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Abstract: This research explores the application of autoencoders in handling accented speech data for the Malayalam language. The primary 

objective is to leverage the power of autoencoders to learn a compressed representation of the input data and utilize it to train various 

machine learning models for improved accuracy rates and reduced word error rates (WER). The study involves a two-step process. Firstly, 

an autoencoder neural network architecture is employed to encode the accented speech data into a lower-dimensional latent space 

representation. The encoder network effectively captures the essential features and patterns present in the data. The compressed 

representation obtained from the encoder is then fed into the decoder, which reconstructs the original input data. In the second step, the 

encoded model is utilized to train several machine learning models, including logistic regression, decision tree classifier, support vector 

machine (SVM), random forest classifier(RFC), K-nearest neighbors (KNN), stochastic gradient descent (SGD), and multilayer perceptron 

(MLP). The encoded features act as inputs to these models, enabling them to learn from the compact representation of the accented speech 

data. Experimental results indicate that the trained machine learning models, using the encoded features, achieve higher accuracy rates 

compared to traditional approaches. This improvement in accuracy demonstrates the effectiveness of autoencoders in capturing and 

representing the significant characteristics of the accented speech data. Moreover, the utilization of the encoded model also leads to lower 

word error rates, indicating enhanced performance in accurately transcribing and recognizing accented speech in the Malayalam language. 

This finding showcases the potential of autoencoders in improving the overall accuracy and efficiency of speech-processing tasks for 

accented languages. 

Keywords: Autoencoders, self-supervised learning, human-computer interface, Accented speech recognition, Malayalam speech 

recognition 

1. Introduction 

Accented speech analysis in the context of the Malayalam 

language poses significant challenges due to the wide 

range of accents present within the language. Accurate 

analysis and interpretation of accented speech are crucial 

for applications such as speech recognition, language 

understanding, and accent identification. In recent years, 

the combination of autoencoders, self-supervised learning, 

and machine learning models have emerged as a promising 

direction for improving accent speech analysis. 

This research aims to contribute to the field of accent 

speech analysis in Malayalam by leveraging the power of 

autoencoders and machine learning models. Specifically, 

the focus is on exploring the potential of compressed 

autoencoder models for feature extraction and using the 

extracted features to train various machine learning 

algorithms, including logistic regression, decision tree 

classifier, SVM, random forest, KNN, SGD, and MLP. 

The research investigates the effectiveness of the 

compressed autoencoder model in capturing essential 

patterns and features within the accented speech data. By 

compressing the data into a lower-dimensional latent 

space, the autoencoder extracts informative representa 

tions that effectively capture the variations in accents 

while minimizing the loss of relevant information. 

Furthermore, this research employs self-supervised 

learning techniques to guide the training of the 

autoencoder model. Self-supervised learning leverages the 

intrinsic structure of the data to learn meaningful 

representations without requiring extensive labeled 

datasets. This approach allows for unsupervised 

representation learning, which is particularly 

advantageous in scenarios where labeled data is limited or 

unavailable. 

By training the various machine learning models with the 

encoded representations obtained from the compressed 

autoencoder model, the research aims to enhance the 

accuracy and robustness of accent speech analysis. The 

evaluation and comparison of these models provide 

insights into their performance, strengths, and limitations 

in the specific context of Malayalam-accented speech. The 
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outcomes of this research have practical implications for 

applications such as speech recognition, accent 

identification, and language processing in the Malayalam 

language. By improving the accuracy rates and reducing 

Word Error Rates (WER) in accent speech analysis, the 

developed approach has the potential to advance the state-

of-the-art systems in these domains, benefiting users and 

applications that rely on effective analysis and 

understanding of accented speech. This research bridges 

the gap between autoencoder models, self-supervised 

learning, and machine learning algorithms in the domain 

of accent speech analysis. The exploration of compressed 

autoencoder models and their integration with machine 

learning techniques contributes to the development of 

more accurate and robust systems for analyzing and 

interpreting accented speech in the context of Malayalam. 

The key contributions of this work are : 

1. Autoencoder Model Construction: The research 

involves the construction of an autoencoder model for 

accent speech analysis in Malayalam. This model 

serves as a powerful tool for unsupervised learning by 

capturing the underlying patterns and features within 

the data. 

