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Abstract: The threat of crop diseases and the need for efficient management are critical concerns, particularly in the context of maize 

cultivation. Early detection and accurate estimation of disease severity play a pivotal role in safeguarding maize crops and ensuring optimal 

yield. Convolutional Neural Networks (CNNs) have emerged as invaluable tools for this purpose, showcasing their prowess in automatic 

feature extraction. In the realm of maize disease severity estimation, the distinct characteristics of diseases, such as variations in lesions 

texture along with variations its color serve as crucial factors for automated assessment through machine learning. In this paper, a CNN 

model is developed with combination of transfer learning features from ResNet101 and Inception-V3 models. The features obtained from 

these models are then combined and passed through the attention layer ensures optimal performance.  With tuning of hyper parameters and 

5-fold analysis model is set for highest performance of 0.956 of accuracy. The high specificity of 0.985 shows models suitability for 

primary stage disease detection. This approach reflects a proactive strategy in addressing the challenges associated with disease severity 

estimation in maize cultivation, utilizing cutting-edge technologies for the benefit of agricultural sustainability. 

Keywords: Disease Severity, Maize Crop, CNN Model, Transfer Learning, Attention Layer. 

1. Introduction 

Substantial economic losses and a threat to food security 

are posed by crop diseases, representing a significant peril 

to the worldwide food supply chain. Early detection and 

effective management of these diseases are vital to curb 

their spread and minimize the resulting damages. A 

promising avenue for accurate and efficient detection and 

classification of crop diseases is provided by image-based 

methods. Exceptional performance in image classification 

tasks has been demonstrated by Convolutional Neural 

Networks (CNNs) within this context [1]. 

Substantial global crop losses are seen, resulting from 

diverse fungal, bacterial, and viral pathogens cause leaf 

diseases. Detection of disease severity at an early stage is 

essential for timely treatment planning and management 

of crops for maximum output [2]. In recent years, there 

has been a widespread application of CNNs in the 

classification of leaf disease severity in various crops, 

such as maize. The automatic CNN-based models excel in 

leaf disease severity classification, automatically 

extracting discriminative features from images. The CNN 

model based approach shows in depth feature extraction 

capability which provides relevant features for respective 

classification task and thus shows improvements over 

conventional features extraction methods [3]. 

The changes in texture, color and shape characteristics of 

the leaf and diseased region of the leaf are the fundamental 

characteristics that are to be observed while developing 

the CNN model. The changes with respect to disease 

severity in five different stages of severity are shown in 

Figure 1. The initial stage addresses diseases with severity 

levels within the range of 20%. Subsequent stages, 

numbering up to five, exhibit an incremental rise in 

severity levels, culminating in the 5th stage where severity 

surpasses 80%.
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Fig 1: Five Levels of Disease Severity of Maize Leaf Disease (Leaf Blight) 

In this work, initially, the standard CNN models are 

evaluated for selecting right models for transfer feature 

extraction in transfer learning mode and then two models 

are selected for extracting distinct but relevant features 

that improve the performance.  

In summary the contributions of this work can be 

summarized as, 

1. Selection of model from various standard CNN 

models for extracting relevant features from 

diseased maize leaf image. ResNet 101 and 

Inception-V3 are found right pretrained models for 

extracting features from diseased maize leaf images. 

2. Development of custom CNN layers to combine the 

features obtained from pretrained models and 

applying attention layer for boosting the 

classification performance. 

3. A hyper parameter tuned model for improved 

performance of severity classification of leaf blight 

disease in Maize crop. 

2. Related Work 

Simhadri et al. [4] analyzed 15 CNN models for rice leaf 

disease detection, highlighting Inception-V3's superior 

accuracy in transfer learning. This emphasizes its 

relevance in optimizing disease identification in rice 

cultivation. Yang et al.'s stacking approach combines 

diverse CNN architectures for potent rice leaf disease 

detection, while Rawat et al.'s [5] focus on ResNet50 

underscores its efficacy in managing large datasets, 

driving innovation in agricultural technology. Mosleh et 

al.'s [6] accurate CNN model for potato disease detection 

is a breakthrough, advancing deep learning in agriculture 

for improved crop monitoring and early disease detection, 

fostering sustainable practices. Huang et al. [7] introduced 

DenseNet, a revolutionary architecture that addressed the 

challenge of information flow within CNNs. DenseNet's 

distinctive feature is the dense connectivity pattern, 

wherein each layer receives direct input from all its 

preceding layers, promoting efficient information 

propagation. This design minimizes the vanishing 

gradient problem and encourages feature reuse, leading to 

improved model performance. 

