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Abstract: Mobile Ad-Hoc Networks (MANETs) are crucial in environments lacking permanent infrastructure, with energy efficiency 

being a primary concern due to the reliance on battery-powered devices. This study presents an innovative solution: the Reinforcement 

Machine Learning-enhanced Energy Efficient AODV (Ad-Hoc On-Demand Distance Vector) Protocol (RML-EEAODV). This novel 

approach integrates the adaptive capabilities of reinforcement machine learning with the AODV routing protocol to forge a smart, 

energy-conserving routing mechanism. The core challenge in MANETs is minimizing energy use and operational overhead while 

ensuring optimal packet delivery. RML-EEAODV addresses this by enhancing the AODV protocol's routing decisions. It employs 

machine learning to enable nodes to maintain and utilize a dynamic database of state information for intermediate nodes along potential 

routes. This database informs decision-making for forwarding packets, ensuring routes with guaranteed Quality of Service (QoS). The 

RML-EEAODV protocol significantly improves energy efficiency and reduces network overhead, while maintaining a satisfactory 

packet delivery ratio. 
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1. Introduction 

The Mobile Ad-Hoc Network (MANET) represents a 

significant advancement in wireless communications, 

characterized by its independence from traditional network 

infrastructure. In MANETs, the absence of pre-installed 

infrastructure like fixed routers fundamentally changes the 

way data packets are transmitted. These networks, also 

known as mobile packet radio networks or mobile 

multihop wireless networks, offer a novel approach to 

providing network services where no established system 

exists. The term "ad hoc" in this context implies a system 

that operates without pre-established structures, not one 

that is makeshift or improvised. 

As illustrated in Figure 1, the architecture of a MANET 

allows nodes to communicate directly within their wireless 

range. However, due to limitations such as signal 

attenuation, environmental noise, and restricted battery 

life, wireless networks like MANETs often have lower 

capacity and range compared to wired networks. 

Consequently, transferring data across the network can 

necessitate multiple hops from one node to another. This 

multi-hop nature of MANETs requires each node to 

function dually as a host and a router, taking on 

responsibilities for routing, packet forwarding, and 

executing various network functions autonomously. This 

unique operational mode sets MANETs apart from 

traditional wireless networks and underlines their 

versatility and adaptability in environments lacking 

conventional network infrastructure. 

 

Fig 1. General structure of MANET 

2. Routing protocols for Mobile Ad-Hoc Networks  

The following part provides a concise explanation of the 

current AODV and DSDV protocols, as well as the 

Reinforcement Machine Learning-based Improved AODV 

(RMLB-AODV) protocols that have been developed. 

 

2.1   Adhoc On-Demand Distance Vector (AODV) 

Routing Protocol 

 

A routing protocol known as Ad-hoc On-Demand Distance 

Vector (AODV) was developed so that it may be used in 

Mobile Ad hoc Networks (MANETs). The AODV 

protocol makes it feasible to have a multi-hop routing that 

is both dynamic and self-starting between mobile nodes. 

Due to the fact that routes are only built when they are 
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necessary, rather than on a regular basis, AODV is able to 

deliver fast dynamic routing. 

 

Fig 2. Routing Protocols including AODV 

In order to determine the routes that may be taken between 

the nodes that make up a network, the Ad Hoc On-Demand 

Distance Vector (AODV) protocol makes use of a Route 

Discovery Process. The first step in this procedure involves 

a source node sending out a Route Request (RREQ) 

message to the nodes that are physically near to it. As soon 

as a node receives an RREQ, it examines whether or not it 

is in possession of a route that leads to the requested 

destination. In the event that it does not, the request is sent 

on the next step. In situations in which a node already has a 

route to the destination, it will send a Route Reply (RREP) 

back to the source node along the path that has been 

created. It is possible for the source node to create a route 

to the destination if it is able to successfully receive an 

RREP. It is possible for the source node to raise the Time-

to-Live (TTL) value and reissue the RREQ in the event 

that an RREP is not received. This process will continue 

until either an RREP is acquired or the TTL hits zero. 

2.2 Machine Learning-Enhanced Routing in MANETs 

In Mobile Ad-Hoc Networks (MANETs), the absence of a 

centralized controller can compromise the security and 

efficacy of routing techniques compared to traditional 

networks. Machine learning algorithms can enhance 

MANET routing by learning from and adapting to 

environmental changes within the network. These 

algorithms can help in threat detection, predicting network 

traffic flow, and refining routing protocols for increased 

efficiency. Machine learning models can be trained to 

recognize shifts in traffic patterns and network structures, 

enabling MANET protocols to quickly adapt and fortify 

against such changes. By employing machine learning, 

mobile networks can achieve reliable, low-latency 

communication and provide a secure data transmission 

platform. 

2.2.1 Reinforcement Machine Learning-based 

Improved Energy Efficient AODV (RML-EEAODV) 

Protocol 

The RML-EEAODV protocol integrates reinforcement 

learning algorithms at each node in the network, based on 

the AODV framework. It utilizes a State Information 

Database (SIDB) containing data about all nodes along 

potential routes, focusing on two key metrics: maximum 

traffic load and energy consumption of the nodes. The 

traffic load at a node is quantified by the number of data 

packets in its queue. This database informs forwarding 

decisions to establish routes with guaranteed Quality of 

Service (QoS), considering the node’s remaining energy 

and traffic load to minimize unnecessary route request 

rebroadcasting, which otherwise consumes bandwidth and 

energy. 

When a source node requires a route to a destination with 

specific energy needs, it broadcasts an RREQ based on the 

current energy status and traffic load of neighboring nodes. 

Nodes that do not meet the energy and traffic load 

requirements refrain from rebroadcasting the RREQ. 

Conversely, nodes with sufficient energy and lower traffic 

load create a reverse route entry, aiding in forwarding the 

RREP to the source node. As packets are forwarded, each 

node along the path assesses its energy and traffic load 

before transmitting, ensuring efficient energy use and 

reducing network overhead. The RML-EEAODV protocol 

thus significantly improves energy consumption and 

network overhead while maintaining an acceptable packet 

delivery ratio. 

3. Literature review  

The objective of this study is to conduct a comprehensive 

evaluation of the existing literature on medium access 

control (MAC) algorithms for wireless ad hoc networks 

(WANETs) that are based on reinforcement learning (RL). 

The current traditional media access control (MAC) 

methods are inadequate in meeting the demands of the 

expanding scale of wireless ad hoc networks (WANETs). 