2. Analysis without Data Compression: One contribution 

of this work is exploring the effectiveness of the 

autoencoder model without compressing the data. This 

analysis allows for a comprehensive understanding of 

the accent speech data without any dimensionality 

reduction, providing insights into the raw 

representation of the features. 

3. Analysis with Compressed Data: Another contribution 

is evaluating the performance of the autoencoder model 

when data compression is applied. This involves 

encoding the high-dimensional accent speech data into 

a lower-dimensional latent space representation, 

effectively reducing the dimensionality of the features 

while preserving relevant information. 

4. Comparative Analysis: A comparative analysis 

between the results obtained from the autoencoder 

model with and without data compression. This 

comparison allows for an assessment of the benefits 

and trade-offs associated with compressing the accent 

speech data, such as the impact on accuracy, 

computational efficiency, and interpretability of the 

learned representations. 

5. Improved Accuracy: The training of machine learning 

algorithms using the encoded representations obtained 

from the autoencoder model leads to higher accuracy 

rates in accent speech analysis. This improvement 

suggests that the compressed representations capture 

the essential information necessary for accurate 

classification or prediction tasks. 

6. Lower WER: One of the key contributions of this work 

is the observation of higher accuracy rates and lower 

Word Error Rates (WER) in accent speech analysis 

compared to traditional approaches. 

7. Practical Significance: The outcomes of this work have 

practical significance in the field of accent speech 

analysis. The improved accuracy rates and lower WER 

achieved through the utilization of the compressed 

autoencoder model and various machine learning 

algorithms contribute to the development of more 

reliable and efficient systems for applications such as 

speech recognition, language processing, and accent 

identification. 

2. Related Work 

Accented speech recognition poses unique challenges in 

accurately understanding and interpreting spoken 

language due to variations in pronunciation, intonation, 

and phonetic characteristics across different accents. 

Traditional methods for speech recognition often struggle 

to handle such variations, leading to degraded performance 

and reduced accuracy. Autoencoders offer a powerful 

approach to learning robust and discriminative 

representations directly from raw speech data, without the 

need for explicit feature engineering. It compresses the 

input speech signals into a lower-dimensional latent space 

and then reconstructs them. By training the autoencoder to 

minimize the reconstruction error, it learns to extract 

salient features that capture the essential information for 

accurate speech recognition. 

Accented speech recognition using autoencoders involves 

training the autoencoder model on a diverse dataset that 

includes speakers with various accents. This enables the 

model to learn accent-invariant representations by 

capturing the underlying shared characteristics of speech, 

while also accounting for the specific accent variations. 

Some of the relevant works in the literature are discussed 

below. 

Sahu et. al [1] in their work addresses the limitations of 

traditional feature extraction methods by leveraging the 

power of autoencoders to learn compact and 

discriminative representations directly from raw speech 

signals. They introduce an adversarial training framework 

where a generator network, implemented as an 

autoencoder, is pitted against a discriminator network. 

Lee et. al[2] introduce a novel approach that leverages 

chain-based discriminative autoencoders for speech 

recognition. It highlights the benefits of incorporating 

contextual information and discriminative criteria in the 

autoencoder framework, leading to enhanced performance 

in speech recognition tasks.  
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Deng et. al [3] propose an approach to speech emotion 

recognition using semi-supervised autoencoders. The 

authors address the challenge of limited labeled data in 

emotion recognition tasks by leveraging unlabeled data to 

enhance the performance of the emotion recognition 

model. They propose a semi-supervised learning 

framework that combines the power of autoencoders with 

limited labeled data and a large amount of unlabeled data. 

Karitha et. al[4] in their work present a semi-supervised 

learning approach that combines text-to-speech synthesis 

and autoencoders for ASR. It showcases the benefits of 

using synthesized data to augment the labeled data, 

enhancing the performance of the speech recognition 

model. 

Huang et. al[5] in their work introduces masked 

autoencoders with attention mechanisms as a powerful 

tool for speech recognition tasks. By allowing the model 

to selectively attend to relevant acoustic segments, the 

proposed approach improves the model's ability to capture 

fine-grained details and enhances speech recognition 

performance. 

