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Abstract: In several fields, including aviation, environmental management, and the production of energy from renewable sources, exact 

wind speed forecast is important. The complexity and nonlinearity of the data on wind speed provide difficulties for conventional 

prediction techniques frequently. In this study, a unique method for improving predictions of wind speed is put forth. It combines the 

optimization of Satin Bowerbird (SBO) algorithm with the Backpropagation Neural Network (BPNN). The BPNN is ideal for modeling 

wind speed patterns because it can capture nonlinear interactions. However, the conventional BPNN training procedure is prone to 

become stuck in local optima, producing predictions that are less than ideal. The SBO technique is used to modify the BPNN 

characteristics in order to get around this restriction. The performance of the suggested strategy is examined in this study using wind 

speed information. The suggested SBO-BPNN methodology has the potential to increase the accuracy of wind speed predictions, 

allowing for better scheduling and making choices in a variety of wind energy-dependent businesses. Future studies should examine how 

well this model works for similar prediction-related tasks like estimating wind power or predicting wind direction. 

Keywords: Wind speed, wind power, renewable energy, prediction, Satin Bowerbird optimization (SBO), Backpropagation Neural 

Network (BPNN) 

1. Introduction 

Wind speed forecasting is an essential component of 

modern meteorological science, with applications ranging 

from aviation safety to renewable energy optimization. We 

can improve decision-making, safeguard people and 

property, and promote sustainable development by 

forecasting wind behavior. Wind, a renewable and natural 

energy source, is a key component in the generation of 

electricity by wind turbines [1]. Wind energy is regarded 

as a clean, green, and environmentally friendly energy 

source because it is renewable and emits no greenhouse 

gases while in use. The speed and direction of the wind 

have a significant impact on the effectiveness and 

efficiency of wind energy generation [2]. Therefore, for 

wind energy companies to estimate and manage power 

production effectively, accurate wind speed prediction 

becomes crucial. The process of predicting wind speed is 

difficult. Numerous factors, such as air pressure variations, 

the Coriolis Effect, temperature gradients, geographical 

elements like terrain and water bodies, and more complex 

climate systems all have an impact on wind, an 

atmospheric phenomenon. Accurate wind speed prediction 

is difficult due to these interactions [3]. Deterministic 

methods, which offer a single result based on particular 

initial conditions, were used for wind speed prediction. 

However, the inherent uncertainty in predicting wind speed 

is frequently missed by these methods. Modern wind speed 

forecasting methods have progressively used machine 

learning and artificial intelligence techniques as 

computational power and data availability have increased. 

In order to predict future wind speeds, these methods 

which may include but are not limited to neural networks, 

random forests, and gradient boosting capture patterns in 

historical data. Time-series forecasting is one well-liked 

method, for instance [5].  

Time-series models forecast future values based on 

historical data points. This method has a number of 

advantages, one of which is that it is capable of capturing 

the temporal dependencies that are present in wind speed 

data. For this purpose, it is common practice to employ 

models such as the seasonal decomposition of time series 

(STL), the long short term memory (LSTM) , and the 

autoregressive integrated moving average (ARIMA) 

models. Another category of forecasting techniques 

focuses on identifying the built-in statistical characteristics 

of the data [5]. The Weibull distribution, which is widely 

used to model wind speed data, is one example of a 

distribution that these techniques frequently assume the 

data will follow. This distribution accurately captures the 

skewness and variability of wind speed. Models made of 

physical objects are used in another technique. In order to 
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forecast wind speed, these models simulate the physics of 

atmospheric flow and the interactions between the 

atmosphere and the surface of the Earth [6]. Physical 

models used for predicting wind speed include numerical 

weather prediction (NWP) models. While each of these 

approaches has advantages, they also have drawbacks. In 

the event that the underlying assumptions are incorrect, 

time-series and statistical models may not work. Physical 

models can be computationally demanding and require a 

lot of precise input data despite being more thorough. As a 

result, hybrid models which combine the advantages of 

both of these approaches are growing in acceptance [7]. 

We suggest a novel approach to enhance the wind speed 

prediction. It combines the Satin Bowerbird Optimisation 

(SBO) algorithm with the Backpropagation Neural 

Network (BPNN). The BPNN's ability to capture nonlinear 

interactions makes it ideal for modeling wind speed 

patterns. 

The rest of the paper organizations are arranged according 

to: related work is discussed in part 2, the method is 

presented in part 3, the results and discussion is describes 

in part 4, and the conclusion of the paper covered in part 5. 