These systems are facing challenges like as changing 

topology, resource allocation, interference, limited 

bandwidth, and environmental constraints. This research 

highlights the need for more sophisticated MAC protocols 

in WANETs to adapt to the dynamic characteristics of 

these networks. After presenting the basic RL techniques, 

we will examine advanced MAC protocols for WANETs 

and analyse how these protocols specifically tackle 

challenges inside the MAC model. This portion of the 

study concludes by examining prospective research 

domains that may be explored to enhance the efficacy of 

the MAC procedure [1]. 

The Internet of Things (IoT) is undergoing fast expansion, 

giving rise to many crucial concerns. The issues included 

in this context are heterogeneity, reliability, and scalability. 

They emerge among a diverse array of distinct wireless 

devices that operate simultaneously. A novel framework 

has been developed to address these challenges by 
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integrating Internet of Things (IoT) with Software-Defined 

Wireless Sensor Networks (SDWSN). The term used to 

describe this architecture is SDWSN-IoT. The goal of this 

research is to examine a distinct, intelligent, and energy-

efficient multi-objective routing protocol for Internet of 

Things (IoT) networks. The system uses Reinforcement 

Learning with Dynamic Objective Selection (DNS-RL) as 

its foundation. The limited energy resources of wireless 

Internet of Things devices provide a considerable problem 

in optimising energy use. The primary objective of the 

DOS-RL is to provide adaptability to network 

modifications while also maximising energy efficiency. In 

order to expedite the process of learning, the technique 

utilises carefully crafted related objectives and incentives. 

Comparative simulations suggest that DOS-RL surpasses 

common protocols like OSPF and multi-objective Q-

routing in SDN-Q in terms of energy economy and speedy 

flexibility [2]. 

This paper introduces a novel vertical routing method for 

flying ad hoc networks (FANETs), which are a subset of 

the 5G access network consisting of highly mobile 

unmanned aerial aircraft. The system is based on a new 

deep Q-network (DQN) approach. The objective of this 

research is to tackle the problem of frequent link 

disconnections and network partitions in FANETs, aiming 

to enhance the overall performance of the network. To 

facilitate the administration of both global and local 

information, our technology integrates a central controller 

(CC) with distributed controllers (DCs) deployed across 

several network planes (macro, pico, and femto). The 

strategy focuses on routing based on residual energy and 

mobility rates, an approach that has not been thoroughly 

investigated before. The idea enables the establishment of 

clusters on different network planes, which in turn 

promotes connections both inside and between these 

clusters. As a result, data traffic is efficiently distributed 

across the network. Our technique based on Deep Q-

Network (DQN) has shown significant superiority over 

traditional Reinforcement Learning (RL) methods in 

enhancing network longevity, decreasing energy use, and 

minimising link failures [3]. 

Ad hoc car networks are becoming recognised as a viable 

option for smart city communication, given the ongoing 

progress of intelligent transportation systems. However, 

the increasing popularity of wireless technology in highly 

mobile contexts presents some intriguing concerns. This 

paper proposes reinforcement learning (RL) as a viable 

solution to the challenges, particularly in the field of 

routing. Our purpose is to create a complex objective space 

that considers the geographic placement of cars, the signal 

strength, and the environmental path loss, which includes 

city maps and barriers. The main focus of this technique is 

to optimise both the stability of the route and the number 

of hops. The results suggest a significant improvement in 

the robustness of the route when compared to traditional 

protocols and other reinforcement learning approaches that 

rely on a single decision-making parameter [6]. 

In the wake of the current outbreak, there has been a surge 

in demand for wireless communication to support vital 

operations in remote and inaccessible areas. This study 

explores the potential of aerial ad hoc networks (AANETs) 

created by flying vehicles to accomplish various tasks. 

While AANETs are recognised for their high level of 

mobility, they are vulnerable to issues such as connection 

disruptions, energy depletion, and packet loss. Given that 

AANETs rely mostly on batteries for power, it is crucial to 

consider factors like as flight length and speed. By 

combining deep learning with NS3 simulation, we provide 

an energy-efficient and resilient deep scheduling technique 

for hello packets. This approach aims to prolong the 

duration of unmanned aerial vehicle (UAV) missions by 

conserving energy and ensuring crucial network 

performance criteria are maintained. Furthermore, it will 

provide valuable information on the geographical and 

temporal patterns of AANETs in selected scenarios that 

include three-dimensional spaces [5]. 

This research delves into the realm of Flying Ad-Hoc 

Networks (FANETs), which are a crucial subset of 

wireless ad-hoc networks that include unmanned aerial 

vehicles (UAVs) for various tasks and communications. 

FANETs are increasingly used in commercial and civilian 

domains for diverse applications such as traffic 

management, remote data gathering, sensing, network 

relaying, and product transportation. Outlined below are 

many critical challenges encountered by FANETs. The 

issues include adaptive routing protocols, flight trajectory 

optimisation, energy constraints, charging mechanisms, 

and autonomous deployment strategies. Reinforcement 

learning (RL) has been a prominent method in recent years 

because of the increased mobility and dynamic structure of 

FANETs. The objective of this study is to provide a 

comprehensive examination and comparison of the use of 

Reinforcement Learning (RL) in several scenarios within 

the Flying Ad-hoc Network (FANET) domain. These 

scenarios include routing, flight routes, relaying, and 

charging. Furthermore, it offers potential research areas 

that might guide future investigations in this field [6].   

The advancements in vehicle communication that have 

taken place recently necessitate the use of efficient security 

measures. Security is the primary problem in Vehicle Ad 

Hoc Networks (VANETs). This paper aims to tackle the 

crucial issue of identifying rogue nodes in VANETs, with 

a particular focus on detecting distributed denial of service 

attacks. Despite the existence of other proposed solutions, 

this study introduces a real-time detection system that 

utilises machine learning. We provide a distributed multi-

layer classifier that has been verified by OMNET++ and 
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SUMO simulations, utilising machine learning classifiers 

like GBT, LR, MLPC, RF, and SVM. The simulation 

shows significant progress in assault categorization, with a 

classification accuracy of up to 99%. This is achieved by 

considering both ordinary and aggressive vehicle datasets. 

Although the number of network nodes has increased, the 

use of Amazon Web Services has led to a notable 

improvement in network performance, especially during 

the training and testing phases [7]. 

