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Abstract: The main objective of the work is to develop an instrumented hand function test system to assess the gross motor function of 

the upper limb in human beings. Simple day-to-day activities are selected for the test item generation, and they are: i) displacement of 

cylindrical object and ii) pouring water into a cup test. The trajectory of hand movement and position values obtained from the Logitech 

B525 USB camera are fused with the motion data from MPU6050 and further linearized through the Extended Kalman Filter. The activity 

time is automatically calculated using the developed instrument. Also, the acceleration, orientation, trajectory plots of the object movement, 

and mean force are captured using the sensor fusion technique. Spearman’s rank correlation coefficient is above 0.9, representing a high 

correlation between the traditional stopwatch and automated test methods. Manual stopwatch usage is avoided, which reduces the clinician's 

burden. The method is more useful as patients need not visit the physiotherapy center each time for outcome measurement. 
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1. Introduction 

Our hand plays a significant role in various activities of our 

day-to-day life. The function of the upper limb may change 

depending on aging, injury, or health issues related to the 

nervous system. Proper rehabilitation is required to regain 

functional movement. Through a variety of assessments, the 

rehabilitation's effectiveness is evaluated. Hand evaluation 

instruments fall under the categories of performance-based 

measurements or self-report measurements. The ordinal 

scales used to assess self-report measures have the 

drawback that the evaluation would be subjective, not 

standing the clinician’s expertise [1]. In the performance-

based step, the activities similar to our daily living are 

measured using a stopwatch manually. In this measure, the 

final score depends on the time taken to complete the test 

and is considered more objective [2]. In the traditional 

performance-based test, the clinician must concentrate on 

the stopwatch during test execution. Delay may exist while 

operating a stopwatch, known as ‘response time.’ Also, time 

calculation alone cannot give complete details of the upper 

limb performance. Along with time calculation, parameters 

such as motion trajectory of the limb, amount of force 

applied while gripping, and peak point of the trajectory give 

subtle and detailed information about upper limb 

performance, which is otherwise not visible from clinical 

scales.  

The automation in upper limb assessment is also helpful in 

reducing the laborious process of expensive interventions 

[3–5]. For all these reasons, developing an automated 

version of quantitative upper limb assessment is gaining 

high priority these days. 

The available test items in literature, either use sensors on 

the body or based on the image or video recording of the 

assessment [6–8]. Whenever a patient's hand is tied with 

some sensors or video capturing is done, they will be more 

conscious, and the assessment outcome may not be realistic. 

This research aims to develop an automated hand function 

test battery called an “Instrumented hand function test 

battery,” having sensors on the test items and the hand is 

free for the movements. The automation reduces clinician 

supervision time and assesses the upper limb with minimum 

infrastructure. This paper is divided into five sections:  

Section one briefly introduces the work. The second part 

gives details on related work. The third part is materials and 

methods, focusing on the test materials, upper limb 

assessment standardization, and sensor fusion 

implementation. Section four briefs about the results 

obtained and statistical analysis. Moreover, section five 

discusses the results, and section 6, conclusions of the work, 

respectively. 

2. Related Works 

The literature on automated hand function tests for upper 
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limb rehabilitation is extensive and offers valuable insights 

into the development and effectiveness of such assessment 

tools. Some commonly used automated hand function tests 

include the Box and Block Test, Nine-Hole Peg Test, 

Jebsen-Taylor Hand Function Test, and Sollerman Hand 

Function Test [9–11]. Wearable and vision sensors are two 

broad categories available for upper limb assessment.  

2.1. Wearable device-based upper limb assessment 

One notable area of research in automated hand function 

tests is the development of wearable device-based 

assessment methods. These methods involve wearable 

sensors, such as accelerometers and gyroscopes, to capture 

and analyze the movement patterns and kinematics of the 

upper limb during functional tasks. These wearable devices 

provide real-time data on hand function and can be used in 

clinical and home-based settings, allowing for continuous 

monitoring and assessment of rehabilitation progress. 

Furthermore, wearable device-based assessment methods 

have the potential to overcome some of the limitations 

associated with traditional hand function tests [12-13]. 

