer, which stands for the "rectified linear unit." 

Positive values are maintained while negative ones are 

truncated to zero by the ReLU. In comparison to the 

sigmoid function and the tanh function, the ReLU exhibits 

significantly more favorable gradient changes 

(Krizhevsky et al. 2012). In addition, it is simple to apply, 

which makes it an effective tool for enhancing the speed 

performance of the network during both training and 

inference. 

Following each layer of convolutional processing, a max-

pooling layer is added. In order to preserve more pertinent 

local structures, the max-pooling layers of the network are 

utilized to lower the spatial resolution of the layers that 

immediately follow them in the hierarchy. In addition, the 

pooling process expands the extent of the receptive field, 

which enables the network to acquire a greater 

understanding of intricate regional patterns based on the 

input. 

3.1.1. Multiple path extraction of features 

The The traditional ConvNet has a direct route for passing 

extracted features into the fully connected levels of the 

network. The earlier layers of a typical ConvNet are 

responsible for the feature extraction in relation to global 

structure. When the ConvNet is allowed to propagate to 

deeper layers, the previously extracted features become 

less dense and more locally concentrated, while the 

previously extracted global structures become less 

prominent. The performance of the traditional ConvNet 

may be limited in the study of the pulmonary nodules, 

despite the fact that it is well-suited to extract features that 

describe local structures. Local structures have a lower 

capacity to represent such low-level information as 

compared to global structures. This is due to the fact that 

the visual representations of pulmonary nodules come in a 

variety of different shapes and sizes. 

The multi-path feature extraction that has been offered is a 

short-cut solution to the problem of lost global structures. 

The output of the first conv. layer is split in two by the 

shortcut, which also establishes a skip connection to the first 

FC layer, as can be seen in Figure 4b. A maximum PL is put 

into the shortcut in order to blend the characteristics that 

come from two different branches. Combination of both 

local and global structures because they were created by 

passing the features of the early layer into the first FC layer. 

As a result, it is anticipated that the final combined features 

will provide more nodule features. 

 

 
Fig.4. A. General outline of the planned architecture for 

the ConvNet. B. An illustration showing how the MP 

feature extraction works. C. A more in-depth look at 

multiple scale conv. layer. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 144–152 |  147 

3.1.2. Multiple Scale convolution layer 

A simplistic approach to enhancing the performance of a 

ConvNet is to add more convolutional layers to the network, 

hence increasing its depth. Due to the limited size of the 

dataset, this strategy would result in overfitting. Convolution 

requires careful consideration when selecting an appropriate 

filter size. This can be challenging. Choosing the appropriate 

filter size can considerably increase diagnostic accuracy 

when pulmonary nodule categorization is being performed. 

A multiple scale conv. layer is offered as a means of 

improving the extraction of local sparse structures with 

regard to various receptive fields in this particular piece of 

research. The filter bank in the multiple scale conv. layer is 

constructed with 3 different filter sizes as opposed to utilizing 

a single-scale filter. Figure 4c illustrates the configurational 

specifics of the multiple scale conv. layer in its entirety.  

There are three different branches that make up the multiple 

scale conv. layer. The first branch carries out an operation 

known as a 3*3 convolution. By utilizing a 5*5 convolutional 

layer, the second branch of the tree is able to accomplish its 

goal of extracting comparatively larger local structures. The 

final branch also consists of one conv. layer, but the size of 

the filter has been increased to 7*7 in order to take into 

account a greater number of local structures. A depth-wise 

concatenation is used to combine the feature maps that were 

produced by three different branches. In order to carry out an 

efficient concatenation, the input of the 3*3 conv. layer is 

padded with a 1*1 border of zeros, while the inputs of the 

5*5 and 7*7 convolutional layers, respectively, employ zero 

paddings of 2 or 3, depending on which layer they are. 

The ConvNet that has been proposed features an extension of a 

single-scale conv. layer to a multiple scale conv. layer. This 

provides the network with the ability to produce more local 

structures of varied sizes. 

3.2. Training of model and result evaluation 

The suggested Convolution Network is evaluated and 

trained Network using 5-fold cross validation, in order to 

pick a trained model with strong generalization. Each fold 

has benign and malignant nodules with 10% each, with a 

total of 41 and 42, respectively. In every iteration of the 

cross-validation procedure, 3 folds are set aside for 

training, whereas only one-fold is allocated for validation 

and one-fold is used for testing. The augmentation is done 

while the data set is still being used for training. When 

calculating overall performance, an average is taken of the 

accuracies, sensitivities, and specificities obtained from 

each of the 5 cross-validation folds. 

Class imbalance may have a negative impact on training 

convergence and the generalization of the trained model due 

to the fact that the enhanced nodule patches contain a greater 

number of malignant samples than benign ones (Mazurowski 

et al. 2008). Over-sampling the minority group is one of the 

most prevalent solutions to the problem of imbalance, and 

research has shown that doing so leads to improved 

performance in deep learning. The proposed training and 

validation datasets are subjected to over-sampling so that 

they are more evenly distributed. This is accomplished by 

randomly selecting and duplicating benign nodule patches. 