Building on the foundations laid by Huang et al., Li et al. 

[8] extended the capabilities of DenseNet by introducing 

fire-FRD-CNN and mobile-FRD-CNN architectures. 

These extensions aimed at optimizing feature map 

generation, a crucial aspect in image recognition tasks. 

The fire-FRD-CNN and mobile-FRD-CNN architectures 

introduced innovative mechanisms to enhance the 

extraction of discriminative features, contributing to 

heightened accuracy and efficiency in disease detection 

within various datasets. In a separate development, Lee et 

al. [9] simplified the process of disease classification, 

particularly in the context of the Plant Village dataset. 

They employed GoogleNet-BN, an adaptation of 

GoogleNet with batch normalization, to streamline the 

classification of plant diseases. GoogleNet-BN's design 

incorporates batch normalization layers, which stabilize 

and accelerate the training process by normalizing the 

input of each layer. This adaptation enhances the model's 

generalization capabilities, making it well-suited for tasks 

such as disease classification in diverse plant species. 

Building upon the concept of ensemble learning, Simhadri 

et al. [4] conducted an extensive analysis of 15 different 

CNN models in a transfer learning framework for rice leaf 

disease detection. Transfer learning involves utilizing 

knowledge gained from one task to improve the 

performance of a related task, and in this context, it proved 

to be a valuable strategy. Among the models evaluated, 

Inception-V3 emerged as the most effective in terms of 

accuracy for rice leaf disease detection. Inception-V3's 

success highlighted the significance of selecting an 

appropriate CNN architecture, especially in the context of 
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transfer learning, to optimize disease detection in rice 

leaves. 

Yang et al. [10] introduced a novel stacking approach in 

CNN-based rice leaf disease detection. This method 

involved the combination of multiple CNN architectures, 

including AlexNet, ResNet50, and MobileNet-V3, aiming 

to leverage the unique strengths of each model. Through 

the stacking approach, Yang et al. observed improvements 

in the performance of these individual models. This 

innovative technique showcased the potential of ensemble 

learning in enhancing the overall accuracy and robustness 

of rice leaf disease detection systems. 

Rawat et al. [5] contributed to this area by employing the 

ResNet50 model for the detection of rice leaf diseases. 

Notably, their study utilized a substantial sample size of 

4000 images, emphasizing the robustness of ResNet50 in 

handling large datasets for accurate disease identification. 

ResNet50, known for its deep residual learning 

capabilities, addresses challenges related to vanishing 

gradients in deep neural networks, making it well-suited 

for complex image recognition tasks. 

Qian et al.'s [11] work introduces the utilization of a self-

attention mechanism in CNN models for maize leaf 

disease identification. Self-attention mechanisms allow 

the model to weigh the importance of different parts of the 

input sequence, enhancing its ability to capture relevant 

features. Applying this mechanism to CNNs for disease 

identification in maize leaves signifies a nuanced 

approach to feature extraction, potentially improving the 

model's capacity to discern intricate patterns associated 

with different diseases. 

In the context of maize leaf disease detection, Ma et al. 

[12] proposed a transfer learning approach, leveraging 

pre-trained models to enhance the efficiency and 

effectiveness of disease identification. Transfer learning 

involves using knowledge gained from one task to 

improve performance on a related task, a strategy 

particularly valuable when working with limited labeled 

data. Ma et al.'s approach contributes to the broader effort 

of optimizing model training in scenarios where datasets 

for specific agricultural diseases may be limited. 

