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Abstract: Requirements engineering is crucial in developing machine learning systems, as it establishes the foundation for successful 

project execution. Nevertheless, incorporating requirements engineering approaches from traditional software engineering into machine 

learning projects presents new challenges. These challenges arise from replacing the software logic derived from static software 

specifications with dynamic software logic derived from data. This paper presents a case study exploring an agile requirement engineering 

approach popular in traditional software projects to specify requirements in machine learning software. These requirements allow reasoning 

about the correctness of software and design tests for validation. The absence of software specification in machine learning software is 

offset by employing data quality metrics, which are assessed using cutting-edge methods for model interpretability. A case study on 

personalized nutrition and physical activity demonstrated the adequacy of user stories and acceptance criteria format, popular in agile 

projects, for specifying requirements in the machine learning domain.  
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1. Introduction 

The requirements engineering (RE) field presents distinct 

challenges regarding machine learning (ML) systems, 

which are not encountered in traditional information system 

development. Non-functional requirements elicitation and 

quality assurance of machine learning models and 

applications are a few examples.  

Software engineers should understand ML performance 

measures to specify reasonable functional requirements, 

know quality requirements such as explainability, and 

integrate ML specifics in the RE process [1]. ML should 

also prioritize its validation process, particularly concerning 

RE, rather than solely focusing on verification, which 

examines whether the model has learned the correct 

specifications. Validation may determine whether the 

acquired behavior of an ML-based system is erroneous, 

even though the learning algorithm is implemented 

accurately.  

User stories and acceptance criteria are popular software 

engineering artifacts for requirements specification [2]. 

Acceptance criteria for ML models play a crucial role in 

evaluating their performance and determining their 

suitability for deployment. These criteria are benchmarks 

against which the model predictions or classifications are 

measured, providing a quantitative or qualitative assessment 

of effectiveness. Additionally, they can specify data 

requirements to validate the quality of datasets used to 

define the system behavior. 

Current research on ML systems must integrate with 

existing RE methodologies and tools [3]. One reason is the 

impact of ML uncertainty on requirements engineering 

methods. Previous solutions address ML uncertainty using 

goal-oriented requirements analysis (GORE) [4] or 

represent requirements as ML metamodels for describing 

the environment, system state and data, the ML behaviors, 

and the learning behavior [5]. There is a research gap 

covering the specification of ML requirements using 

conventional agile artifacts that stakeholders can interpret 

and validate. Data requirements are the core of requirements 

specification since they compromised the system 

correctness but only became available in production. Hence, 

datasets are system inputs that require validation because 

they change over time and compromise the applicational 

logic. 

We address requirements specification using agile artifacts, 

as such user stories and acceptance criteria to answer the 

following research questions: 

• RQ1. How to specify data and model performance 

requirements for machine learning systems using agile 

specification artifacts? 

• RQ2. Which data quality metrics can constrain the 

acceptance of external data for model training? 

This work presents two main contributions: 

• A method that adapts well-known RE techniques from 
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traditional software to suit machine learning projects, 

offering a significant scientific contribution and a 

practical solution for software engineering 

practitioners. 

• The introduction of metrics for requirements 

specification observable through state-of-the-art 

model interpretability methods. 

Requirements specification is analyzed under a personalized 

nutrition and exercise control case study. By examining 

specific scenarios, we can uncover the underlying factors 

that drive the specification of machine learning system 

requirements using the artifacts known in software 

engineering and model interpretability methods explored in 

state-of-the-art research.  

The rest of this paper is structured to provide a clear and 

organized presentation of the research findings and analysis. 

Section II presents the state of the art on requirements 

engineering for machine learning. Section III defines the 

problem and presents the case study analyzed in this paper. 

Section IV revises the models and data requirements to be 

addressed by ML systems. Section V presents the ML 

requirements for the case study adopted for the analysis. 

Section VI discusses the results. Section VII presents the 

conclusions and future work. 

2. Related Work 

The related work on requirements engineering of ML 

systems covers the mapping between traditional 

requirements engineering approaches and the ML system 

requirements, validation of ML requirements, and testing 

approaches. 