An assessment of the state of upper-limb wearable device 

research and its practical application by Mingjie Dong et al. 

identifies existing design approaches, evaluates their merits 

and shortcomings, and identifies emerging research 

directions [14]. This study offers a systematic and thorough 

overview of upper-limb wearable device research, 

encompassing wearable design, sensor technologies, 

wearable computer methods, and wearable applications. 

The review provides a thorough overview of the area and 

can direct future studies in creating more effective wearable 

sensors for the upper limbs. Xiupeng Gao and Yiwei Yin 

designed a wearable armband device to assess the upper 

limbs’ motion function. The device uses inertial sensors to 

analyze and calculate the tester's upper limbs’ acceleration 

and angular velocity signals to evaluate the motor function 

[15]. The report notes that there are still specific design 

issues, such as the equipment's stability in the presence of 

electromagnetic interference from a complex environment 

and the integrated display of equipment networking, which 

will be the focus of future research. 

Luis Paredes et al. present FabHandWear, an end-to-end 

pipeline for designing and fabricating customized functional 

hand wearables [16]. The system allows users to create 

wearables that fit their hands perfectly and provide the 

specific functions they need. The system’s current support 

for hand wearables design is based on a parametrized five-

finger hand structure, which may not be inclusive to all 

users. Alessandra Angelucci et al. proposed a brand-new 

graphic test called SpAcCo for measuring the dexterity of 

the dominant hand as a measure of fine motor disability 

[17].  One advantage is that it enables quantitatively 

parametrizing temporal and spatial performances, allowing 

for a more precise and objective assessment of fine motor 

disability. However, the downside of this test is that 

individuals with severe impairment may not be able to 

complete the test within the given time limit, which could 

affect the accuracy of the assessment.  

Naoya Yamamoto et al. aimed to investigate using ring-

shaped wearable devices to quantitatively measure finger 

usage in stroke hemiplegia patients and compare the results 

with traditional clinical evaluation outcomes [18]. The 

instrument measures the angular variation of the PIP joint or 

proximal interphalangeal joint. It describes the cumulative 

change as the quantity of finger usage, enabling practical 

measurements. Future studies with higher sample sizes 

could produce more reliable results because the study only 

used a small number of participants. 

2.2. Vision and inertial filter fusion-based upper limb 

assessment 

Orestis N. Zestas et al. developed a computer-vision-based 

hand rehabilitation assessment suite that can be used 

remotely by patients and therapists to normalize the scores 

of the Sollerman hand function test and the Purdue Pegboard 

Test (CV-BBT) for different age groups [19]. The suite 

incorporates various well-known and often used hand 

rehabilitation and evaluation assessment tools packaged as 

a standalone desktop application using modern computer 

vision functionalities. It is important to remember that 

creating any virtual exercise or evaluation test for hand 

rehabilitation can be extremely challenging and time-

consuming, and its validity must be carefully considered. 

Table 1. General characteristics of the participants 

Experiment with time 

scores in seconds 

Age Group (years) 

20-35 36-50 51-65 66-80 

 

Cylindrical object 

displacement 
3.02 ± 0.61 

3.43 ± 

0.52 
4.18 ± 0.66 5.35 ± 0.66 

Pouring water from 

one cup to other 
5.64 ± 0.25 

5.89 ± 

0.26 
6.24 ± 0.26 7.70 ± 0.64 

Data expressed in mean ± SD; SD-Standard Deviation 
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Manlio Massiris Fernández et al. developed a novel method 

for ergonomic risk assessment using computer vision and 

machine learning [20]. The technique detects the skeletons 

of the employees, infers the positions and angles of their 

body joints, and then computes the Rapid Upper Limb 

Assessment (RULA) scores. The method was tested with 

limited videos, and the results may not be generalizable to 

all working scenarios.  Also, this method requires a certain 

level of technical expertise to implement, which may limit 

its accessibility to some users. 

2.3. Findings from the existing motion capture methods 

Yahya et al. reviewed motion capture techniques for upper 

extremity assessment [21]. This includes four different 

motion capture technologies: Optoelectronic measurement 

systems, Image processing systems, Mechanical 

measurement systems, and Inertial measurement systems. 