Li et al. [13] contributed to the field by emphasizing the 

importance of compact and accurate models through the 

introduction of CNNPruner. This tool aligns with the 

growing demand for more efficient neural network 

architectures, particularly in applications where 

computational resources are limited. The CNNPruner 

methodology focuses on identifying and removing 

redundant or less critical network components, resulting 

in models that are both resource-efficient and maintain 

high accuracy. 

Singh et al. [14] proposed a novel approach by combining 

pruning and fine-tuning to enhance the efficiency of CNN 

models. Pruning involves removing unnecessary 

parameters, while fine-tuning refines the model's weights 

to maintain or improve accuracy. The joint application of 

these techniques allows for streamlined models that 

maintain high performance, addressing the critical 

balance between efficiency and accuracy. 

Kundu et al. [15] developed a comprehensive deep 

learning framework for maize disease detection, severity 

prediction, and crop loss estimation. Li et al. [16] 

proposed a CNN-based method with multi-scale feature 

fusion for precise maize leaf disease detection, 

incorporating innovative attention modules and fine-

tuning spatial pooling. 

In the ever-evolving landscape of plant disease severity 

estimation, Faye et al. [17] (reference not provided) 

conducted an exhaustive review, spanning Image 

Processing Techniques (IPT), classical Machine Learning 

(ML), and Deep Learning (DL) algorithms. Their 

comprehensive analysis aimed to uncover the limitations 

and potential challenges associated with plant disease 

severity assessment methodologies, shedding light on the 

nuances of each technique. The work by Faye et al. [17] 

provides a valuable synthesis of the existing solutions, 

offering insights into the diverse approaches employed in 

plant disease severity estimation. By encompassing a wide 

spectrum of methodologies, from traditional image 

processing to advanced machine and deep learning 

algorithms, their review serves as a compass for 

researchers and practitioners navigating the complex 

terrain of plant pathology. 

Building on this foundation, Shi et al. [18] contributed a 

meticulous study that delved specifically into the realm of 

Convolutional Neural Network (CNN)-based plant 

disease severity assessment. Their research focused on 16 

selected papers, collectively offering a rich landscape of 

CNN applications in this domain. The analysis covered 

classical CNN frameworks, improved architectures, and 

CNN-based segmentation networks, providing a nuanced 

comparative evaluation that outlined the strengths and 

weaknesses of each approach. Shi et al.'s study represents 

a focused exploration into the nuances of CNN-based 

methodologies, recognizing the pivotal role these deep 

learning architectures play in advancing plant disease 

severity assessment. By dissecting various CNN 

frameworks and segmentation networks, the researchers 

contribute valuable insights into the specific attributes that 

make each approach effective or pose challenges in the 

context of severity estimation. The combined efforts of 

Faye et al. and Shi et al. offer a panoramic view of the 

advancements in plant disease severity estimation 

methodologies. Faye et al.'s review sets the stage by 

encompassing a broad spectrum of techniques, while Shi 
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et al.'s focused analysis on CNN-based approaches adds 

depth and specificity to our understanding. Together, 

these studies contribute to the ongoing dialogue on the 

most effective and robust methodologies for assessing the 

severity of plant diseases, a crucial element in 

safeguarding agricultural productivity. 

The work presented in this paper emphasizes on severity 

estimation addresses a significant limitation in existing 

methods, enhancing the practical utility of plant disease 

detection models. The inclusion of severity estimation is 

pivotal for advancing precision agriculture, enabling more 

targeted and efficient management strategies, ultimately 

contributing to sustainable crop production and food 

security. 

3. Methodology 

Maize leaf disease severity estimation involves the 

comprehensive analysis of various features to accurately 

gauge the extent of damage caused by diseases. Key 

indicators contributing to this assessment include lesion 

size and distribution, where larger lesions or higher 

density correlate with more severe infections. Changes in 

leaf color, texture variations, and the degree of necrosis 

provide valuable insights into the physiological impact 

and severity of the disease. Additionally, features such as 

lesion shape and morphology, spatial distribution, leaf 

area affected, progression over time, overall plant health, 

and environmental conditions contribute to a nuanced 

understanding of disease severity in maize leaves. 