4. Analysis of Results 

4.1. Experimental Setup  

Caffe, a framework for deep learning developed by Jia et al. 

(2014), is used to implement the suggested ConvNet. The 

Caffe environment is often used for the implementation of 

other research involving convolutional neural networks. 

Training and testing of the network is carried out on a 

computer running Ubuntu 16.04 Linux 

4.2. Proposed Convolution Network Algorithm Analysis 

4.2.1. Hyper-parameter Tunning 

A variety of experiments are carried out in order to provide 

evidence in support of the decisions made regarding the 

proposed ConvNet input scale, no. of hidden neurons in the 

FC layers, and training settings. Table 1 provides a concise 

summary of the findings. The accuracy of the categorization 

decreased by approximately 1.5% when moving from 96*96 

to 128*128 on the input scale. When the input scale is 

decreased to 64 by 64, there is a 4% decrease in accuracy. 

Additionally, when the no. of hidden neurons in the FC 

layers is either doubled or halved, the classification 

accuracies that are produced are inferior to those that were 

proposed. If the dropout technique is not implemented, the 

proposed ConvNet displays an accuracy that is around 1.5% 

lower. In addition, there is a noticeable gain in accuracy 

when the batch size is increased from 96 to 128, which is 

around 0.5 percent. 

 

 

 

 

 

 

 

 

 

4.2.2. Multiple Path Feature Extraction Analysis  

The performance of the multiple path feature extraction is 

examined by comparing the classification performances of 

the proposed ConvNet with and without the shortcut. This 

is done in order to evaluate the effectiveness of the multi-

 
Table 1. Accuracy of classification achieved by the 

proposed ConvNet using various settings for its hyper-

parameters. 
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path feature extraction. The short cut raises the accuracy 

from 86.77 to 90.38 percent, the AUC from 0.914 to 0.948 

percent, and adds to a 2 percent increase in sensitivity and a 

6 percent increase in specificity. Table 2 presents these 

findings for your perusal. By establishing numerous 

branches simultaneously, an investigation is carried out to 

see how successful the suggested multi-path feature 

extraction is. Intuitively, each of the branches makes use of 

the identical input features and extracts those features using 

an independent convolution operation, which is then 

followed by maximum pooling. 

As can be seen in Table 3, when branches are added to the 

proposed multi-path feature extraction method, the 

classification performance suffers as a result. In particular, 

the multi-path feature extraction performed using three 

branches has a worse  classification performance compared 

to the one performed using two branches. In addition, the 

classification performance of a system that uses multi-

scaled convolution filters (for example, "11*11, 13*13") is 

superior to that of a system that uses a fixed-scale 

convolution filter (for example, "11*11, 11*11") in terms of 

both accuracy and speed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Comparison with previous works 

4.3.1. Comparison with Unsupervised feature learning 

approach 

The suggested method is contrasted with Nishio's work, 

which is an approach to nodule-based unsupervised feature 

learning. The purpose of this comparison is to demonstrate 

that the proposed method is more effective than an 

unsupervised learning scheme. The research conducted by 

Nishio uses a combination of principal component analysis 

(PCA) and convolution operation in order to extract robust 

unsupervised features. According to the results of the nodule-

based study, the suggested method performs better than 

Nishio's method (Specificity = 0.889, Sensitivity = 0.875,  

AUC = 0.958), as shown in Table 4. The unsupervised 

feature extraction that is detailed in Nishio's work is 

surpassed by the suggested method in two significant ways, 

which are as follows: 

(1) The covariance matrix serves as the foundation for principal 

components. Because of the complexity of high-dimensional 

spaces, it is not possible to accurately evaluate the covariance 

matrix in a way that would allow it to offer adequate high-level 

characteristics. (2) The PCA approach does not have a 

particularly great ability to assess the differences in object 

placement (Li et al. 2008). During the testing phase of the PCA 

approach, it is possible for erroneous predictions to be 

generated when the nodules occur in different positions of the 

input images. On the other hand, the approaches that are based 

on ConvNet have a great ability to process the translational 

variance that is present in objects. The ability to extract features 

is improved as a result by the method that was proposed. 

4.3.2. Comparison with other ConvNet approaches 

These ConvNets include those that use single-scale 

convolutional layers (Li et al. 2014; Zhao et al. 2018), pre-

trained AlexNet and GoogLeNet with transfer learning 

(Shin et al. 2016; Tajbakhsh et al. 2016), and multi-

cropped ConvNets (Shen et al. 2017). The classification 

performance statistics of previous research are created by 

training and evaluating their ConvNets using the LUNGx 

Challenge database with identical data partitioning and 

evaluation scheme as used in the proposed architecture. 

This ensures that the results are comparable (as described 

in Sect. 3.2). The findings are presented in a nutshell in 

Table 5. When compared to other ConvNets, the 

suggested ConvNet has the highest levels of accuracy 

(90.38 percent), specificity (0.924), and AUC (0.948). 