The wearer is probably inconvenienced by the location of 

the marks on the body. Furthermore, getting accurate 

measurements of human physical activity outside the lab 

under free-living circumstances has been challenging [22-

23]. The mechanical systems, including strain gauges, 

capacitive pressure sensor arrays, or motion suites with flex 

sensors, can be wearable sensors woven into clothing or 

hand gloves. In home-based upper limb assessment, the 

sensor positioning inaccuracy and calibrating the sensors 

each time before usage is problematic [24-25]. A general 

observation is that whenever some wearable devices are 

placed on the body, the person performing the task becomes 

more conscious, resulting in data that may not reflect the 

actual performance. This affects outcome measurement, and 

recorded measures may not reflect the scenario in the 

patient’s home setting. 

3. Materials and Methods 

The ‘instrumented object’ is designed and developed for the 

upper limb assessment, as shown in Fig. 1. It has an Arduino 

Atmega328P microcontroller, MPU6050 IMU sensor, 

Force Sensitive Resistor (FSR) sensors, and a Logitech 

B525 USB camera. This facilitates free hand movement, 

freeing the body from wearable devices [21], [26]. FSR 

sensors are used to evaluate hand function, which measures 

force distribution in fingertips and thumb during the task’s 

object grasp and transport phase. The algorithm is run on 

Ubuntu 18.04, a Linux-based open-source operating system 

using the Robot Operating System (ROS) framework. ROS 

uses the 'cameracalibrator.py' node from camera calibration 

to calibrate a monocular camera with the help of a 9×7-inch 

checkerboard. The test items are 1) displacement of 

cylindrical object and 2) pouring water into a cup. The 

cylindrical object with height = 11cm, diameter = 7.5cm, 

and weight of the object = 450g is used for the experiment. 

The general demographical characteristics of the 

participants are listed in Table 1. 

 

(a) 

 

(b) 

Fig. 1. Instrumented object (a) Embedded with sensors (b) 

Setup table with instrumented test battery and USB 

camera. 

The schematic of Fig. 2 is used for pose (position and 

orientation) estimation in the displacement of a cylindrical 

object and pouring water task. An 8-bit AVR-based 

ATMEGA328P-AU microcontroller with 32 pins is 

employed in this work. The circuit consists of two FSR 

sensors, one MPU6050 IMU sensor, and a computing 

system for pressure and orientation measurement. 

3.1. Implementation of vision and inertial fusion using 

Extended Kalman Filter 

The Extended Kalman Filter (EKF) package estimates the 

object’s pose in upper limb assessment. The instrumented 

object consists of an Augmented Reality (AR) tag and an 

IMU sensor, as shown in Figure 1 (a). The USB camera 

tracks the AR tag and estimates the 3D pose in six degrees 

of freedom. The motion data received through MPU6050 

and position values obtained from the USB camera are fused 

and linearized using the EKF package. While relative 

angular velocity could be used to calculate the object's 

heading, EKF uses linear acceleration to estimate the 

relative position of a moving item. The complete workflow 

of movement tracking is shown in Fig. 3. The two activities, 

displacement of a cylindrical object and pouring water into 

a cup in sequence, are given to each participant individually. 

The dominant hand was used to complete the tests first, then 

the non-dominant hand. 
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Fig. 2.  Schematics of circuit diagram used for pose 

estimation in gross motor function 

Fig. 3. Workflow diagram of movement tracking test 

3.2. Displacement of Cylindrical Object          

The gross motor of the hand during object movement is 

assessed by observing the trajectory of motion and grip 

strength by a pressure sensor.  FSR assembly is a 4.45cm × 

4.45cm thick polymer film that detects force ranging from 

0.1N to 10N. MPU6050 gives the orientation information, 

and the USB camera gives the motion trajectory. In this task, 

the grip force is analyzed by asking the participant to lift the 

instrumented cylindrical object, hold it for some time, and 

place it on the table. The procedure is standardized, i.e., 

seating arrangements, test items position, and test 

instructions are defined before the test. The activity is 

repeated with the non-dominant hand. The trajectory of 

hand motion, orientation, and force applied during object 

manipulation are plotted, and the total time to complete the 

task is recorded. The cylindrical object displacement 

involves the shoulder complex's range of motion and 

flexibility. Quantitative parameters such as orientation, 

hand trajectory, and pressure applied on cylindrical objects 

are recorded. A flowchart of the automated version of the 

displacement of cylindrical object task is depicted in Fig. 4. 