Integrating these factors enhances the precision and 

holistic evaluation of maize leaf diseases. An integrated 

analysis of these features, possibly facilitated by advanced 

imaging techniques and machine learning algorithms, can 

provide a comprehensive understanding of disease 

severity in maize leaves. Combining visual observations 

with quantitative data on these features allows for a more 

accurate and nuanced assessment, aiding in effective 

disease management strategies. 

Predicting disease severity can be approached through 

both regression and classification methodologies, each 

tailored to address specific aspects of the problem. In a 

regression approach, the severity level is treated as a 

continuous variable, and the objective is to predict a 

numerical value representing the severity. This entails 

preparing a dataset with features related to the disease, 

selecting relevant predictors, choosing a suitable 

regression model (e.g., linear regression or decision tree 

regression), training the model on the dataset, evaluating 

its performance, and subsequently using it to predict 

severity scores for new data. 

On the other hand, a classification approach treats severity 

levels as distinct classes, with the goal of assigning 

instances to predefined severity classes (e.g., low, 

medium, high). Similar to the regression approach, data 

preparation involves collecting a dataset with relevant 

features, but now the severity level is categorized. Feature 

selection, model selection (e.g., logistic regression, 

decision tree classifiers, or neural networks), training, 

evaluation, and prediction steps follow, but the focus is on 

classifying instances into predefined severity classes. 

Key considerations include threshold selection in the 

classification approach, where a decision must be made 

about severity class assignments based on a chosen 

threshold. Both approaches require high-quality, well-

annotated data that accurately represents the problem at 

hand. The choice between regression and classification 

hinges on the nature of the severity variable and the 

specific goals of the analysis, with each approach offering 

unique advantages depending on the problem's 

characteristics. Figure 2 shows the end to end system 

framework.

 

 

 

 

 

 

 

 

 

Fig 2: End to end system framework 

3.1 Dataset Preparation 

The dataset [19] consists of northern leaf disease images 

of Maize crop. The image count details are shown in 

table 1. The original dataset is divided in five stages in 

which stage 1 is mild level of disease and 5th stage is 

severe stage.

Dataset 

Preparation 

Feature Extraction from 

Pretrained Networks 

Proposed Model 

Training 

Trained Model Test Set 

Prediction of Disease 

Severity 
Performance Evaluation 
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Table 1: Severity work dataset details 

Disease Level 
% Disease 

Severity 

Image 

Count 

Augmented 

Count 

1 1-20 108 432 

2 21-40 330 1320 

3 31-60 297 1188 

4 61-80 231 924 

5 80 above 111 444 

Total 4308 

 

3.2 Feature extraction 

3.2.1 Features from Pretrained Network 

When using ResNet101 [20] and Inception-V3 [21] for 

feature extraction in leaf disease classification, optimal 

layer selection is crucial. For ResNet101, starting at the 

last layer in the final residual block is strategic. 

Considering all sublayers, ResNet101 has a total of 347 

layers. In Inception-V3, selecting a deeper layer close to 

the network's end is suitable for capturing abstract 

features. The precise layer number varies based on 

implementation. After extracting features from both 

networks, concatenation precedes passing through an 

attention layer. This layer selectively assigns weights to 

features, with attention mechanisms like channel-wise or 

spatial attention tailored to task requirements. 

Subsequently, the features enter one or more dense layers, 

the architecture of which is customized for the specific 

task and dataset. 

3.2.3 Proposed Architecture 

 

Fig 3: Architecture Proposed Model 

In the proposed model architecture as shown in figure 3, 

the model starts with a (224x224x3) input layer. Using 

ResNet101 and Inception-V3, it extracts (7x7x2048) and 

(10x10x2048) feature maps. These maps, from the last 

selected layer before GlobalAveragePooling, are 

matched, concatenated, and enhanced through an attention 

layer. Combining this with the Residual Pooling block 

output, followed by an additional residual block, features 

reach the GlobalAveragePooling layer. The output enters 

a Dense layer with 256 ReLU-activated neurons, and the 

final Dense layer uses Softmax for eight-class 

classification. 