Unmanned aerial vehicles, sometimes known as UAVs, are 

increasingly being used to provide wireless connections in 

situations when terrestrial networks are either overloaded 

or nonfunctional. However, the challenges that emerge 

include limitations on energy and interference from 

neighbouring cells of unmanned aerial vehicles. This study 

introduces a system called collaborative multi-agent 

decentralised double deep Q-network (CMAD–DDQN), 

which focuses on facilitating direct collaborative 

communication among unmanned aerial vehicles (UAVs). 

The CMAD–DDQN enables unmanned aerial vehicles 

(UAVs) to perform data interchange, optimise flight paths 

in three dimensions, and mitigate interference, user 

mobility, and energy constraints. The simulation results 

demonstrate that this technique significantly outperforms 

the existing baselines in terms of both system energy 

efficiency and network coverage. This emphasises the 

benefits of UAV collaboration in dynamic environments 

[8]. 

The device-to-device (D2D) link is a crucial feature of 5G 

technology. It enables high-speed, low-latency, energy-

efficient, and spectrum-efficient peer-to-peer networking. 

This work introduces a multi-hop routing protocol that 

utilises a double deep Q learning technique, which is 

rooted on deep reinforcement learning. Furthermore, the 

system also considers energy usage. The Gannet Chimp 

optimisation (GCO) technique is used by the protocol to 

identify the most optimal approach. This technique is 

evaluated based on several factors, such as packet delivery 

ratio, latency, residual energy, throughput, and network 

lifetime. The results indicate that the proposed method is 

successful in multi-hop D2D communication scenarios, as 

it attains excellent performance in all evaluated metrics. 

The findings suggest significant improvements [9]. 

Cellular networks are crucial for the evolution of the 

Internet of Things, particularly for machine-to-machine 

(M2M) communication. This study investigates the 

difficulty of resource management in cellular networks that 

handle both Human-to-Human (H2H) and Machine-to-

Machine (M2M) traffic concurrently. Our approach entails 

a network architecture that integrates simultaneous 

wireless information and power transfer (SWIPT) 

technology. This architecture is specifically developed to 

tackle the high energy consumption associated with 

machine-to-machine (M2M) communication. Under this 

methodology, machine type communication devices 

(MTCDs) are classified into two distinct categories: critical 

and acceptable. In addition, a resource management plan 

focused on optimising energy efficiency (EE) is 

established. A multi-agent deep reinforcement learning 

(DRL) approach has been developed to achieve optimal 

resource allocation. This technique considers the links 

between spectrum, power, and power splitting. In 

comparison to other intelligent solutions, this approach 

excels in terms of its rapid convergence speed and its 

ability to meet the criteria for Enterprise Environment (EE) 

and Quality of Service (QoS) [10]. 

In Wireless Multimedia Sensor Networks (WMSN), there 

is a need for a solution that is both energy-efficient and 

capable of providing a Quality of Service (QoS) guarantee. 

This is due to the complex job processing and frequent 

data exchanges that take place in these networks. This is 

especially crucial inside the sensing layer of the Internet-

of-Vehicles. The presence of heterogeneity and uneven 

energy distribution in WMSNs poses challenges, since 

existing routing approaches generally neglect energy 

considerations while maintaining quality of service. This 

paper introduces an Energy-Efficient Distributed Adaptive 

Cooperative Routing (EDACR) model for wireless sensor 

networks (WMSN). Our solution focuses on finding a 

balance between quality of service and energy utilisation 

by using a reinforcement learning mechanism driven by 

dependability and delay metrics. Simulation results 

demonstrate that EDACR, in comparison to traditional and 

distributed adaptive cooperative routing protocols, 

achieves a significant decrease in energy consumption 

without compromising quality of service [11]. 

Mobile Ad-Hoc Networks (MANETs) are crucial in 

environments lacking a fixed infrastructure. Energy 

efficiency is a crucial concern in such environments due to 

the reliance on gadgets powered by batteries. This paper 

introduces a protocol called Reinforcement Machine 

Learning-based Improved Energy Efficient AODV (RML-

EEAODV) Protocol. The goal of this protocol is to 

optimise the energy use of MANETs, hence optimising 

their efficiency. RML-EEAODV utilises reinforcement 

machine learning with the AODV routing protocol to 

provide an intelligent and flexible energy-efficient routing 

solution. The major goal is to minimise energy 

consumption and network overhead while ensuring a 

suitable packet delivery ratio. The RML-EEAODV 

architecture uses state information databases for 

intermediate nodes to facilitate decision-making and 

provide assured quality of service pathways [12]. 

Wireless networks, including Mobile Adhoc Networks 

(MANETs), are increasingly focusing on congestion 

management to optimise resource sharing in terms of 
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efficiency and fairness. This study departs from traditional 

rule-based techniques and adopts a machine learning 

approach to fulfil future network needs. This is due to the 

demonstrated efficacy of machine learning in resolving 

complex problems. The disclosed technique offers a cross-

layer protocol for wireless Mobile Ad hoc Networks 

(MANETs). This protocol encompasses the administration 

of traffic, the maintenance of connections, and the 

scheduling of concurrent transmission in a distributed 

manner. Our integrated congestion management and 

scheduling solution enhances active radio communication 

networks via the use of deep reinforcement learning. This 

is achieved by combining scheduling schemas with 

adaptation modelling and an optimised congestion 

dominance and flow management model [13].  

MANETs that rely on 5G face challenges such as heavy 

traffic loads and strict quality of service requirements. This 

paper proposes a tailored solution for 5G-based MANETs, 

which enhances the AODV protocol. This system employs 

reinforcement learning to optimise routes. To ensure that 

the routing algorithm can identify routes that provide 

quality of service, nodes are tasked with maintaining a 

database containing state information about intermediate 

nodes. Based on the simulation results, the enhanced 

protocol demonstrates a significant degree of effectiveness 

in terms of throughput, end-to-end latency, and signal-to-

noise ratio (SNR) [14]. 

Due to their dynamic structure and constrained resources, 

Mobile Ad Hoc Networks (MANETs) pose difficulties in 

terms of multicast routing and quality of service 

provisioning. This paper presents an agent-based solution 

for routing quality of service (QoS). This approach uses 

fuzzy logic to ascertain the optimal path by considering 

independent quality of service characteristics such as 

buffer occupancy, battery capacity, and hop count. The 

study examines the resilience to various attacks, including 

both efficacy and safety. This study presents a distributed 

technique for achieving optimal resource allocation and a 

sleep scheduling algorithm for selecting network flows in 

an energy-efficient manner. The resource allocation and 

flow selection approaches provide near-optimal outcomes 

with little computing effort, leading to significant 

performance improvements across various network 

topologies [15].  