The program starts once the camera detects the AR-tag-

attached object. When holding a cylindrical object, FSR 

triggers the timer and records applied pressure. This 

recording continues until the completion of placing the 

cylinder 15cm above the table. The timer stops once the 

hand leaves the object. Force values will be plotted and 

displayed with fused sensor data, i.e., orientation and 

position information. 

3.3. Pouring water into a cup         

Internal rotation is often associated with forearm pronation, 

and its functional analysis is examined with the help of 

pouring water into a cup. The start, grasp, and pouring 

positions are depicted in Fig. 5. The hand is returned to the 

original position (position 1). The role of the thumb and ring 

finger is more significant in pouring water into a cup. Force 

distribution during the grasping phase is important in 

analyzing hand function. A cylindrical shape of 7.5cm 

diameter and 11cm height is selected considering the hand 

size of an average adult. Force sensing is recorded and 

plotted with the total task time. In this task, importance is 

given to the analysis of internal rotation often associated 

with forearm pronation. 

 

Fig. 4. Automation flow diagram of displacement of 

cylindrical object task 

 

Fig. 5. Participant performing pouring water into a cup 

task 

A flowchart of the automated version of the pouring water 

into a cup task is shown in Fig. 6. The 100ml water is filled 

and sealed in a cylindrical object, and the pouring action is 

performed into the other cup. This arrangement gives a 

required grip force to lift the water-filled cylindrical object 

and avoids water spillage during the test process. Two FSR 

sensors on both sides of the cup record the thumb and other 

digits’ grip force, and MPU6050 measures orientation 

during the task. The participant holds the cylindrical object 
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after the start command from a clinician. Timing records 

start once the participant holds the object and stop when he 

returns his hand to the table. Simultaneously trajectory will 

also be plotted along with the pressure variation plot. A USB 

camera, which is kept 1.6m away from the participant, is 

sufficient to record all these movements. If any occlusion is 

present for a short duration, MPU6050 sensor gives the 

relative displacement, and fused data (Camera+MPU6050) 

gives good trajectory information. 

 

Fig. 6. The automation flow diagram of displacement of 

pouring water into a cup task 

4. Results and Analysis 

The demographic details of the participant, such as age, sex, 

and dominant/non-dominant hand details, are considered 

during the test procedure. Further, the two activities used in 

the study are displacement of cylindrical objects and 

pouring the water experiments’ skewness, and median 

values are visualized using a Box plot. 

4.1. Gross motor function test using Cylindrical Object  

Fig. 7 shows the correlation between traditional and 

automated tests. The following correlation classification 

was used: no or very low: p = 0 - 0.25; low: p = 0.26 - 0.40; 

moderate: p = 0.41 - 0.69; high: p = 0.70 - 0.89; very high: 

p = 0.90 - 1.0. A non-parametric test, i.e., Spearman’s rank 

correlation, is used to check the relation between traditional 

stopwatch and automated method, as the test results are 

time, which is a continuous variable. It is observed that 

traditional and automated methods are highly correlated 

with rs = 0.992. 

The four age groups were observed for the outcome 

measurement in terms of time taken to complete the test 

using the dominant hand. The probable error estimation 

among different age groups is shown in Fig.8. It is observed 

that the automated test gives similar results as the traditional 

test. However, the advantage of the automated method is 

that the clinician is free from noting down the time through 

the stopwatch, and there could be human errors, i.e., action 

perceived and action taken or noted down. Auto recording 

of quantitative parameters and maintaining a database of 

complete test sessions help the clinician for further follow-

ups. 

4.1.1. Color/Grayscale figures 

Figures that are meant to appear in color, or shades of 

black/gray. Such figures may include photographs, 

illustrations, multicolor graphs, and flowcharts. 