Vogelsang et al. [1] presented the perspectives of data 

scientists on the practices of requirements engineering in 

machine learning systems. They pinpointed the 

understanding of ML performance measures to state good 

functional requirements, integration of ML specifics in the 

RE process, and quality requirements (e.g., explainability) 

as the new responsibilities of requirement engineers. 

Pei et al. [6] presented an overview and reflection on the 

collaboration among the different roles in requirements 

engineering for machine learning applications. 

Requirements engineering was proposed as a stakeholders’ 

collaboration activity to identify data description, 

performance metrics, data quality, and candidate solutions. 

Habibullah et al. [7] evaluated the importance of non-

functional requirements (NFRs) for ML systems as 

perceived among practitioners from both industry and 

academia. Some NFRs, such as retrainability, were 

considered new requirements for ML systems. Some 

challenges arising from retrainability were the specification 

of when to retrain, how to retrain, and which data to use.  

Nalchigar et al. [8] extended the conceptual modeling 

framework presented in their previous work [9] with user-

story templates to elicitate elements in the business view. 

User stories, however, did not specify acceptance criteria to 

validate models and data quality. 

Traditional requirements and quality attributes become less 

applicable when dealing with data-driven systems. 

Similarly, conventional requirements for fault detection 

techniques, like inspections, may be less effective in 

identifying issues in such systems. Challa et al. [10] 

proposed manipulating data quality characteristics by 

requirements engineers to achieve specific data 

characteristics. They validated the concept by evaluating 

metamorphic stationarity to preprocess the time series data 

to become stationary and thus make decrease RNN 

prediction errors. 

Kuwajima et al. [11] addressed the expected performance 

level and evaluation criteria of automated driving systems 

through scenario-based verification for safety-critical 

machine learning systems. The authors identified gaps and 

areas that need further development by comparing the 

existing conventional system quality models, such as 

SQuaRE [12], with the demands of machine learning 

models. Machine learning models possess distinct 

characteristics, such as reliance on large-scale data, 

adaptability, and interpretability challenges. 

Previous work on RE pinpoints the specification of data 

properties in ML systems as a fundamental activity since 

software behavior relies on models trained using external 

data. The system behavior is unknown when the 

requirements are specified and may change every time the 

model is trained or retrained. This paper uses a personalized 

nutrition and physical exercise case study to evaluate the 

suitability of user stories and acceptance criteria to describe 

ML requirements. The recent advancements in model 

interpretability methods have allowed for the specification 

of model properties using software engineering artifacts that 

are understandable to all product stakeholders. 

3. Problem Definition 

Requirements engineering plays a critical role in 

successfully developing and deploying ML software. 

However, several pitfalls can arise during the requirements 

engineering process tailored to ML projects. Awareness of 

these pitfalls is crucial to mitigate risks and ensure the 

alignment of ML systems with stakeholders’ needs.  

3.1. Requirements Engineering Pitfalls 

Some of the common pitfalls encountered in requirements 

engineering for machine learning include: 

• Insufficient Domain Understanding: ML systems 

operate within specific domains, and requirements 

gathering can be challenging without a deep 
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understanding of the domain. Inadequate domain 

knowledge can misinterpret stakeholders’ needs, 

resulting in inaccurate or irrelevant requirements. 

• Ambiguity in Requirement Specification: 

Ambiguous requirements can cause confusion and 

miscommunication among stakeholders. Vague or 

imprecise descriptions of ML model behaviors, 

performance expectations, or desired outputs may 

lead to misunderstandings during system 

development. 

• Uncertainty and Volatility of Data: ML systems 

heavily rely on data, and the availability, quality, 

and volatility of data can pose significant 

challenges. Incomplete or inconsistent data can 

result in inaccurate requirements or bias in ML 

models. Changing data distributions over time may 

require continuous adaptation of requirements. 

• Lack of Adequate Training Data: ML models 

require a representative and diverse dataset for 

training. Inadequate or biased training data can 

lead to suboptimal model performance or 

unintended behavior. Insufficient consideration of 

data requirements during the requirements 

engineering phase can hinder development. 