This paper introduces a novel model that enhances the 

DYMO protocol for Mobile Ad-Hoc Networks 

(MANETs). The model incorporates substantial 

improvements in the domains of route discovery and 

maintenance. The route discovery technique incorporates 

an authentication step between nodes. This process uses 

the MD5 hashing algorithm. In order to improve the 

process of route maintenance, we use reinforcement 

learning, which is a machine learning method. The Diffie-

Hellman key management system is used to securely 

encrypt and decode data sent between the source and the 

destination. Due to the implementation of enhanced 

authentication and encryption measures, our evaluation of 

the modified protocol indicates that the performance of the 

MANET has been enhanced, but with a little increase in 

latency from start to finish. The user's text is enclosed in 

tags.  

This study introduces a new routing protocol called 

Reputation Opportunistic Routing based on Q-learning 

(RORQ), which utilises reinforcement learning. The 

objective of this protocol is to tackle the intricacy of 

routing in mobile ad hoc networks (MANETs), especially 

in the presence of malicious nodes. RORQ utilises game 

theory to construct a reputation system that identifies and 

removes unauthorised nodes, ensuring efficient routing. 

Our simulations demonstrate that RORQ outperforms 

alternative protocols. It significantly enhances the 

reduction of packet loss, end-to-end latency, and energy 

consumption in the presence of blackhole and grayhole 

attacks [17]. 

Vehicular ad hoc networks (VANETs) face challenges 

such as control overhead and routing complexities. This 

paper proposes the use of Improved Deep Reinforcement 

Learning (IDRL) as a feasible option to address these 

issues. The IDRL system efficiently adjusts routing 

channels and reduces the time required for convergence in 

dynamic vehicle densities. Vehicle-to-Infrastructure (V2I) 

connection use the vehicle's data and transmission capacity 

to enable efficient packet transfer. Compared to other 

methods, the simulation results show that IDRL is better in 

reducing latency, increasing packet delivery ratios, and 

enhancing data dependability [18]. 

Robust connectivity between drones are crucial in the 

context of using several Unmanned Aerial Vehicles 

(UAVs). The current study introduces a novel routing 

mechanism called the Geolocation Ad Hoc Network 

(GLAN). This system uses geolocation data. An Adaptive 

GLAN (AGLAN) system is being developed to facilitate 

adaptation to environmental changes. This system 

integrates reinforcement learning. Using a pseudo-attention 

function may accelerate the learning process. The system 

demonstrates enhanced efficiency by minimising memory 

and processor resource use, as shown by the test conducted 

against conventional routing approaches [19].  

The ability of wireless networks to broadcast information 

enables the possibility of routing in dynamic environments 

like MANETs and VANETs. This paper introduces 

DeepMPR, a multicast routing system based on multi-

agent deep reinforcement learning. This technique 

outperforms the usual OLSR MPR selection process and 

does not need MPR announcement messages from 

neighbouring nodes. DeepMPR's analysis reveals superior 
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efficacy in multicast forwarding as compared to other 

commonly used methods, leading to enhanced network 

reliability and reduced costs associated with broadcasting 

[20] . 

During a crisis, prompt mobilisation and reliable 

communication are crucial. UAVs, or unmanned aerial 

aircraft, provide a means of rapid deployment that is 

unaffected by physical constraints. This paper presents a 

novel methodology for managing a WiFi ad-hoc network 

that operates in the air. The model employs deep Q-

learning to improve Quality-of-Service (QoS), coverage, 

and power efficiency. The idea underwent evaluation at 

Istanbul Technical University's campus, where it 

demonstrated a packet delivery ratio of 90 percent, user 

coverage of 97 percent, and efficient power utilisation 

[21].  

The mobility of nodes and resource constraints give rise to 

issues in Mobile Ad-Hoc Networks (MANETs). These 

issues might affect the stability of connections and lead to 

network congestion and loss of data packets. To tackle the 

issues in MANETs, this study proposes an Adaptive 

Congestion and Energy Aware Multipath Routing Scheme, 

abbreviated as ACEAMR. The main goal of ACEAMR is 

to identify routes that are stable, energy-efficient, and 

devoid of congestion. This is achieved by using stable link 

prediction to ensure reliable data transfer and an adaptive 

feedback mechanism to accurately detect congestion. The 

simulation findings clearly indicate that ACEAMR 

outperforms other competing approaches in terms of 

throughput, packet delivery ratio, latency reduction, and 

energy economy [22]. 

4. Proposed methdology 

4.1 Proposed algorithm 

Algorithm: RML for Energy Efficiency in MANETs 

Step 1: Define Network Parameters 

• Input: A set of mobile nodes N={n1,n2,...,nk} in 

a   MANET. 

• Network Properties: Node positions, 

transmission range, initial energy levels. 

Step 2: Initialize Environment 

• State Space (S): Network metrics such as node 

energy levels, neighbor count, and traffic load. 

• Action Space (A): Possible actions like route 

changes, transmission power adjustments. 

• Reward Function (R): A function that quantifies 

energy efficiency, e.g., remaining energy or 

successful data transmission with minimal energy 

use. 

Step 3: Model the Reinforcement Learning Agent 

• Agent: Each node in the MANET acts as an 

independent learning agent. 

• Learning Algorithm: Choose an algorithm like 

Q-learning or Deep Q-Learning. 

• Initialization: Initialize the Q-table or neural 

network for Deep Q-Learning with random weights. 

Step 4: Define Q-Learning Parameters 

• Learning Rate (α): Typically between 0 and 1, 

determining how much new information 

overrides old information. 

• Discount Factor (γ): Also between 0 and 1, 

indicating the importance of future rewards. 

Step 5: Q-Learning Algorithm 

• For each episode (or time step): 

• Select Action (a): Based on the current state (s), 

choose an action from the action space using a 

policy like ϵ-greedy. 

• Perform Action: Apply the chosen action in 

the network, leading to a new state (s'). 

• Observe Reward: Calculate the reward 

based on the energy efficiency after taking 

action. 

• Update Q-Table: Q( s, a) ← Q ( s, a) + α[ 

R(s,a) + γ maxa′Q(s′,a′) − Q(s,a)] 

• Update State: Set s←s′. 

Step 6: Energy-Efficient Routing Decision 

• Routing Algorithm: Incorporate the learned Q-

values to make routing decisions that prioritize 

energy efficiency. 