2. Related Works 

Machine learning techniques were utilized to predict a 

certain amount of wind power using daily wind speed 

information. In particular, projections of the given wind 

speed estimates were made by using classification 

algorithms. The hourly wind speed data collection was 

used to generate values for the daily mean wind speed, and 

the SD as well as the daily wind speed was used to model 

the daily total wind power [8]. Study [9] proposed a novel 

dynamic integrated technique for wind speed forecasting 

that integrates an optimized core vector regression 

(OCVR), and kernel principal component analysis (KPCA) 

system utilizing phase space reconstruction (PSR). Article 

[10] proposed a better rendition of the “Radial Basis 

Function (RBF) Neural Network”, augmented by a system 

of error feedback, especially for quick wind speed or wind 

power forecasts. His original strategy entails adding a 

parameter initialization step and including a form 

parameter into each hidden neuron's Gaussian basis 

function. These changes serve two purposes: they improve 

the precision and efficacy of the forecasting system's 

convergence and enable the algorithm to search for more 

ideal beginning values for both the center and SD. 

Study [11] recommended a “PCFS that combines point 

forecasting”, interval forecasting, and efficient sub-model 

selection. Additionally, three experiments and three 

analyses were carried out using two datasets from the 

Chinese Shandong Peninsula. Article [12] presented a 

“Jaya-SVM method for predicting short-term wind speed”. 

The Jaya optimization procedure, which makes utilize the 

most representative elements of the input information, is 

used to optimize the "hyper-parameters" of the SVM in the 

manner described. Paper [13] described many techniques 

for predicting wind speed. When wind speed is forecasted 

in huge multi-steps, the performance evaluations of the two 

boosting and forecasting algorithms are studied. Study [14] 

developed a multi-variable stacked LSTM system for 

predicting immediate wind speed. For real-time wind 

projections, this system supports the ingestion of several 

meteorological inputs. The suggested MSLSTM model 

takes data at various scales from previous parameters, aids 

the network in enabling a more complicated representation 

of the wind speed data collected over time, and 

simultaneously guards against over-fitting. NWP wind 

speed adjustment using GRUNNs as a foundation has been 

proposed for short-term wind power forecasts. The first 

stage is to analyze the wind speed characteristic of NWP 

and extract the SD of NWP weights according to the error 

in wind speed for the NWP time series of sped of wind. To 

fix the NWP wind speed error, a unidirectional GRUNNs-

based error correction system is then provided [15]. 

3. Method 

3.1 BPNN 

We briefly describe the BP neural network in this part 

because it serves as the study's baseline technique. In a BP 

neural network, each neuron uses a nonlinear transfer 

function in order to compute the internal the input vector's 

product and the weight vector and arrive at a scalar result. 

This allows the neuron to arrive at a scalar result. Because 

of this, the neuron is able to determine a scalar value. This 

step must be completed before moving on to the next step, 

which will allow the scalar value to be calculated. The 

three layers of this particular network are the input layer, 

the output layer and the hidden layer. The visible layer is 

the layer of input. The input layer is the user is actually 

looking at. The five input layer nodes stand in for the five 

days and hour average wind speed values from the past. 

Our decision to use an input layer with five nodes is 

supported by thorough testing, which shows that in this 

situation, the forecasting outcome is significantly better 

than in different circumstances. The daily wind speed 

forecasting value is the only node in the output. As is well 

known, the neural network's robustness is impacted by the 

hidden layer. 

We employ the Hecht–Nelson approach finding a hidden 

layer's node number in order to produce more accurate 

prediction results. According to this method, while The 

input layer's node value is n, while the hidden layer's node 

value is 2n + 1. The training of a BP network with n input 

neurons, 2n + 1 hidden neurons, and a single output 

neuron looks like this. We use a normalized approach to 

handle the values of the input and output before training 

the network to guarantee accurate forecasts. 
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𝑌′ = {𝑌′𝑗} = 2 ×
𝑌𝑗−𝑌𝑗𝑚𝑖𝑛

𝑌𝑗𝑚𝑎𝑥−𝑌𝑗𝑚𝑖𝑛
− 1, 𝑗 = 1,2, … , 𝑚𝑌′ ⊂

[1,1]  (1) 

Where 𝑌𝑗𝑚𝑖𝑛 and 𝑌𝑗𝑚𝑎𝑥 represent the input array's 

minimum and maximum values, respectively, while 𝑌𝑗 

stands for each vector's actual value. 

Stage 1: Determine the outputs for each hidden layer node. 