• Poor Requirements Traceability and Management: 

Traceability between requirements and subsequent 

design decisions, implementation, and testing is 

essential for managing the complexity of ML 

projects. Insufficient traceability can lead to 

difficulties in maintaining and updating ML 

systems. 

These pitfalls demand appropriate requirements 

specification and management. 

3.2. User Stories and Acceptance Criteria 

Requirements engineering on machine learning projects can 

benefit from adopting user stories and acceptance criteria. 

These two artifacts are popular in agile software 

development methodologies (e.g., SCRUM [2]). User 

stories describe high-level requirements from the business 

viewpoint in the form: 

As [a user persona], I want [to perform this action] so that 

[I can accomplish this goal] 

Further, the acceptance criteria describe the validation 

criteria of the assigned user story, which include the data 

properties being validated. Combining user stories with 

acceptance criteria provides a concise and user-centric 

approach to capturing requirements and ensuring that the 

delivered software meets stakeholders’ expectations. Here 

is how user stories and acceptance criteria are helpful for 

requirements engineering: 

• User-Centric Perspective: User stories focus on the 

end users' or stakeholders' needs and goals. They 

provide a narrative description of a specific user’s 

interaction with the software system. 

• Concise and Incremental Requirements: User 

stories are typically short and focused, capturing 

one specific feature or functionality at a time. They 

promote an incremental and iterative development 

approach, allowing the team to deliver value in 

smaller increments. 

• Testable and Measurable Acceptance Criteria: 

Acceptance criteria define a user story's desired 

outcomes or behaviors. They provide a concrete 

and measurable way to determine when a user story 

is complete and meets the stakeholders’ 

expectations. Acceptance criteria ensure that 

requirements are specific, unambiguous, and 

testable, enabling the development team to verify 

that the software satisfies the specified criteria. 

• Improved Traceability and Requirement 

Management: User stories and acceptance criteria 

clearly link the stated requirements and the 

corresponding functionality. This traceability 

helps manage and track requirements progress 

throughout the development lifecycle.  

Notwithstanding the specification artifacts are similar in 

traditional and machine projects, the software properties 

specified are different. Software behavior in ML projects is 

obtained from data, which makes requirements engineering 

dependent on data requirements.  

3.3. Acceptance Criteria for ML 

Unlike traditional functions manually designed and 

implemented based on domain knowledge, data-driven 

models can be seen as dynamic functions that learn their 

behavior from data examples. They capture complex 

patterns and make predictions or generate outputs that might 

be challenging to achieve with explicit functions alone. 

ML software behavior can change because of concept drift 

changes or the availability of new data that can improve 

model performance. Thus, the acceptance criteria shall be 

validated continuously in parallel with system execution at 

production time.  

 

Fig. 1 presents a traditional software development process 

and a machine learning software development process. In 

the former, the acceptance criteria specified for user stories 

are validated before software deployment in production. In 

the latter, the acceptance criteria require continuous 

validation after the software deployment in production 

since: 
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• data that defines the software behavior is used to 

train and retrain the models during the production 

phase; 

• software behavior may become inappropriate after 

some time due to concept drift issues. 

As model behavior depends on training external data 

aligned with dynamic concepts, the acceptance criteria 

should validate data properties instead of model behavior. 

We can enhance their reliability, trustworthiness, and safety 

by checking data properties to validate machine learning 

models. This approach contributes to developing more 

robust and accountable machine learning systems, ensuring 

they meet the desired properties and perform as expected in 

various contexts. This paper presents a case study for 

adopting user stories and acceptance criteria in a 

personalized nutrition project. 

 

Fig. 1. Differences between a) traditional software 

development processes and b) machine learning software 

development processes 

3.4. Case Study 

We validate the executability of agile requirements 

engineering artifacts for requirements engineering on a 

personalized nutrition and physical activity project. 

Personalized nutrition is a trend that depends on sensors to 

collect automatically (1) input data, such as calories burned 

during exercise provided by smartwatches; and (2) data used 

by the feedback loop, such as weight, Body Mass Index 

(BMI), and lean mass. These data are often complemented 

with data introduced manually, such as the user nutrition 

goals and the food intake types and quantities. An intelligent 

control loop provided by an ML model will continuously 

help the user attain their goals by assisting them in choosing 

adequate food types and amounts. 