Step 7: Repeat Learning Process 

• Iterations: Run the algorithm for a sufficient 

number of episodes to ensure adequate learning. 

Step 8: Network Adaptation 

• Dynamic Adjustment: Allow the algorithm to 

adapt to changes in network topology and node 

energy levels. 

Step 9: Performance Evaluation 

• Metrics: Evaluate the algorithm based on energy 

efficiency, throughput, latency, and packet 

delivery ratio compared to traditional routing 

protocols. 
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4.2 Compare differences between Traditional 

Reinforcement Learning (RL) methods and the 

Proposed RL method 

Table 1. Compare differences between Traditional 

Reinforcement Learning (RL) methods and the Proposed 

RL method 

Feature Traditional 

Reinforcement 

Learning 

Proposed RL for 

Energy Efficiency 

in MANETs 

Objective Generally 

focuses on 

maximizing 

cumulative 

reward or 

achieving a 

specific goal. 

Specifically aims to 

optimize energy 

efficiency while 

maintaining network 

performance in 

MANETs. 

Environment Could be any 

environment 

(games, 

robotics, 

simulations) 

where an agent 

learns from 

interactions. 

Specifically a 

MANET 

environment with 

dynamic topology 

and energy 

constraints. 

State Space (S) Defined by the 

problem 

domain (e.g., 

positions in a 

game, sensor 

readings). 

Includes network-

specific metrics like 

node energy levels, 

neighbor count, 

traffic load. 

Action Space 

(A) 

Varies with the 

application 

(e.g., moving 

directions in 

games, control 

actions in 

robotics). 

Involves actions like 

route selection, 

transmission power 

adjustments, data 

packet forwarding 

decisions. 

Reward 

Function (R) 

Designed to 

reinforce 

desired 

behaviors or 

achievements 

in the general 

application. 

Tailored to promote 

energy-saving 

actions, such as 

choosing less 

energy-intensive 

routes or minimizing 

re-transmissions. 

Learning 

Algorithm 

Standard 

algorithms like 

Q-learning, 

SARSA, or 

Deep Q-

Networks. 

Similar algorithms 

but fine-tuned for 

energy-aware 

decision-making in 

the network context. 

Performance 

Metrics 

Depends on the 

specific 

application, 

like score in 

games or 

accuracy in 

tasks. 

Energy efficiency, 

throughput, latency, 

packet delivery ratio, 

and network lifetime 

in MANETs. 

Adaptation Generally 

adapts to the 

learning task or 

environment. 

Specifically adapts 

to changing network 

conditions, node 

mobility, and 

varying energy 

levels. 

Implementation 

Complexity 

Varies with the 

application but 

generally 

agnostic to 

specific types 

of 

environments. 

Higher, due to the 

need to consider 

network dynamics, 

energy models, and 

node mobility in 

MANETs. 

Application 

Scope 

Broad and 

varied across 

many fields. 

Specifically focused 

on improving energy 

efficiency in mobile 

ad-hoc network 

environments. 

Result 

Assessment 

Based on how 

well the agent 

learns to 

perform the 

task or 

maximize 

rewards. 

Based on 

improvements in 

energy efficiency 

and sustaining 

network 

functionality under 

constraints. 

 

4.3. Proposed flowchart 

This flowchart provides a structured approach to 

implementing a specialized RL algorithm for improving 

energy efficiency in MANETs. Each step is crucial for 

adapting traditional RL methods to the specific challenges 

of mobile ad-hoc networks. 
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Fig 3. Proposed flowchart 

4.4 Mathematical equations for proposed 

Reinforcement Learning (RL) 

1. Q-Learning Update Equation 

The core of the Q-learning algorithm is the update 

equation, which iteratively improves the Q-values (quality 

of actions) for each state-action pair. The equation is: 

 

Where: 

• Q(s,a): Current Q-value for state s and action a. 

• α: Learning rate, determining the weight given to new 

information. 

• R(s,a): Reward received after executing action a in 

state s. 

• : Discount factor, representing the importance of 

future rewards. 

• : Maximum predicted reward for the 

next state s′, considering all possible actions a′. 

2. Reward Function for Energy Efficiency 

The reward function in the context of energy efficiency in 

MANETs can be designed to encourage actions that save 

energy. It could be formulated as: 

 

Where: 

• : Energy saved due to efficient actions, like 

choosing shorter routes or lower transmission powers. 

• : Energy spent in executing the action, including 

factors like transmission energy and processing energy. 

. Energy Consumption Model 

To calculate  and , you may need an energy 

consumption model, which could be represented as: 

 

 

• : Energy used to transmit a packet over 

distance d. 

• : Energy used to receive a packet. 

• : Energy dissipated per bit to run the transmitter or 

receiver circuit. 

•  : Amplification energy required per bit for a 

specific transmission distance. 

• n: Path-loss exponent, depending on the environment. 

4. Policy Equation 

A policy equation, like ε-greedy, can be used to balance 

exploration and exploitation: 

With probability ϵ choose a random action a, otherwise 

choose  

A=arg  

Where: 

• ϵ: Exploration rate. 

These equations form the backbone of the RL 

methodology for enhancing energy efficiency in MANETs, 

incorporating aspects unique to network environments and 

energy constraints. 

4.5  Proposed Integrate RML with AODV 

This algorithm provides a detailed approach to 

incorporating RML into the AODV protocol for MANETs, 

with a focus on mathematical formulations for key 

components such as the state space, action space, reward 

function, and Q-learning update. 

Step 1: Network Initialization 

• Initialize MANET: Set up nodes, each with its own 

energy level and communication range. 

• Define AODV Protocol: Implement standard AODV 

routing protocol. 
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Step 2: Define RL Framework 

• State Space (S): The state of a node is defined by 

parameters such as energy level E, number of 

neighbors N, and traffic load T. State can be 

represented as S={E,N,T}. 

• Action Space (A): Possible actions include route 

selection Rs and power adjustment Pa. Actions can be 

represented as A={Rs ,Pa}. 

• Reward Function (R): Define a reward function that 

could be a function of successful transmission Ts and 

energy used Eu. An example reward function: 

R(S,A)=α×Ts−β×Eu   where α and β are weighting 

factors. 

Step 3: Integrate RML with AODV 

• Route Discovery with RL: Modify AODV's route 

discovery to use RL. When a node needs a route, it uses 

its current state S and selects an action A based on a 

policy derived from its Q-table or RL model. 