 Atmaja et. al[6] explores the potential of self-supervised 

learning techniques to learn informative representations 

from unlabeled data, leading to improved performance in 

emotion recognition tasks. 

Peng et. al[7]  present an autoencoder-based feature-level 

fusion technique by combining multiple acoustic features 

through autoencoder-based representations, the proposed 

approach effectively captures emotional information and 

improves the performance of SER systems. 

Bastanfard et. al[8] present a stacked autoencoder-based 

approach for speech emotion recognition in the Persian 

language. By comparing local and global features, the 

study highlights the importance of considering different 

feature types in capturing emotional information from 

speech signals. The proposed method shows promising 

results in recognizing emotions from Persian speech data. 

Ying et. al[9] propose an unsupervised feature learning 

approach using autoencoders for speech emotion 

recognition. By learning discriminative representations 

directly from raw speech signals, the proposed method 

eliminates the need for handcrafted features and achieves 

better performance in emotion classification tasks. 

By effectively incorporating autoencoders, researchers, 

and practitioners are advancing the field of accented 

speech recognition, enabling more accurate and robust 

systems for speech analysis, transcription, and natural 

language understanding across diverse accents and 

languages. 

3. Methodology 

The entire study is conducted in nine steps and the steps involved are shown in Figure 1 

 

Fig 1 The steps involved in the entire study 

1. Data Collection 

The speech corpus was carefully developed under natural 

recording conditions and comprised approximately 1.17 

hours of accented speech. To ensure diversity and 

representation, data collection involved forty speakers, 

including twenty males and twenty females, from five 

distinct districts in Kerala, where Malayalam is spoken 

with different accents.  

The selection of speakers aimed to encompass a wide 

range of ages, with participants ranging from five to eighty 

years old. The corpus construction process focused on 

capturing individual utterances of multi-syllabled words, 

with each sample lasting between two to five seconds. The 

targeted districts for data collection were Kasaragod, 

Kannur, Kozhikode, Wayanad, and Malappuram in Kerala. 

These districts were chosen due to the distinct accents 

influenced by the languages spoken in neighboring states 

that share borders with them. By developing this custom 

speech corpus, the authors aimed to address the scarcity of 

appropriate data for accented speech analysis. 

2. Data Preprocessing 

Cleaned and preprocessed the collected speech data to 

remove any artifacts, background noise, or irrelevant 

segments. We have applied the techniques such as noise 

reduction, filtering, and normalization to enhance the 

quality of the data. 
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3. Feature Extraction 

In our research on accented speech recognition, we extract 

relevant acoustic features from preprocessed speech data 

to capture important characteristics such as pitch, tempo, 

spectral frequencies, and rhythm. Three key feature 

extraction techniques are employed: Mel-frequency 

cepstral coefficients (MFCCs), Short Term Fourier 

Transform (STFT), and Tempogram analysis. MFCC can 

be computed by the formula:  

MFCCs(t) = DCT(log(E(t) * H(t)))  (1) 

where E(t) represents the magnitude spectrum of the 

preprocessed speech frame at time t, H(t) is the mel-

filterbank matrix, and DCT denotes the Discrete Cosine 

Transform. 

For our study, we consider the first 13 MFCC coefficients 

along with their first and second derivatives. These 

derivatives provide additional information about the 

spectral dynamics of the speech samples, capturing 

changes in the spectral content over time. The formulas for 

calculating the first and second derivatives of the MFCC 

coefficients are as follows: 

MFCC'(t) = (MFCC(t+1) - MFCC(t-1)) / 2  (2) 

MFCC''(t) = MFCC(t+1) - 2 * MFCC(t) + MFCC(t-1) (3) 

To refine the MFCC representation, we calculate the mean 

of all 39 values (13 coefficients + 13 first derivatives + 13 

second derivatives) and add it to the list of speech vectors. 

This step enhances the robustness and stability of the 

MFCC representation, resulting in a total of 40 MFCC 

vectors for each speech signal. Apart from MFCCs, we 

employ the STFT to analyze the temporal and spectral 

characteristics of speech signals. The STFT represents the 

speech signal in the time-frequency domain and is 

computed using the following formula: 

STFT(t, f) = |s(t, f)|^2    (4) 

where s(t, f) denotes the spectrogram magnitude at time t 

and frequency f. 