The architecture presented in Fig. 2 describes the flow 

between elements. The food intake and exercise metrics 

represent the inputs of the system that are used to predict the 

BMI of a person using an ML model.  

The case study involves a regression setting where the BMI 

of a person is predicted based on their food intake and 

exercise habits. This case study does not aim to present a 

comprehensive solution for the personalized nutrition and 

physical activity problem but to use it to study the 

application of agile requirements engineering artifacts to 

machine learning projects. 

4. Requirements Specification in ML Systems 

The performance of a machine-learning solution depends on 

(1) data quality metrics during the model testing stage; and 

(2) model prediction accuracy during the production stage.  

4.1. Data Quality Metrics 

Data quality is critical to the success of the model. Three 

essential aspects of data quality are accuracy, completeness, 

and appropriateness [13]. Fig. 3 presents the relationship 

between each aspect and the methods used for their 

evaluation. 

Accuracy refers to the correctness of the data (i.e., the data 

is free from errors or inconsistencies). If the data is 

inaccurate, the model will make incorrect predictions or 

decisions, which can lead to negative consequences. In our 

infrastructure, data accuracy is limited to the accuracy of 

sensors. 

Completeness refers to the extent to which all the data 

required to make accurate predictions is present. The model 

may not provide accurate predictions if some relevant data 

is missing. Missing data can also introduce bias in the model 

if the missing data is not random. In our work, data 

completeness requires validation since it is a quality 

attribute that depends on the availability and selection of 

data. Specification and testing of data completeness rely on 

the data distribution of features. For example, assuming that 

exercise intensity is a reliable predictor of BMI, it becomes 

essential for the samples in the training dataset to possess 

equivalent values to those utilized as inputs during the 

production stage. 

 

Fig. 2. System architecture for personalized nutrition 

Appropriateness refers to whether the data is suitable for the 

intended use. In other words, the data should be relevant to 

the problem. The model may make accurate predictions or 

decisions if the data is appropriate. That means the dataset 

should have variables and values impacting the prediction 
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output. Model performance using the test dataset is a good 

indicator of appropriateness. At production time, the model 

prediction performance indicates its suitability. 

4.2. Prediction Performance Metrics 

Considering the regression setting of the case study, we 

decided on Root Mean Square Error (RMSE) to measure 

model performance. It is a commonly used metric in 

statistics and machine learning to evaluate the accuracy of a 

prediction model or estimator. RMSE measures the average 

magnitude of the differences between predicted and actual 

values. Equation 1 presents the formula of RMSE. 

,   (1) 

In the formula, Nv represents the total number of 

observations, tp is the actual observed value of the target 

variable for the i-th data point, and yp is the predicted value 

for the i-th data point. 

5. Requirements Specification Implementation 

This section presents the functional and non-functional 

requirements for the case study addressed in this paper. The 

main interactions with the application respect reading data 

from the scales for body parameters and food, and from the 

smartwatch concerning heartbeats and calories burned. 

However, only body parameters read by the scale can 

provide control data to evaluate the prediction performance.  

We decided on Long Short-term Memory (LSTM) networks 

[14] to create models since the prediction of BMI for a day 

also depends on the BMI observed for the previous days. 

We chose a publicly available dataset [15]. 

5.1. Functional Requirements 

Listing 1 describes the user story and acceptance criteria for 

reading new BMI from a smart scale. It evaluates prediction 

performance and handles poor performance scenarios that 

lead to model retraining. The evaluation thresholds are 

specified according to specific acceptable limits for errors. 

The model training activity is executed when the prediction 

error exceeds the threshold recurrently.  

Evaluation of the model performance determines whether a 

new model should be trained to replace the current one. 

Accepting a newly trained model depends on their 

performance evaluated with the test dataset exceeding a 

specific acceptability threshold and compliance with data 

quality requirements. The rest of this section describes the 

specification of data quality requirements for the case study. 

5.2. Data Accuracy 

The accuracy of smartwatches and smart scales depend 

mostly on the specification provided by the manufacturer. It 

may also be evaluated in the production infrastructure when 

a ground truth for evaluation is available. The lack of ground 

truth for comparison in most scenarios makes experimental 

evaluation error-prone, so we exclude it from the 

requirements specification. 