𝑅𝑒𝑠𝑁𝑒𝑡101𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑁𝑒𝑡101(𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑎𝑔𝑒) 

...(1) 

Where dimensions (224x224x3) are set for the 

Input_Image. 
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𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑋𝑐𝑒𝑝𝑡𝑖𝑜𝑛(𝐼𝑛𝑝𝑢𝑡𝐼𝑚𝑎𝑔𝑒) 

...(2) 

𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡_𝐶𝑜𝑛𝑣 = 𝐶𝑜𝑛𝑣2𝐷(𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(3) 

Where (10x10x2048) are the output dimensions. Thus 

combination of features is done by concatenation step,  

𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑟𝑒𝑠

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑅𝑒𝑠𝑁𝑒𝑡101𝑜𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡) 

...(4) 

The combined features obtained are then passed thorugh 

custom CNN layers as detailed further. 

3.2.4 Attention Layer:  

The SelectivePooling [22] operation is not merely a 

feature within neural network architectures; it is a pivotal 

and indispensable mechanism that significantly 

contributes to the model's learning and discriminative 

capacity. This operation, with its capability to compute 

either the average value or select the maximum value from 

localized regions within the input feature map, plays a 

crucial role in extracting meaningful information from the 

input data. 

The intricacies of the SelectivePooling process unfold as 

a window traverses the input feature map, dynamically 

calculating the average or identifying the maximum value 

within each local region. This window, systematically 

sliding across the entire feature map, captures information 

at various spatial positions. The elegance of 

SelectivePooling lies in its versatility, allowing it to 

seamlessly switch between average and maximum 

pooling strategies, thereby offering a comprehensive and 

adaptive approach to information aggregation. 

SelectivePooling stands as a cornerstone in the 

advancement of neural network architectures. Its 

adaptability, derived from the fusion of average and 

maximum pooling, empowers models with a nuanced 

understanding of input data, enhancing their 

discriminative capacity and contributing significantly to 

their overall efficacy in diverse tasks, ranging from image 

classification to complex object detection scenarios. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 . 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

+ 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠  . 𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑜𝑜𝑙(𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

...(5) 

4. Results and Discussion 

Evaluation of the proposed model is conducted for 5-way 

severity classification in maize leaf disease detection. The 

results, as depicted in the table and figure, demonstrate the 

superiority of the proposed model compared to 

ResNet101 and Inception-V3, particularly with the 

incorporation of an attention layer. Table 2 presents the 

performance metrics utilized for model assessment, 

providing a comprehensive view of the effectiveness of 

the proposed approach in severity classification and the 5-

way classification task.

 

Table 2: Performance Parameters 

Precision TP/( TP + FP) 

Recall/Sensitivity TP/(TP + FN) 

F1 Score 2*( Recall * Precision) / (Recall + Precision) 

Specificity TN/(TN+FP) 

Accuracy TP + TN / (TP+TN+FP+FN) 

 

A 5-Fold analysis is observed for models stability of 

training. The performance of the model is seen stable after 

4 the fold of training stage. Figure 4 shows performance 

of 5-Fold Analysis. 
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Fig 4: 5-Fold Analysis for Model’s Stability 

A comparative analysis of standard CNN models by 

retraining them on maize severity dataset is evaluated. 

The results are shown in Figure 5. The model’s 

performance with use of proposed model is shown in 

figure. The results showcase the performance of various 

models in a classification task, with metrics such as 

accuracy, specificity, sensitivity, and F1 score providing 

a comprehensive evaluation. The VGG16 and VGG19 

models demonstrate strong accuracy at 0.82 and 0.84, 

respectively, with balanced specificity and sensitivity. 

ResNet50 and ResNet101 exhibit improved accuracy at 

0.845 and 0.89, showcasing robust performance. 

Inception-V3 and MobileNet-V2 surpass previous models 

with higher accuracy, reaching 0.91 and 0.92, 

respectively. The proposed model outshines all others, 

achieving remarkable accuracy at 0.956, accompanied by 

high specificity, sensitivity, and F1 score, indicating its 

efficacy and potential for practical applications in the 

classification task. 