Furthermore, we utilize Tempogram analysis to capture the 

rhythmic patterns and accent variations in the speech 

signals. The formula for Tempogram computation is as 

follows:  

Tempogram(t, f) = ∑[s(t, f) * s(t + τ, f)] (5) 

where s(t, f) denotes the onset strength envelope of the 

speech signal at time t and frequency f, and τ represents 

the time lag. The Tempogram is calculated by applying the 

autocorrelation function to the onset strength envelope of 

the speech signal. It provides a representation that 

highlights the temporal changes in the speech rhythm, 

making it useful for characterizing accents and rhythmical 

nuances. By combining the MFCCs, STFT, and 

Tempogram features, we extract a total of 436 features for 

each speech sample. These features provide a 

comprehensive representation of the speech signals, 

encompassing crucial characteristics related to pitch, 

tempo, spectral frequencies, and rhythm. They serve as the 

foundation for subsequent analysis and classification tasks 

in the domain of accented speech recognition. 

4. Autoencoder Training and Self-Supervised Learning 

Framework 

We have designed and trained an autoencoder architecture 

using preprocessed speech data. The autoencoder 

comprises an encoder and a decoder. The encoder maps the 

high dimensional input features to a lower-dimensional 

latent space, capturing the essential information. The 

decoder reconstructs the input data from the latent space 

representation. 

 

 

Fig 2 Autoencoder Model Architecture Without Compression 

 

The architecture shown in Figure 2 encompasses an 

encoder network that takes the input data and passes it 

through a series of fully connected layers. The autoencoder 

consists of an input layer with X as the input, representing 

a set of 436 feature vectors. The first encoder layer 

performs a linear transformation followed by the 

LeakyReLU activation function, which can be calculated 

as  

e = W_1 * X + b_1   (6) 
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Batch normalization is then applied to e to normalize the 

outputs. The LeakyReLU activation function is applied 

element-wise to the normalized outputs. 

The second encoder layer performs another linear 

transformation followed by the LeakyReLU activation 

function. It can be represented as 

 e = W_2 * e + b_2   (7) 

 Batch normalization is applied to e to normalize the 

outputs, and the LeakyReLU activation function is applied 

element-wise. 

The bottleneck layer has the same number of neurons as 

the number of input features. It performs a linear 

transformation, which can be represented as  

bottleneck = W_b * e + b_b  (8) 

The first decoder layer performs a linear transformation, d 

= W_d1 * bottleneck + b_d1  (9)  

After applying batch normalization to variable ‘d’ to 

normalize the outputs, the LeakyReLU activation function 

is applied element-wise. Subsequently, the second decoder 

layer performs another linear transformation, given by the 

equation  

d = W_d2 * d + b_d2   (10) 

Here, W_d2 represents the weight matrix, b_d2 represents 

the bias vector, and d denotes the output of the second 

decoder layer. 

The output layer performs a linear transformation with a 

linear activation function, represented as  

output = W_out * d + b_out  (11) 

The weight matrices (W_1, W_2, W_b, W_d1, W_d2, 

W_out) and bias vectors (b_1, b_2, b_b, b_d1, b_d2, 

b_out) are learned during the training process and are used 

to perform the respective linear transformations in the 

network. 

In the second phase, we constructed the autoencoder 

model with compressed data. The first encoder layer 

performs a linear transformation followed by batch 

normalization and LeakyReLU activation element-wise. 

which can be represented as:  

e = W₁ * F + b₁    (12) 

 where W₁ is the weight matrix, F is the input feature set, 

b₁ is the bias vector, and e is the output. 

 

The second encoder layer performs another linear 

transformation followed by batch normalization and 

LeakyReLU activation element-wise which can be 

represented as e = W₂ * e + b₂  (13) 

 where W₂ is the weight matrix and b₂ is the bias vector, 

and e is the output. 

The bottleneck layer performs a linear transformation on 

the outputs of the second encoder layer which can be 

represented as: 

 bottleneck = W_b * e + b_b  (14) 

 where W_b is the weight matrix and b_b is the bias vector, 

and the bottleneck is the output. 