5.3. Data Appropriateness 

Data is appropriate if they can provide feature values to 

create models adjusted to the modeled phenomena. 

Accordingly, validation of appropriateness recurs to 

performance metrics for model evaluation or finer 

granularity evaluation at the feature level.  

Listing 2 presents the user story and acceptance criteria for 

validating data appropriateness by specifying the threshold 

of acceptability for the RMSE when running the test dataset.  

5.4. Data Completeness 

Data requirements involve understanding the distribution of 

data for relevant features. Features with strong 

discriminating power should be provided in the training 

dataset with values that cover the feature space of 

production data homogeneously to avoid large uncovered 

feature space gaps.  

Feature-level evaluation is performed by explainable 

models that expose the relationship between feature values 

and the model output. Traditional feature selection methods 

provide a list of relevant features, but their contribution to 

the output (i.e., their weights on the decision) demands a 

different class of methods. SHAP [16], LIME, and ELI5 are 

methods designed to explain how the input data features 

impact the output. We decided on the SHAP for a 

preliminary analysis for requirements specification. SHAP 

is adequate for regression problems, is well documented, 

and has been proven effective in several prediction 

scenarios [17][18][19]. 

Fig. 3 presents the variables identified by SHAP to justify 

the BMI value obtained by regression. The impact of each 

variable on the output is measured by the SHAP value, 

whose magnitude represents their impact on the output. 

Conversely, some features impact the output inversely to 

what is expected. As an example, the feature 

TrackerDistance_t-2 contributes positively to BMI. Even 

for an expert, it is not straightforward to understand how the 

walking distance done three days before the prediction time 
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(being t+1 the prediction time) can positively influence the 

output (i.e., increases BMI). Plus, not only the weighted 

contribution of features on the output is difficult to predict, 

but they can change over time, whose phenomenon is the 

origin of the concept drift concept [20]. 

Concept drift refers to the phenomenon where the statistical 

properties of a target variable or the relationships between 

variables in a model change over time. In other words, it 

occurs when the underlying data distribution that a model 

was trained on no longer remains constant and evolves. A 

concept drift scenario includes features that describe food 

intake. These features are not listed in Fig. 3 because their 

contribution to the output is insignificant. One reason for 

that can be the stable food intake routine of people, which 

makes exercise the only variable that influences BMI. 

However, a new diet can make food intake features relevant, 

generating a concept drift. 

Explainability helps to understand the nontrivial impact of 

each feature on the output. However, building acceptance 

criteria based on individual features is difficulted by the 

complex relationships between the input and output. But we 

can use the feature distribution of data to evaluate data 

completeness. We consider two metrics for the specification 

and validation of completeness: 

• Data range represents the interval of values available 

for each numerical variable in the dataset. It can be 

represented by the minimum and maximum values or 

a lower and upper percentile to filter outliers. 

• Data distribution determines the data distribution 

homogeneity of each variable. We represent that 

Feature: Reading new BMI from a smart scale 

User Story: As a user, I want to read my BMI so that I can monitor the accomplishment of my goal 

Scenario Outline: Permanent Poor BMI prediction performance 

  Given the trained model  

  And the previous BMI predicted 

  When the difference between predicted BMI and read BMI is higher than $<threshold> 

  And the number of recurring occurrences is higher than $<recurrence> 

  Then the model is retrained 

  Examples:  

    | threshold |  | recurrence |  

    |    0.2    |  |     3      |   

Scenario Outline: Temporary Poor BMI prediction performance 

  Given the trained model 

  And the previous BMI predicted   

  When the difference between predicted BMI and read BMI is higher than $<threshold> 

  And the number of recurring occurrences is less than $<recurrence> 

  Then the number of recurring occurrences is updated 

  Examples:  

    | threshold |  | recurrence |  

    |    0.2    |  |     3      |   

Scenario Outline: Acceptable BMI prediction performance 

  Given trained model 

  And the previous BMI predicted   

  When the difference between predicted BMI and read BMI is smaller than $<threshold> 

  Then the number of recurring occurrences is reseted. 