The resultant sensitivity of the suggested ConvNet is 

0.887, which is only 0.019 points lower than the 

sensitivity achieved by the model with the highest 

sensitivity, which was a pretrained GoogLeNet with 

transfer learning (Shin et al. 2016). 

In addition to this, the performance of the proposed 

ConvNet is evaluated and contrasted with that of the multi-

crop ConvNet (Shen et al. 2017), which crops feature maps 

in the direction of multi-scale feature learning. Using multi-

crop ConvNet to extract patch-based data should also be 

legitimate, despite concerns that the multi-crop ConvNet is 

evaluated under nodule-based data. The aim is to crop the 

feature maps with varying sizes to boost the core nodule 

feature, regardless of the input shape. According to the 

findings presented in Table 5, the suggested ConvNet 

demonstrates superior accuracy as well as AUC in 

comparison to the multi-crop ConvNet. The suggested 

 

Table 2. Comparison of proposed Convolution 

Network accuracy in classifying data with and without 

the use of a shortcut 

 

 
Table 3 Comparison of the classification abilities of 

the proposed multiple path feature extraction with a 

variety of filter configurations 
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multi-scale convolutional layer does not crop the feature 

maps; rather, it uses many filters of varying sizes to produce 

more local structures. As a result, the central nodule features 

are also enhanced. On the other hand, the multi-path feature 

extraction that has been presented utilises the beneficial 

global structures to further improve the nodule features that 

correlate to the size or shape of the nodule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 illustrates the ROCs  for a variety of ConvNet 

designs. A statistical analysis, namely the significance 

level under the DeLong test (Efron 1993), is carried out in 

order to examine the statistical significance of the AUC 

differences that exist between the proposed ConvNet and 

other ConvNet techniques. 

According to the findings of the DeLong test, the suggested 

ConvNet showed statistical significance (ρ < 0.05) in 

comparison to other ConvNet techniques, with the 

exception of pre-trained  

GoogLeNet (Shin et al. 2016) (ρ=0.0509) and multi-crop 

ConvNet. The suggested multi-scale convolutional layer 

does not crop the feature maps; rather, it uses many filters 

of varying sizes to produce more local structures. As a 

result, the central nodule features are also enhanced. On the 

other hand, the multi-path feature extraction that has been 

presented utilises the beneficial global structures to further 

improve the nodule features that correlate to the size or 

shape of the nodule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The proposed ConvNet is compared to other ConvNets in 

terms of its training time, inference time, and testing error. 

Note that each experiment was carried out using a 

graphics processing unit (GPU) powered by an NVIDIA 

K40. The estimated time needed by the proposed ConvNet 

to finish predicting one nodule patch is 0.966 seconds. 

The suggested ConvNet requires 3.750 milliseconds for 

each training session to be completed. As can be shown in 

Figure 6, the training and inference times for the proposed 

ConvNet are significantly longer than those reported by 

Li et al. (2014), Zhao et al. (2018), or Shen et al (2017). It 

is reasonable to anticipate that the suggested ConvNet will 

require more time to train or perform inference than the 

aforementioned three ConvNets due to the fact that it has 

a greater number of learnable parameters. In spite of this, 

the suggested ConvNet has an inference time that is only 

a fraction of a millisecond slower than the other three 

ConvNets, which is an extremely insignificant difference 

for actual clinical applications. The proposed ConvNet 

had the lowest testing error of all the ConvNets that were 

examined; this is the most important finding. 

 

 

 

 
Table 4. The suggested ConvNet is compared with an 

unsupervised feature learning approach. 

 
Table 5 The suggested ConvNet is compared to several 

different ConvNet topologies that are stored in the 

LUNGx Challenge database. 
 

 

 

Fig. 5. ROC curves for various ConvNet architectural 

configurations 

 

 
Fig. 6. Various ConvNets inference times compared to 

their training times and their testing errors. 
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5. Conclusion 

A unique Convolution Network architecture is described 

here for the categorization of lung nodules based on CT 

scans. In order to blend fine global structures from the early 

layers with sparse local structures from the later layers, the 

proposed ConvNet makes use of a multi-path feature 

extraction approach. This results in an accuracy 

improvement of 4% when compared to the previously 

proposed ConvNet, which does not utilise a multi-path 

feature extraction approach. When compared to the use of 

single-scale convolutional layers, the proposed ConvNet 

makes use of a multi-scale convolutional layer to extract 

features at different scales. This helps the network learn 

local structures more efficiently and results in an increase in 

classification accuracy of more than 2 percent. The 

suggested ConvNet delivers a 14 percent improvement in 

AUC when compared to an earlier unsupervised feature 

learning technique. The suggested ConvNet has the 

potential to produce up to 13 percent greater accuracy and 

11 percent higher AUC when compared to earlier versions 

of ConvNets that were utilised in medical imaging.  
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