• Route Maintenance with RL: Enhance the route 

maintenance process using RL. When a route error 

occurs, RL is used to decide whether to repair the route 

or find a new one. 

Step 4: Implement Q-Learning 

• Q-Learning Algorithm: Use the Q-learning algorithm 

for the RL model. 

• Q-Value Update Rule: 

 

Where α is the learning rate and γ is the discount factor. 

Step 5: Policy for Action Selection 

• Policy (e.g., ε-greedy): Define a policy for selecting 

actions. For ε-greedy: 

• With probability ϵ, select a random action. 

•  Otherwise, select  A=arg  

Step 6: Continuous Learning and Update 

• Iterative Learning: Each routing decision is a learning 

episode. Update Q-values after each decision. 

• Adaptation: Continuously adapt the Q-table or RL 

model to changing network conditions. 

Step 7: Performance Evaluation 

• Network Performance Metrics: Evaluate using 

metrics like . Consumed Energy ,packet delivery ratio 

PDR, and Network Overhead . 

• Consumed energy = Total energy-Remaining 

energy                     

• PDR= Total Packets Received  / Total Packets 

Sent    

• Network Overhead =Total number of network 

control packets transmitted during the simulation 

time. 

Step 8: Deployment and Monitoring 

• Deploy in MANET: Implement the enhanced 

AODV with RML in the network. 

• Monitoring: Continuously monitor performance 

and adjust parameters as necessary. 

5. Implementation  

We have compared three routing protocols across six 

distinct scenarios, as outlined in Table 2, while shared 

simulation parameters are presented in Table 3. 

Table 2 : Six different simulation scenarios 

Sr. 

No 

Scenario Various values 

1. Pause Time (Sec) 30,50,60,and 70 sec. 

2. Node movements 

Speed(m/s) 

0,1,10,15,20,and 25 m/s. 

3. Number of Nodes 40, 50, 60, 70, 80, and 90. 

4. Number of Sources 20, 30, 40, 50, and 60. 

5. Simulation Area 

Sizes (m.) 

500m x 500m, 750m x 

750m, 1000m x 1000m, 

and 1250m x 1250m. 

6. Sending 

Rate(Kbps) 

48, 64, 80, 96, 112, and 

128 kbps. 

 

Table 3: Common simulation parameters 

Simulator NS 2.34 

Operating 

System 

Linux (Fedora 13) 

Simulation Time 1500 sec 

Moment Model Random way point Mobility model 

MAC Layer IEEE 802.11 

Traffic Type CBR 

Data Payload 1024 bytes 

Energy Model 3000 Jules 

 

• Enhanced AODV through Reinforcement Machine 

Learning: In this scenario, we conducted a comparative 

analysis between the Reinforcement Machine Learning-
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Enhanced AODV protocol and the conventional AODV 

and DSDV protocols. This comparison aimed to evaluate 

the improvements in the AODV protocol when augmented 

with reinforcement machine learning techniques, as 

opposed to its standard form and the DSDV protocol.  

 

Fig 4: Route Establishment using Reinforcement Machine 

Learning-Based Improved AODV 

 

Fig 5: Data forwarding using Reinforcement Machine 

Learning-Based Improved AODV 

Figures 4 and 5 illustrate the processes of Route 

Establishment and Data Forwarding, respectively, using 

the Reinforcement Machine Learning-Based Improved 

AODV (RML-AODV) protocol.  

 

Fig 6: Q- Learning Agent takes Action of Packet dropping 

according State value.  

Figure 6 depicts a Q-learning agent executing a packet 

dropping action based on the current state value. This state 

is characterized by network conditions, including the 

queue's packet count and the node's available energy. The 

agent has two possible actions: to drop a packet or to retain 

it. The objective or reward for the agent is to enhance the 

network's throughput while simultaneously reducing the 

rate of packet loss. The RML-AODV algorithm represents 

an advancement over the conventional Ad-hoc On-demand 

Distance Vector (AODV) routing protocol, employing 

reinforcement machine learning to comprehend the node's 

state for more effective routing decisions.. 

6. Results and analyis 

6.1. Pause Time 

In the previously mentioned section, we conducted a 

comprehensive evaluation of the three routing protocols, 

focusing on key performance indicators such as Energy 

Consumption, Packet Delivery Ratio, and Routing 

Overhead. The specific parameters used for this simulation 

are outlined below, and further details can be found in 

below: 

• Pause Time intervals: 30, 50, 60, and 70 seconds. 

• Dimensions of the simulation area: 500m x 500m. 

• Total number of nodes involved: 50. 

• Data transmission rate per node: 90 Kbps. 
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Fig 7. Consumed Energy of RML-EEAODV, AODV and 

DSDV with various Pause Times (Sec.). 

 

 

Fig 8. Packet Delivery Ratio of AODV, RML-EEAODV 

and   DSDV with various Pause Times (Sec.). 

 

 
Fig 9. Network Overhead of AODV, RML-EEAODV and 

DSDV with different Pause Time (Sec.). 

 

Figures 7, 8, and 9 present a comparative analysis of the 

AODV, DSDV, and the newly developed RML-EEAODV 

protocols across various network parameters, with a 

particular emphasis on the Pause Time in seconds. 

In this evaluation, we explore how different pause times of 

30, 50, 60, and 70 seconds, combined with a consistent 

mobility speed of 5 m/s, affect the network's performance. 

This combination typically results in more stable routing 

paths during the given time, consequently lowering the 

energy needed for both establishing and maintaining 

routes. 

The interplay between node mobility and pause time is 

crucial, as they tend to be inversely related. From Figure 7, 

it's evident that the RML-EEAODV protocol is more 

energy-efficient than both the AODV and DSDV 

protocols. Moving to Figure 8, we note that the RML-

EEAODV exhibits a comparatively stable Packet Delivery 

Ratio (PDR) across varying pause times. In contrast, the 

AODV shows optimal PDR at a pause time of 50 seconds, 

but its performance dips at pause times of 30 and 60 

seconds when compared to RML-EEAODV and DSDV. 

Finally, Figure 9 highlights RML-EEAODV’s efficient 

routing strategy, which minimizes unnecessary control 

packet transmission, thereby generating less network 

overhead in comparison to AODV and DSDV. 

6.2. Node Mobility Speed 

In this setup, we evaluate the three routing protocols across 

three crucial performance indicators: Energy Consumption, 

Packet Delivery Fraction, and Routing Overhead. The 

simulation for this scenario was conducted according to the 

parameters listed below, in addition to other specified 

values: 

• Node Mobility Speed: Set at various speeds of 0, 1, 5, 

10, 15, 20, and 25 m/s. 