4.1.2. Line Art figures 

Figures that are composed of only black lines and shapes. 

These figures should have no shades or half-tones of gray, 

only black and white. 

4.1.3. Tables 

Data charts which are typically black and white, but 

sometimes include color. 

 

Fig. 7. Correlation plot of the cylindrical object test 

 

Fig. 8. The probable error estimation of the traditional and 

automated version of the cylindrical object displacement 

test 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 269–277 |  274 

4.2 Gross motor function test using Pouring water into a 

Cup 

To examine grip force and force sharing during grasping, 

pouring water into a cup is considered. The vision output 

from the camera is plotted in Fig. 9 (a), which shows the 

trajectory of lifting the cup, bending to pour the water, and 

then resuming the initial posture. The plot shows two tracks 

that represent the transport and return phases. The transport 

phase corresponds to the initiation of lifting the cup and 

pouring action. The return phase is keeping the cup back in 

its original position. Fig. 9(b) is the Kalman filter output plot 

obtained by combining the vision and IMU data. Orientation 

output in radian is seen in Fig. 9(c), which shows that the 

roll angle (X-axis) variation is predominant compared to the 

other two axes (Y and Z) while pouring water into a cup. 

Fig. 9(d) is the FSR output in the Newton unit. 

 

(a) 

 

(b) 

 

(c) 

 

 

(d) 

Fig. 9. Output trajectories of the pouring water task (a) 

Only camera output (b) Filtered output from vision and 

IMU sensor (c) Orientation of the IMU sensor (d)FSR 

pressure sensor output 

After completing one test, the computer's terminal window 

displays quantitative values related to maximum and mean 

grip force in Newton (N), hand movement trajectory in 

meters, and total time taken to perform the task. The 

screenshot is shown in Fig. 10. Further analysis can be made 

using the recorded video. 

 

Fig. 10. The screenshot of a terminal window: maximum 

and minimum force(N), the highest point of trajectory(m), 

and test completion time(s) 

In the case of pouring water from one cup to another, rs = 

0.983, i.e., positively correlated between traditional and 

automated methods. The same participants are used in this 

test item, and the output is plotted as shown in Fig. 11. The 

test session is performed as per the standard procedure, and 

readings are recorded automatically. The automated test 

item version works as well as the traditional test method. 

Participants could not find any difference between these two 

test processes. 

 

Fig. 11. The correlation plot of pouring water into a cup 

test 
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Fig. 12 indicates the probable error estimation for pouring 

water into a cup test using a traditional stopwatch-based and 

developed automated test setup. The overall trend is that 

hand function significantly declined with increasing age. 

During this task, the age range in the 66-80 years’ category 

took longer than the 20-35, 36-50, and 51-65 age groups. 

Female individuals are faster compared to male individuals. 

The possible reason for this result could be that participants 

in the 51-65 age group in the female category were 

homemakers, and their occupation experience mainly 

influenced the execution speed. 

 

Fig. 12. The probable error estimation of the traditional 

and automated versions of pouring water into a cup test 

Participants are selected randomly between the age group of 

20 to 80 (sample size=30). SPSS for Windows, version 20, 

calculates all the statistical analyses with a p-value set at 

0.05. The independent sample t-test is performed to estimate 

if there is any significant difference in the demographical 

characteristics of the participants in the two selected 

experiments. Also, to see any effect of different age groups 

on the said experiment, Analysis of variance (ANOVA) is 

performed. The data’s normality is checked using the 

Shapiro-Wilke and Levene’s tests to test the variances' 

equality. 

5. Discussion 

The proposed work is conducted and tested with healthy 

participants to check the feasibility of automation in upper 

limb assessment using standardized test items. Testing on 

the patient population is the future scope of the work. The 

participants’ demographic details, such as age, sex, and 

dominant/non-dominant hand details, were considered 

during the test. Table 2 shows the result of the t-test analysis, 

indicating the Cylindrical object displacement has a 

significant mean difference between the dominant hand and 

non-dominant hand (p-Values< 0.05) and t-statistics (> 

2.00) for 58 degrees of freedom. 