  Examples:  

    | threshold |  

    |    0.2    | 

Listing 1 – Acceptance  
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distribution using the variance or standard deviation. 

In Listing 2 the acceptance criteria specify thresholds 

against these metrics to evaluate data distribution 

homogeneousness over the amplitude of important features, 

determined from explainable models, such as that presented 

in Fig. 3. 

6. Discussion 

We challenged the assumption that conventional RE 

methods are unsuitable for ML needs. Instead, we 

showcased that it is feasible to articulate requirements using 

agile elements like user stories and acceptance criteria. The 

recent advent of interpretability methods for ML models has 

Feature: Train model 

User Story: As a Performance Monitor, I want to retrain models so that the minimum performance 

thresholds can be ensured. 

Scenario Outline: Model testing with low performance (appropriateness) 

  Given a model trained with the training dataset 

  And a testing dataset  

  When the root mean square error of the testing dataset is higher than $<minvalue> 

  Then the dataset is rejected 

  Examples:  

    | minvalue | 

    |   0.5    | 

Scenario Outline: Data range with a maximum value below threshold (completeness) 

  Given a model trained with the training dataset  

  When the maximum value of each $<feature> is lower than $<maxvalue> 

  Then the model is rejected 

  Examples:  

    | feature           |    maxvalue    |  

    | TotalDistance_t-1 |      5000      | 

    | TotalSteps_t-2    |      10000     | 

Scenario Outline: Data range with a minimum value below threshold (completeness) 

  Given a model trained with the training dataset  

  When the minimum value of each $<feature> is higher than $<minvalue> 

  Then the model is rejected 

  Examples:  

    | feature           |    minvalue    |  

    | TotalDistance_t-1 |       5        | 

    | TotalSteps_t-2    |       5        | 

Scenario Outline: Feature data not uniformly distributed ( 

  Given a model in compliance with the data range thresholds 

  When the p-value of the chi-square statistic testing whether observed data follows a uniform 

distribution, for each feature $<feature>, is lower than 0.05 

  Then the dataset is rejected 

  Examples:  

    | feature           | 

    | TotalDistance_t-1 | 

    | TotalSteps_t-2    | 

Listing 2- Impact of each feature on the model output. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(2), 319–328 |  326 

made it achievable to specify requirements effectively.  

Completeness is the most challenging data quality 

requirement since it depends on training data properties, 

which are more complex to specify than model 

performance. We utilized SHAP values to validate 

completeness, as they offer valuable feature boundaries that 

indicate their influence on the prediction outcome. The chi-

square statistic is incorporated in the data acceptance criteria 

to determine whether the data of important features follow 

a uniform distribution. The rationale for that criterion is 

verifying if the values in the training dataset cover 

uniformly the amplitude of values of each important feature. 

That means that data quality requirements ensured the 

model exhibits satisfactory prediction performance for the 

test dataset and that all the relevant features have provided 

training values that cover their space uniformly. This 

requirement provides model resilience when it is used with 

production data. 

7. Conclusion 

Requirements engineering in machine learning projects 

presents wideband challenges. This paper cover 

specification of requirements for validating the model 

appropriateness and completeness of training datasets. We 

applied common agile artifacts (i.e., user stories and 

acceptance criteria) to the requirements specification of a 

personalized nutrition and exercise case study. It includes 

model and data requirements specification. We 

demonstrated that agile artifacts are adequate for specifying 

ML requirements. 

Completeness criteria depend on data quality requirements 

that explainable models can support. We used SHAP to 

evaluate the uniformity of feature data in the training dataset 

to ensure coverage of feature space and thus provide 

guarantees that new production data have correspondence in 

the feature space of training data. 

Concept drift is handled by requirements by ensuring model 

training when the prediction performance decreases below 

a threshold level. 

Our work allows software engineers to specify ML 

requirements using agile methodologies, but it requires 

more validation using different project types. The ML 

problem space is wide and may require adaptation of 

requirements specification for some setups (e.g., those 

employing unstructured data as images). In future work, we 

plan to evaluate requirements specification in new 

scenarios, such as image classification. We also plan to 

study new approaches for describing data completeness 

using explainability methods. 
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