• Area Size: The simulation area was a square of 500m x 

500m. 

• Total Nodes in the Network: 50 nodes were included in 

the simulation. 

• Data Transmission Rate per Node: Each node 

transmitted data at a rate of 90 Kbps. 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 654–670 |  665 

 

Fig 10. Consumed Energy of AODV, RML-EEAODV and 

DSDV with various node mobility Speeds (m/s). 

 

Fig 11. Packet Delivery Ratio of AODV, RML-EEAODV 

and  DSDV with various node Mobility Speed (m/s). 

 

Fig 12. Network Overhead of AODV, RML-EEAODV and 

DSDV with various node Mobility Speed (m/s). 

Figures 10, 11, and 12 showcase a comparative analysis of 

the AODV, DSDV, and the newly formulated RML-

EEAODV protocols, examining their performance across 

different network parameters in relation to node mobility 

speeds in meters per second (m/s). 

For this analysis, the performance metrics were evaluated 

under a range of mobility speeds, specifically 0, 1, 5, 10, 

15, 20, and 25 m/s, coupled with a consistent pause time of 

100 seconds. Figure 10 indicates that the RML-EEAODV 

protocol is more energy-efficient than both the AODV and 

DSDV protocols. When observing packet delivery ratios in 

Figure 11, there are minor yet noticeable fluctuations when 

comparing RML-EEAODV with the AODV and DSDV 

protocols. It's important to note that DSDV, as a table-

driven protocol, tends to experience reduced effectiveness 

with higher node mobility. This is attributed to the 

demanding nature of frequent routing table updates 

necessary in fast-moving MANET environments. In 

contrast, RML-EEAODV excels by effectively managing 

the routing of control packets, thereby achieving lower 

network overhead than AODV and DSDV, as illustrated in 

Figure 12. 

6.3.  Numbers of nodes 

In this setup, we undertake a detailed evaluation of the 

three routing protocols, focusing on three critical 

performance measures: Energy Consumption, Packet 

Delivery Fraction, and Routing Overhead. The simulation 

for this analysis was conducted in accordance with the 

following parameters: 

• Number of Nodes: The network consisted of varying 

node counts, specifically 40, 50, 60, 70, 80, and 90 

nodes. 

• Area Size: The simulation was carried out in a 500m x 

500m area. 

• Data Transmission Rate per Node: Each node in the 

network transmitted data at a rate of 90 Kbps. 

 

Fig 13. Consumed Energy of AODV, RML-EEAODV and 

DSDV with various numbers of Nodes. 
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Fig 14. Packet Delivery Ratio of  AODV, RML-EEAODV 

and DSDV with various numbers of Nodes. 

 

Fig 15. Network Overhead of AODV, RML-EEAODV and 

DSDV with various numbers of Nodes. 

Figures 13, 14, and 15 present a comparison of the AODV, 

DSDV, and the proposed RML-EEAODV protocols across 

various network parameters, focusing particularly on how 

they perform with different numbers of nodes in the 

network. 

In this scenario, our evaluation is centered on the network's 

functionality with varying node counts. Figure 13 

highlights the energy consumption in the network as the 

number of nodes increases, accounting for both data and 

control packet transmissions. Here, the RML-EEAODV 

protocol demonstrates superior energy efficiency when 

compared to the AODV and DSDV protocols. 

Moving to Figure 14, we observe that although the packet 

delivery count for RML-EEAODV is marginally lower 

than AODV, the difference is minimal and within 

acceptable limits. More importantly, RML-EEAODV 

surpasses DSDV in terms of packet delivery efficiency. 

In terms of Routing Overhead, depicted in Figure 15, 

RML-EEAODV and AODV appear to perform similarly. 

However, upon closer examination, RML-EEAODV 

actually performs better due to its effective management of 

unnecessary control packets, thereby reducing the overall 

burden on the network. In contrast, DSDV tends to 

generate lesser overhead with an increasing number of 

nodes, proving to be more efficient in this aspect than both 

AODV and RML-EEAODV. 

6.4. Numbers of sources 

In this particular scenario, the three routing protocols are 

scrutinized based on three key performance metrics: 

Energy Consumption, Packet Delivery Fraction, and 

Routing Overhead. The simulation environment for this 

assessment is characterized by the following parameters, 

along with other specified values: 

• Number of Sources: The simulation includes various 

source counts, specifically 20, 30, 40, 50, and 60 

sources. 

• Duration of Simulation: The simulation is conducted 

over a period of 1500 seconds. 

• Size of CBR (Constant Bit Rate) Packets: Each CBR 

packet is sized at 1024 bytes. 

• Dimensions of the Simulation Area: The area for the 

simulation is a square measuring 500m x 500m. 

 

Fig 16. Consumed Energy of AODV, RML-EEAODV and 

DSDV with various number of Sources. 
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Fig 17. Packet Delivery Ratio of AODV, RML-EEAODV 

and DSDV with various number of Sources. 

 

Fig 18.  Network Overhead of AODV, RML-EEAODV, 

and DSDV with number of sources. 

Figures 16, 17, and 18 provide a comparative analysis of 

the AODV, DSDV, and the proposed RML-EEAODV 

protocols, examining their performance across various 

network parameters with a focus on the number of sources. 

Figure 16 demonstrates that the RML-EEAODV protocol 

is more efficient in scenarios with fewer sources, 

consuming less energy compared to both AODV and 

DSDV protocols in Mobile Ad-Hoc Networks. This 

efficiency is a key advantage of RML-EEAODV in energy 

conservation. 

In Figure 17, it's observed that while RML-EEAODV 

exhibits a slightly lower packet delivery ratio than AODV, 

the performance is still within acceptable limits. 

Additionally, it maintains a superior packet delivery ratio 

when compared to DSDV. This balance between energy 

efficiency and packet delivery makes RML-EEAODV a 

viable option in diverse networking scenarios. 

Figure 18 highlights the impact of increasing the number 

of sources on network overhead. With more sources, 

RML-EEAODV still manages to generate less routing 

overhead than AODV, indicating its effectiveness in 

handling increased network traffic. On the other hand, 

DSDV tends to incur more overhead as the number of 

sources rises due to the enlarged routing table and the need 

for more frequent update messages. This results in a higher 

overall network load in the DSDV protocol as compared to 

RML-EEAODV and AODV. 