 

Fig 5: Performance Comparative Analysis of Severity Prediction 

In disease severity classification, a confusion matrix 

serves as a critical evaluation tool, offering a detailed 

breakdown of a model's performance. The confusion 

matrix analysis is shown in figure 6. It goes beyond 

accuracy metrics, providing insights into the model's 

ability to correctly classify different severity levels. By 

quantifying true positives, true negatives, false positives, 

and false negatives, the confusion matrix identifies 

specific areas of strength and weakness in the model. 

Metrics such as sensitivity, specificity, precision, and 

negative predictive value help assess the model's accuracy 

in identifying severe and non-severe cases. Moreover, the 

matrix aids in optimizing decision thresholds and 

communicating model performance to healthcare 

professionals. 
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Fig 6: Confusion Matrix Analysis for Proposed Method. 

Discussion: 

In the collaborative utilization of ResNet101 and 

Inception-V3 for feature extraction, the critical task of 

determining the optimal layer from each network emerges 

as pivotal for effectively extracting features that 

complement and distinguish. The selection of layers is 

contingent on the specific characteristics of the task and 

dataset. In the context of leaf disease classification, an 

efficient starting point for ResNet101 may involve 

extracting features from the last layer within the final 

residual block, just preceding the global average pooling 

layer. Taking into account all sublayers within the 

Residual Block, ResNet101 comprises a total of 347 

layers. Conversely, for Inception-V3, a strategic starting 

point may involve extracting features from a specific 

layer. The selection of an appropriate layer in Inception-

V3 entails considering deeper layers closer to the end of 

the network, renowned for capturing more abstract and 

high-level features. Subsequent to the extraction of 

features from ResNet101 and Inception-V3, these features 

can be concatenated and channeled through an attention 

layer. The attention layer assumes a central role in 

selectively assigning importance to various features based 

on their relevance to the classification task. This 

systematic approach results in the proposed model 

outperforming other standard models, boasting an 

accuracy of 0.956, specificity of 0.985, sensitivity of 

0.956, and an F1-Score of 0.956. The noteworthy 

specificity value of 0.985 underscores the model's 

adeptness in disease severity classification, emphasizing 

its ability to discern between different severity levels, a 

crucial capability in scenarios where precise identification 

of non-severe cases holds significant importance. 

 

5. Conclusion 

The research delves into the pressing issue of maize crop 

disease severity estimation through the application of 

advanced machine learning methodologies. The 

significance of this endeavor lies in its implications for 

global food security and agricultural economies. By 

leveraging Convolutional Neural Networks (CNNs), 

specifically employing ResNet101 and Inception-V3 

architectures, the study aims to automate the classification 

of maize leaf diseases, offering a robust alternative to 

labor-intensive manual feature extraction. The study 

highlights critical stages in CNN model development, 

hyperparameter tuning, and model training and 

evaluation. Diverse and accurately annotated datasets 

form the cornerstone of model precision and reliability. 

The incorporation of pre-trained ResNet101 and 

Inception-V3 models, trained on extensive image datasets 

like ImageNet, enhances feature extraction capabilities for 

more nuanced disease diagnosis. Significantly, the study 

addresses disease severity estimation, extending beyond 

mere classification. The identification and analysis of 

essential features such as lesion size, color changes, 

texture variations, and spatial distribution play a pivotal 

role in both disease detection and accurate severity level 

estimation. The proposed model integrates an attention 

layer and ResidualBlocks to refine feature representation, 

resulting in a more nuanced and context-aware severity 

assessment. Empirical results underscore the 

effectiveness of the proposed model, outperforming 

established architectures like ResNet101 and 

demonstrating superiority in accuracy, specificity, 

sensitivity, and F1 score. The achieved specificity of 

0.985 is particularly notable, signifying the model's 

exceptional accuracy in discerning non-severe cases.  
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The research contributes to advancing automated disease 

detection in maize crops and pioneering a nuanced 

approach to severity estimation. By combining state-of-

the-art CNN architectures with meticulous feature 

analysis, the study presents a comprehensive solution 

poised to impact agricultural practices, enhance crop 

productivity, and contribute to global food security 

efforts. Navigating the intersection of technology and 

agriculture, the research demonstrates the transformative 

potential of machine learning in addressing real-world 

challenges and fostering sustainable agricultural 

practices. 
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