 

Table 2. Between groups, comparison of handedness (hand 

dominance) on test scores 

    Handedness Mean SD t-value 

Significanc

e 

(p<0.05) 

Cylindrical 

object 

displaceme

nt 

Dominance 3.5287 0.8962 

-3.971 <.001* (S)  Non-

dominance 
4.4867 0.9707 

 

Pouring 

water from 

one cup to 

other 

 

Dominance 

 

6.3887 

 

1.0200 
0.250 0.804 (NS) 

 Non-

dominance 
6.3330 0.6700 

*indicates highly significant; S-Significance; NS- No 

Significance; SD-Standard Deviation 

The non-dominant hand requires more time to complete the 

cylindrical object displacement task than the dominant 

hand. Pouring water from one cup to another experiment 

resulted in no significant difference between the time taken 

by the dominance and non-dominance hand (p-value >0.05). 

The test data are recorded in time (seconds), a continuous 

variable; hence, a non-parametric test is applied to check the 

correlation between traditional and automated methods, i.e., 

Spearman’s Rank Correlation. The box plot in Figure 13 

shows that the median time taken to perform the task 

increases over the different age groups. One can also 

observe that as age increases, more time is taken to complete 

tasks. The test results show that traditional stopwatch-based 

and automated time calculations are highly and positively 

correlated for cylindrical object displacement (rs = 0.992) 

and pouring water task (rs = 0.983). The added advantage of 

the automated method is less clinician interference 

uniformity in scoring, and a database of the test scores of 

every session can be maintained for future analysis. Hence, 

it increases the reliability of outcomes and certainly helps 

clinicians spend more time on further guidance on 

therapeutic aspects. The proposed work assesses the hand’s 

natural movement without any wearable device. The 

developed setup can also be used at home for hand 

assessment. 
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(a) 

 

(b) 

Fig. 13. The box plot shown for the four age groups for the 

gross motor function test using (a) cylindrical object 

displacement, (b) Pouring water into a cup 

6. Conclusion 

Existing tests require a clinician to administer and monitor 

the timing information of the assessment using a manual 

stopwatch. In a hospital setup, assessing requires significant 

time and patience from the clinician. This automated version 

presented in this research work increases the reliability of 

outcomes and certainly helps clinicians in guiding further 

action on therapeutic aspects. In addition, the algorithm also 

checks if the specific sequence is followed or not in 

performing the task. While performing the test, following a 

specific sequence always brings uniformity, which helps 

assess the improvement during the subsequent visits. 

Ongoing research and technological advancements hold 

promise for developing more effective and accessible 

assessment tools in hand function tests for upper limb 

rehabilitation. These tools can potentially revolutionize 

upper limb rehabilitation by providing objective 

measurements, personalized interventions, and improved 

outcomes for stroke patients.  

Author contributions 

Sucheta V. Kolekar: Conceptualization, Methodology, 

Software, Field study.  

Aneesha Acharya K.: Data curation, Writing-Original 

draft preparation, Software, Validation. Field study  

Somashekara Bhat: Visualization, Investigation  

Kanthi M.: Writing-Reviewing and Editing. 

Conflicts of interest 

The authors declare no conflicts of interest. 

References 

[1] Carpinella, D. Cattaneo, and M. Ferrarin, 

“Quantitative assessment of upper limb motor function 

in Multiple Sclerosis using an instrumented Action 

Research Arm Test,” J NeuroEngineering Rehabil, 

vol. 11, no. 1, p. 67, 2014, doi: 10.1186/1743-0003-11-

67. 

[2] N. Lander, D. Nahavandi, S. Mohamed, I. Essiet, and 

L. M. Barnett, “Bringing objectivity to motor skill 

assessment in children,” Journal of Sports Sciences, 

vol. 38, no. 13, pp. 1539–1549, Jul. 2020, doi: 

10.1080/02640414.2020.1747743. 

[3] E. D. Ona Simbana, P. Sanchez-Herrera Baeza, A. 

Jardon Huete, and C. Balaguer, “Review of Automated 

Systems for Upper Limbs Functional Assessment in 

Neurorehabilitation,” IEEE Access, vol. 7, pp. 32352–

32367, 2019, doi: 10.1109/ACCESS.2019.2901814. 