6.5 Area Sizes 

In this particular scenario, we conduct an evaluation of 

three routing protocols, focusing on three critical 

performance metrics: Energy Consumption, Packet 

Delivery Fraction, and Routing Overhead. The simulation 

environment for this assessment includes various 

configurations, with additional details as follows: 

• Flat Area Sizes: The simulations are performed over 

different area dimensions, specifically 500m x 500m, 

750m x 750m, 1000m x 1000m, and 1250m x 1250m. 

• Total Number of Nodes: Each simulation setup 

includes 50 nodes. 

• Data Transmission Rate per Node: The nodes are 

configured to send data at a rate of 90 Kbps. 

 

Fig 19. Consumed Energy of AODV, RML-EEAODV and 

DSDV with various Area sizes. 

 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(8s), 654–670 |  668 

 

Fig 20. Packet Delivery Ratio of AODV, RML-EEAODV 

and DSDV with various Area size. 

 

Fig 21. Network Overhead of AODV, RML-EEAODV and 

DSDV with various Area size. 

Figures 19, 20, and 21 offer a comparative study of the 

AODV, DSDV, and the proposed RML-EEAODV 

protocols, focusing on how they perform across different 

network parameters in relation to varying area sizes. 

Throughout the simulation, we expanded the network area 

and observed the performance of all three protocols. Figure 

19 reveals that RML-EEAODV is more energy-efficient in 

larger simulation areas. This efficiency is attributed to the 

decreased energy consumption as the simulation area 

expands while maintaining a fixed number of nodes. In 

denser areas, energy utilization tends to increase due to the 

proximity of the nodes. Overall, RML-EEAODV shows a 

lower energy consumption compared to both AODV and 

DSDV protocols in Mobile Ad-Hoc Networks. 

According to Figure 20, RML-EEAODV outperforms 

DSDV but falls short in packet delivery ratio when 

compared to AODV. This limitation in RML-EEAODV 

arises from its method of transferring packets, which is 

governed by the remaining energy of the nodes as a control 

condition. This approach restricts packet transmission, 

resulting in a lower packet delivery ratio. 

Figure 21 demonstrates that RML-EEAODV generates less 

routing overhead than AODV and DSDV. In denser areas, 

the presence of more nodes along the path from source to 

destination contributes to higher overhead compared to 

larger areas, where nodes are more dispersed. 

Consequently, paths in larger areas consist of fewer nodes, 

necessitating fewer control packets and thereby introducing 

less overhead in the network. 

6.6 Sending Rate 

In this analysis, we evaluate three routing protocols – 

AODV, DSDV, and RML-EEAODV – based on three key 

performance metrics: Energy Consumption, Packet 

Delivery Fraction, and Routing Overhead. The simulation 

for this scenario was conducted under the following 

conditions, with additional parameters specified below: 

• Simulation Area: The network was set up within a 

500m x 500m area. 

• Number of Nodes: A total of 50 nodes were included in 

the simulation. 

• Node Sending Rates: The nodes transmitted data at 

various rates, specifically 48, 64, 80, 96, 112, and 128 

kbps. 

 

Fig 22. Consumed Energy of AODV, RML-EEAODV and  

DSDV with various Sending Rates (kbps). 
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Fig 23. Packet Delivery Ratio of AODV, RML-EEAODV 

and DSDV with various Sending Rates (kbps). 

 

Fig 24. Network Overhead of AODV, RML-EEAODV and 

DSDV with  various Sending Rates (kbps.). 

Figures 22, 23, and 24 offer a comparative analysis of the 

AODV, DSDV, and the proposed RML-EEAODV 

protocols, assessing their performance across various 

network parameters against different data sending rates 

measured in Kbps. 

Figure 22 reveals that at lower data transmission rates, 

RML-EEAODV is notably more energy-efficient. 

However, as the sending rate increases, its energy 

consumption also rises. This is attributed to the increased 

battery power usage when nodes transmit data at higher 

speeds. Compared to AODV and DSDV protocols, RML-

EEAODV still shows lesser energy consumption in Mobile 

Ad-Hoc Networks, especially noticeable as the sending 

rate escalates with a fixed number of nodes. 

In Figure 23, it is evident that RML-EEAODV 

outperforms DSDV but not AODV in packet delivery 

efficiency. This is because RML-EEAODV prioritizes the 

remaining energy of nodes as a deciding factor for packet 

forwarding, while AODV does not consider node energy, 

leading to continuous packet transmission until the node's 

energy is depleted. With limited queuing capacities in 

nodes, increased sending rates lead to buffer overflows and 

subsequent packet drops, thus reducing the packet delivery 

ratio. 

Figure 24 shows that RML-EEAODV has a superior 

performance compared to AODV and DSDV in terms of 

routing overhead, particularly at higher sending rates. 

RML-EEAODV's efficiency in managing routing overhead 

becomes more pronounced with increased data 

transmission rates, distinguishing it from AODV and 

DSDV which tend to generate more overhead under 

similar conditions. 

7. Conclusion and Summary 

Machine learning algorithms have the potential to 

significantly improve the functionality of Mobile Ad-Hoc 

Network (MANET) routing protocols by adeptly 

recognizing and adapting to changes in the network 

environment. This section summarizes the results obtained 

from implementing an energy-saving mechanism in 

MANET routing protocols through a machine learning 

approach. Specifically, reinforcement learning is utilized to 

refine routing decisions, prompting nodes to select more 

efficient pathways for packet transmission. This not only 

enhances routing efficiency but also leads to lower energy 

consumption and reduced network overhead. 

The Reinforcement Machine Learning-based Improved 

Energy Efficient AODV (RML-EEAODV) protocol 

underwent extensive testing and comparative analysis 

against traditional AODV and DSDV protocols using the 

NS-2.34 network simulator. The findings consistently 

show that the RML-EEAODV algorithm outperforms in 

terms of energy efficiency and minimizes network 

overhead in various test scenarios, despite a slight 

compromise in packet delivery ratio under certain 

conditions. As a result, RML-EEAODV stands out as a 

preferable choice in this study, offering substantial benefits 

in energy savings and enhanced efficiency in route 

discovery and maintenance. 

The core strategy of RML-EEAODV involves minimizing 

unnecessary broadcasts by assessing the remaining energy 

and traffic load of nodes forwarding Route Request 

(RREQ) packets, a method informed by reinforcement 

learning techniques. This approach not only ensures 

reliable communication but also provides a secure platform 

for data transmission in mobile networks, thereby making 

it a valuable addition to MANET routing protocols. 
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