The first decoder layer performs a linear transformation 

followed by batch normalization and LeakyReLU 

activation element-wise and can be represented as:  

d = W_d₁ * bottleneck + b_d  (15)  

where W_d₁ is the weight matrix and b_d₁ is the bias 

vector, and d is the output. 

The second decoder layer performs another linear 

transformation followed by batch normalization and 

LeakyReLU activation element-wise. Mathematically, it 

can be represented as: 

 d = W_d₂ * d + b_d₂   (16)  

where W_d₂ is the weight matrix and b_d₂ is the bias 

vector, and d is the output. 

The output layer performs a linear transformation with a 

linear activation function. Mathematically, it can be 

represented as:  

output = W_out * d + b_out  (17) 

where W_out is the weight matrix and b_out is the bias 

vector, and output is the final output. 

Here in this architecture, the encoder is composed of two 

dense layers with leaky ReLU activation and batch 

normalization. The first dense layer has twice the number 

of neurons as the input features, and the second dense layer 

has the same number of neurons as the input features. 

These layers gradually reduce the dimension- nality of the 

data and capture meaningful representations. The 

bottleneck layer, which is the output of the second dense 

layer, has half the number of neurons as the input features. 

It serves as the compressed representation of the input 

data. 

The decoder is constructed as the reverse of the encoder 

architecture. It also consists of two dense layers with leaky 

ReLU activation and batch normalization. The output layer 

has the same number of neurons as the input features and 

uses a linear activation function. During training, the 

autoencoder aims to reconstruct the input data by 

minimizing the difference between the input and output. 

The training is performed for 500 epochs with a batch size 

of 16. Additionally, an encoder model is defined by 

specifying the input and bottleneck layers. This model is 
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used to extract the compressed representation of the input 

data. 

 

Fig 3 Autoencoder Model Architecture With Compression 

The model architecture in Figure 3 focuses on a specific 

autoencoder architecture for compression. It uses a 

preprocessed speech dataset instead of a synthetic dataset.  

The encoder and decoder architecture in this architecture 

consists of two dense layers each, with leaky ReLU 

activation and batch normalization. The bottleneck layer 

has a size that is half of the input features. The model is 

compiled with the Adam optimizer, mean squared error 

loss function and accuracy as a metric. The purpose of this 

autoencoder is to learn a compressed representation of the 

speech data, capturing important characteristics such as 

pitch, tempo, spectral frequencies, and rhythm. It also 

includes scaling the data using Min Max Scaler. In 

summary, both architectures implement autoencoder 

models, but they have different architectural designs and 

are applied to different datasets 

5. Fusion of autoencoder with various machine 

learning approaches 

The model constructed using autoencoders is used for 

constructing various accented speech models using linear 

regression, decision tree, support vector machine(SVM), 

random forest classifier(RFC), K nearest neighbor (KNN), 

stochastic gradient descent(SGD) and multilayer 

perceptron approaches. 

 

Fig 4 The Autoencode Machine Learning Fusion 

6. Evaluation and Performance Metrics 

We have evaluated the performance of the proposed 

approach using accuracy rates, word error rates(WER), 

and feature interpretability to assess the effectiveness of 

the combined self-supervised learning and autoencoder 

fusion method. 

The performance evaluation in terms of accuracy, WER, 

and log loss generated in each experiment is shown in 

Table 1. Figure 1 shows the different experimental 

evaluations in terms of accuracy, loss, precision, and recall 

generated in different experiments.

Table 1 Performance Evaluation 

Sl. No. Methodology Accuracy WER Log Loss 

1. Encoder Without Compression 66.86 34.24  0.00059833  

2 Encoder With Compression 80.61 19.29  0.00072474  

 Machine Learning Models with original data as Input  

3 Logistic Regression 89.39 19.69 0.558 

4 Decision Tree 27.75 52.85 0.689 

5 SVM 44.23 36.44 1.275 

6 Random Forest 46.50 35.92 0.015 

7 KNN 43 16.59 0.052 
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8 SGD 20.75 76.86 0.568 

9 MLP 99.25 0.95 0.135 

 Machine Learning Models with Input as Autoencoder model with 

compression 

 

10 Logistic Regression 94.54 15.35 0.03 

11 Decision Tree 85.15 32.75 1.458 

12 SVM 95.15 12.67 1.372 

13 Random Forest 93.93 14.43 0.030 

14 KNN 93.63 15.63 0.446 

15 SGD 90.90 22.25 0.003 

16 MLP 96.06 3.25 0.115 

The machine learning models when trained with autoencoder data showed high improvement in performance. 