[4] David, T. Subash, S. K. M. Varadhan, A. Melendez-

Calderon, and S. Balasubramanian, “A Framework for 

Sensor-Based Assessment of Upper-Limb Functioning 

in Hemiparesis,” Front. Hum. Neurosci., vol. 15, p. 

667509, Jul. 2021, doi: 10.3389/fnhum.2021.667509. 

[5] Francisco-Martínez, J. A. Padilla-Medina, J. Prado-

Olivarez, F. J. Pérez-Pinal, A. I. Barranco-Gutiérrez, 

and J. J. Martínez-Nolasco, “Kinect v2-Assisted Semi-

Automated Method to Assess Upper Limb Motor 

Performance in Children,” Sensors, vol. 22, no. 6, p. 

2258, Mar. 2022, doi: 10.3390/s22062258. 

[6] Werner et al., “Using Wearable Inertial Sensors to 

Estimate Clinical Scores of Upper Limb Movement 

Quality in Stroke,” Front. Physiol., vol. 13, p. 877563, 

May 2022, doi: 10.3389/fphys.2022.877563. 

[7] S. S. Mahmoud, Z. Cao, J. Fu, X. Gu, and Q. Fang, 

“Occupational Therapy Assessment for Upper Limb 

Rehabilitation: A Multisensor-Based Approach,” 

Front. Digit. Health, vol. 3, p. 784120, Dec. 2021, doi: 

10.3389/fdgth.2021.784120. 

[8] Schwarz, M. M. C. Bhagubai, G. Wolterink, J. P. O. 

Held, A. R. Luft, and P. H. Veltink, “Assessment of 

Upper Limb Movement Impairments after Stroke 

Using Wearable Inertial Sensing,” Sensors, vol. 20, no. 

17, p. 4770, Aug. 2020, doi: 10.3390/s20174770. 

[9] K. Kontson, I. Marcus, B. Myklebust, and E. Civillico, 

“Targeted box and blocks test: Normative data and 

comparison to standard tests,” PLoS ONE, vol. 12, no. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 269–277 |  277 

5, p. e0177965, May 2017, doi: 

10.1371/journal.pone.0177965. 

[10] K. A. Acharya, S. Bhat, and M. Kanthi, 

“Accelerometer based quantitative outcome 

measurement for hand function test,” IJSNET, vol. 31, 

no. 3, p. 172, 2019, doi: 

10.1504/IJSNET.2019.103045. 

[11] E. D. Oña, A. Jardón, and C. Balaguer, “The 

Automated Box and Blocks Test an Autonomous 

Assessment Method of Gross Manual Dexterity in 

Stroke Rehabilitation,” in Towards Autonomous 

Robotic Systems, vol. 10454, Y. Gao, S. Fallah, Y. Jin, 

and C. Lekakou, Eds., in Lecture Notes in Computer 

Science, vol. 10454. , Cham: Springer International 

Publishing, 2017, pp. 101–114. doi: 10.1007/978-3-

319-64107-2_9. 

[12] J. Paul, R. Amritanand, P. Margabandhu, R. 

Karuppusami, K. S. David, and V. Krishnan, 

“Composite Grip Strength as a Marker of Outcome in 

Patients Surgically Treated for Degenerative Cervical 

Myelopathy,” Asian Spine J, vol. 15, no. 5, pp. 664–

672, Oct. 2021, doi: 10.31616/asj.2020.0253. 

[13] S. F. M. Toh, P. C. Gonzalez, and K. N. K. Fong, 

“Usability of a wearable device for home-based upper 

limb telerehabilitation in persons with stroke: A 

mixed-methods study,” DIGITAL HEALTH, vol. 9, p. 

205520762311537, Jan. 2023, doi: 

10.1177/20552076231153737. 

[14] M. Dong, B. Fang, J. Li, F. Sun, and H. Liu, “Wearable 

sensing devices for upper limbs: A systematic review,” 

Proc Inst Mech Eng H, vol. 235, no. 1, pp. 117–130, 

Jan. 2021, doi: 10.1177/0954411920953031. 