𝑥𝑖 = 𝑙(∑ 𝑈𝑖𝑗𝑌𝑗 + 𝑝𝑖) = 𝑙(𝑛𝑒𝑡𝑖)(𝑗 = 1, … , 𝑛; 𝑖 =𝑗

1, … ,2𝑚 + 1) (2)   

𝑛𝑒𝑡𝑖 = 𝑈𝑗𝑖𝑥𝑖 + 𝑝𝑖(𝑖 = 1, … ,2𝑚 + 1)    (3) 

𝑝𝑖  Indicates the partiality of the neuron 𝑖, 𝑥𝑖 signifies 

output from the node in the hidden layer 𝑖, and f is the 

initiation coefficient of a node, which is typically a 

function of sigmoid. Whereas 𝑛𝑒𝑡𝑖 represents the 

activation value of node 𝑗, 𝑈𝑗𝑖 represents the weight of the 

link from inputs node 𝑗 to hidden node 𝑖, and 𝑥𝑖 represents 

the output of the hidden layer node i. 

Stage 2: Compute the neural network's output information. 

01 = 𝑙0(𝑈𝑞𝑖𝑥𝑖 + 𝑝𝑞)(𝑖 = 1, … ,2𝑚 + 1)   (4) 

"𝑈𝑞𝑖" stands for the link weight from "hidden node" to 

"output node 0," "𝑝𝑞" refers to the bias, "01" is the data 

that is the network's output and "𝑙0" is the activating the 

output layer node's function. These terms are used in the 

context of this particular illustration. 

Stage 3: Reduce the overall error E using the training 

procedure. 

𝐴 =
1

2
∑(𝑄1 − 𝐾𝑑)2   (5) 

𝐾𝑑ids the real output 

3.2 Satin bowerbird optimization 

The SBO begins by creating a population in a random 

manner. It stands for a group of bower positions, each of 

which has a D-dimensional vector. The algorithm requires 

improving the vectors' parameters. Each bower's fitness 

(𝐹𝑖𝑘𝑗) is determined using the following equation: 

𝐹𝑖𝑘𝑗 = {

1

1+𝑒(𝑉𝑗)
𝑒(𝑉𝑗) ≥ 0

1 + |𝑒(𝑉𝑗)|𝑒(𝑉𝑗) ≥ 0
    (6) 

Where 𝑒(𝑉𝑗) denotes the bower's cost. 

The probability of each bower is then determined using 

Equation 2 and NB as the number of bowers: 

𝑂𝑗 =
𝐹𝑖𝑡𝑗

∑ 𝐹𝑖𝑡𝑗
𝑀𝐴
𝑚=1

             (7) 

Bowers are ranked in order of quality based on their 

fitness, with the most fit one being chosen. To stay current, 

the rest of the population attempts to imitate the best one. 

This is accomplished by utilizing Equations 8 and 9. 

𝑉𝑗𝑙
𝑛𝑒𝑤 = 𝑉𝑗𝑙

𝑜𝑙𝑑 + 𝜆𝑙 [(
𝑉𝑖𝑙+𝑉𝑏𝑒𝑠𝑡,𝑙

2
) − 𝑉𝑗𝑙

𝑜𝑙𝑑]  (8) 

𝜆𝑙 =
𝑏

1+𝑂𝑖
     (9) 

Where𝜆𝑙refers to step magnitude and a denotes the biggest 

step size. The roulette wheel technique also yields 𝑖. The 

mutation must then proceed to be put into practice. To that 

goal, 𝑉𝑗𝑙 undergoes a series of unpredictable events with a 

specified frequency. An assumption of a normal 

distribution (N) is made based on Equations (10) and (11). 

 

𝑉𝑗𝑙
𝑛𝑒𝑤~𝑀(𝑉𝑗𝑙

𝑜𝑙𝑑 , 𝜎2) = 𝑉𝑗𝑙
𝑜𝑙𝑑 + (𝜎𝑀(0,1))      (10) 

𝜎 = 𝑦(𝑉𝑎𝑟𝑚𝑎𝑥 − 𝑉𝑎𝑟𝑚𝑖𝑛)     (11) 

Where 2 is the variance factor, Varmin, Varmax, and z all 

represent the relative (%) differences between these two 

parameters, with Varmin and Varmax designating the 

lower and upper bounds. The algorithm then sorts existing 

bowers and finds the best one to use as the solution. 

3.3 Hybrid Satin Bowerbird optimized BPNN 

A neural network architecture that incorporates 

components from both the Satin bowerbird optimization 

algorithm and a BPNN is likely referred to as a hybrid 

Satin bowerbird optimized BPNN. This could entail 

optimizing the weights and neural network biases while 

using the Satin Bowerbird optimization method, potentially 

enhancing its performance in terms of accuracy or 

convergence speed. It's important to note that the context 

and objectives of the problem being addressed will 

determine the specifics of this hybrid approach' 

implementation. It might be a fresh research hypothesis or 

a method that has been put forth for a particular use. To 

offer more thorough insights, more information about the 

particular strategy or research paper would be necessary.. 