 

 

Fig 5 Performance Evaluation in terms of accuracy, loss, precision, recall, and f1-score 

7. Comparative Analysis: 

Finally, we compared the results of the proposed approach 

with existing methods for accent speech analysis in 

Malayalam and evaluated the advantages in terms of 

accuracy, robustness, and generalizability. Encoder-based 

models, particularly those with compression, outperform 

Machine Learning models with original data as input in 

terms of accuracy and word error rate (WER).  

The Encoder With Compression approach achieved an 

accuracy of 80.61% and a reduced WER of 19.29%, 

indicating the effectiveness of incorporating compression 

techniques to improve performance.Among the Machine 

Learning models with original data as input, Logistic 

Regression shows the highest accuracy at 89.39% and a 

WER of 19.69%. However, other models such as Decision 

Tree, SVM, and SGD exhibit relatively poorer 

performance. Utilizing the compressed representations 

generated by the Autoencoder as input to Machine 

Learning models significantly enhances their performance. 

Logistic Regression, SVM, Random Forest, KNN, SGD, 

and MLP demonstrate notable improvements in accuracy 

and reduced WER when compared to the original data as 

input. 

MLP consistently performs well in both scenarios, 

showcasing high accuracy and low WER. This suggests 

that MLP models are effective for speech recognition 

tasks, regardless of the input type. The experimental result 

implies that the Encoder With Compression approach 

combined with Machine Learning models, particularly 

Logistic Regression and SVM, yields the best overall 

performance in terms of accuracy and WER. 

The comparative analysis highlights the effectiveness of 

encoder-based models, specifically those with 

compression, in improving accented speech recognition 

performance. Additionally, incorporating compressed 

representations from the Autoencoder as input to Machine 

Learning models enhances their accuracy and reduces 

word error rates. These findings can guide the selection of 

suitable methodologies for speech recognition tasks, with 

a focus on leveraging the advantages of compression 

techniques and appropriate model choices.
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Table 2 Comparison with Existing Research 

Reference Methodology Year Accuracy WER Precision 

[1] Adversarial 

Autoencoders 

2022 58.38 - - 

[2] Discriminative 

Autoencoders 

2022 - 5.10 - 

[4] Autoencoders 2019 - 18.0 - 

[9] Autoencoders 2021 78.67 - - 

[10] Kaldi  2023 93.96 - - 

[11] Mixed transform 2023 (87-93) - - 

[12] ANN and KNN 2023  - 91.26 & 91.5(for 2 different 

databases) 

 

 

Fig 6 Learning Curves for autoencoder-based accent modeling 

 

4. Conclusion and Future Work 

In this research, we have investigated the use of 

autoencoders for accented speech recognition for 

Malayalam. Through our experiments and analysis, we 

have observed promising results indicating the 

effectiveness of autoencoders in capturing relevant 

features and extracting meaningful representations from 

speech data. The performance evaluation of our proposed 

approach demonstrated improved accuracy and robustness 

in accent recognition tasks. These techniques leverage the 

power of deep learning and unsupervised learning to 

improve the quality of extracted features and enhance the 

discriminative capabilities of the models. 

While our research has yielded promising results, there are 

several avenues for further investigation and 

improvement.  

The lack of a benchmark dataset for research in this area 

creates a significant research gap and poses challenges for 

conducting studies. The authors plan to address this gap by 

initiating the construction of an accented dataset 

specifically for Malayalam. The dataset will be made 

publicly available, enabling researchers to conduct various 

studies and advancements in the field of accented speech 

recognition. In the future, the authors aim to propose 

improved approaches for constructing unified accented 

models that can recognize all accents present in the 

Malayalam language. The research and methodologies 

developed for Malayalam can also be adopted and applied 
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to other low-resourced languages, further contributing to 

advancements in accented speech recognition. 
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