[15] X. Gao and Y. Yin, “Design on a wearable armband 

device for assessing the motion function of upper 

limbs,” Computer Communications, vol. 153, pp. 135–

144, Mar. 2020, doi: 10.1016/j.comcom.2020.01.074. 

[16] L. Paredes et al., “FabHandWear: An End-to-End 

Pipeline from Design to Fabrication of Customized 

Functional Hand Wearables,” Proc. ACM Interact. 

Mob. Wearable Ubiquitous Technol., vol. 5, no. 2, pp. 

1–22, Jun. 2021, doi: 10.1145/3463518. 

[17] Angelucci, A. Tettamanti, E. Sarasso, M. Filippi, A. 

Aliverti, and M. Scarlato, “Validation of a graphic test 

to quantitatively assess the dominant hand dexterity,” 

PLoS ONE, vol. 17, no. 8, p. e0271889, Aug. 2022, 

doi: 10.1371/journal.pone.0271889. 

[18] N. Yamamoto, T. Matsumoto, T. Sudo, M. Miyashita, 

and T. Kondo, “Quantitative measurement of finger 

usage in stroke hemiplegia using ring-shaped wearable 

devices,” J NeuroEngineering Rehabil, vol. 20, no. 1, 

p. 73, Jun. 2023, doi: 10.1186/s12984-023-01199-4. 

[19] O. N. Zestas and N. D. Tselikas, “Sollerman Hand 

Function Sub-Test ‘Write with a Pen’: A Computer-

Vision-Based Approach in Rehabilitation 

Assessment,” Sensors, vol. 23, no. 14, p. 6449, Jul. 

2023, doi: 10.3390/s23146449. 

[20] M. MassirisFernández, J. Á. Fernández, J. M. Bajo, 

and C. A. Delrieux, “Ergonomic risk assessment based 

on computer vision and machine learning,” Computers 

& Industrial Engineering, vol. 149, p. 106816, Nov. 

2020, doi: 10.1016/j.cie.2020.106816. 

[21] M. Yahya, J. A. Shah, K. A. Kadir, Z. M. Yusof, S. 

Khan, and A. Warsi, “Motion capture sensing 

techniques used in human upper limb motion: a 

review,” SR, vol. 39, no. 4, pp. 504–511, Jul. 2019, 

doi: 10.1108/SR-10-2018-0270. 

[22] B. Sokal et al., “Network of Movement and Proximity 

Sensors for Monitoring Upper-Extremity Motor 

Activity After Stroke: Proof of Principle,” Archives of 

Physical Medicine and Rehabilitation, vol. 95, no. 3, 

pp. 499–505, Mar. 2014, doi: 

10.1016/j.apmr.2013.09.013. 

[23] Atrsaei, H. Salarieh, and A. Alasty, “Human Arm 

Motion Tracking by Orientation-Based Fusion of 

Inertial Sensors and Kinect Using Unscented Kalman 

Filter,” Journal of Biomechanical Engineering, vol. 

138, no. 9, p. 091005, Sep. 2016, doi: 

10.1115/1.4034170. 

[24] R. J. M. Lemmens, Y. J. M. Janssen-Potten, A. A. A. 

Timmermans, R. J. E. M. Smeets, and H. A. M. Seelen, 

“Recognizing Complex Upper Extremity Activities 

Using Body Worn Sensors,” PLoS ONE, vol. 10, no. 

3, p. e0118642, Mar. 2015, doi: 

10.1371/journal.pone.0118642. 

[25] T. Boultache, B. Achour, and M. Laghrouche, “Human 

activity detection from inertial data using RNN and 

LSTM network,” IJSNET, vol. 39, no. 3, p. 156, 2022, 

doi: 10.1504/IJSNET.2022.124568. 

[26] M. Alatise and G. Hancke, “Pose Estimation of a 

Mobile Robot Based on Fusion of IMU Data and 

Vision Data Using an Extended Kalman Filter,” 

Sensors, vol. 17, no. 10, p. 2164, Sep. 2017, doi: 

10.3390/s17102164. 

 

 

 