4. Result and Discussion 

a. Numerical demonstrations 

The The data on wind speed from China's Changma wind 

farm (Zhang et al., (2020)) is used as a model to evaluate 

the technique's ability for wind speed prediction in a real-

world wind field. Every wind field collects a wind speed 

reading every 20 minutes, with a maximum per day of 144 

readings. 4460 four wind speed observations from 31 days 

of wind speed data were used in this inquiry. The wind 

farm's 31-day wind speed variance. The wind speed varies 

greatly, with a greatest speed of the wind of approximately 

34 m/s and a lowest speed of wind of 0 m/s. The wind 

speed for 31 days values given in this study were used in 

the investigations presented. This investigation 

was presented in Matlab. 

The existing methods are “improved radical basis function 

neutral network-error feedback (IRBFNN-EF)” [10], “a 
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Jaya algorithm-based Support vector machine (Jaya-

SVM)” [12], and the gated recurrent unit neural network 

(GRUNN) [15] compared with proposed (SBO-BPNN). 

The parameters like “Mean error (AE), Mean absolute 

error (MAE), Mean square error (MSE), and Mean 

absolute percentage error (MAPE)”, Where “true positives 

(S1), false positives (P1), true negatives (S2), and false 

negatives (P2)”. 

The average forecast error (AE) is equal to 𝑛 times the 

forecasted results as in Equation (12). Figure 1 depicts the 

Average error (AE) for existing IRBFNN-EF, Jaya-SVM, 

and GRUNN is 0.35, 0.28, and 0.21 and our proposed 

approach is 0.15. It shows that our proposed technique has 

low average error than existing methods 

𝐴𝐸 =
1

𝑀
∑ (𝑧𝑚 − �̂�𝑚)𝑀

𝑚=1          (12) 

 

Fig 1: Average error (AE) 

The MAE refers to the n-times average absolute forecast 

error the predicted outcomes Equation 13. Figure 2 

displays MAE for existing IRBFNN-EF, Jaya-SVM and 

GRUNN as 0.79, 0.45, and 0.87 and our proposed 

approach is 0.33. The existing has high error than the 

proposed approach.  

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑧𝑚 − �̂�𝑚|𝑀

𝑚=1      (13) 

 

Fig 2: Mean absolute error (MAE) 

MSE, which measures the average of prediction error 

squares, helps assess how the predicted system has 

changed as in Equation 13. Figure 3 depicts MSE for 

existing IRBFNN-EF, Jaya-SVM and GRUNN is 1.47, 

1.25 and 1.25 and our proposed approach is 0.21. 

𝑀𝑆𝐸 =
1

𝑀
∑ (𝑧𝑚 − �̂�𝑚)2𝑀

𝑚=1    

 (14) 

 

Fig 3: Mean square error (MSE) 

A statistician's performance evaluation and comparison 

tool called MAPE measures the predict method's accuracy 

as in Equation 14. Figure 4 displays MAPE for existing 

IRBFNN-EF, Jaya-SVM and GRUNN is 57.78, 44.35, and 

37.59 and our proposed approach is 21.93. It proves that, 

in comparison to other methods currently in use, our 

methodology has less error. 

𝑀𝐴𝑃𝐸 =
1

𝑀
∑ |

𝑧𝑚−�̂�𝑚

𝑧𝑚
|𝑀

𝑚=1 × 100%   (15) 

 

Fig 4: Mean absolute percentage error (MAPE) 

The degree to which a calculation or estimate matches the 

real or genuine value is known as accuracy. It is an 

important statistic in Equation 16's evaluation of predictive 

models. Figure 5 shows the comparison of accuracy for 

existing IRBFNN-EF, Jaya-SVM and GRUNN is 85%, 

78%, and 83%, and our proposed method SBO-BPNN has 

97%. This indicates that the approach we have suggested is 

more precise in predicting the wind speed than the existing 

techniques. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆2+𝑆1

𝑆2+𝑆1+𝑃2+𝑃1
    (16) 
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Fig 5: Accuracy 

5. Conclusion 

In this article, we suggested an innovative method to 

improve wind speed prediction. The Satin Bowerbird 

optimization (SBO) algorithm and the Backpropagation 

Neural Network (BPNN) are hybridized in this study. For 

simulating fluctuations in wind velocity, the BPNN is a 

perfect fit since it can describe nonlinear interactions. The 

results showed that our suggested strategy performed well 

based on a range of criteria, including AE, AE, MSE, 

MAPE, and accuracy, which were 0.15, 0.33, 0.21, 21.93, 

and 97%.  Using more current iterations of the SBO could 

help find a more effective solution. Further research into 

possible future works may be conducted by using this 

concept and using other comparing algorithms. 
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