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Abstract: A technique that is based on Deep Learning (DL)    is presented here in order to categorize human activities based on the video 

data. In the area of computer vision, the use of image and video categorization has recently shown considerable progress thanks to the use 

of convolutional neural networks (CNN). CNN conducts research and analysis on new developments in its network architecture. A method 

for the classification of human activities is proposed, and its foundations are the structural characteristics of CNNs that have been 

investigated, as well as the levels of accuracy attained by various architectural configurations during the Image Large Scale Visual 

Recognition Challenge (ILSVRC). In addition to the spatial correlation that is seen in 2D pictures, the correlation that is seen in the temporal 

domain is also owned by video data.  Incept LSTM is the name of the suggested approach, and it is built on both Inception and LSTM. The 

approach that has been suggested is capable of accurately recognizing human actions. In addition, the significance of hyper-parameter 

adjustment has been investigated and applied. The data from the UCF-Crime dataset was used to train and verify the approach that is being 

suggested. The findings of the experiments provide evidence that the suggested technique is capable of accurately identifying human 

activities in movies. 
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1. Introduction 

The performance of DL models is very reliant on a 

number of different hyper-parameters [1]. When 

compared to more conventional machine learning 

techniques, deep neural networks have a greater 

dependence on fine-tuning its hyper-parameters. During 

the process of learning, the weights of neurons are both 

initialised and then modified. On the other hand, some 

hyper-parameters are not capable of being estimated 

using any data learning technique. Before beginning the 

training, it is necessary to establish these conditions. The 

hyper-parameters are the parameters that are used to 

construct the DL model with or to indicate the technique 

that is used to minimise the loss function. Hyper-

parameters are also known as hyper-parameter settings. 

Optimizers and activation functions play an important 

part in reducing the amount of loss that occurs [3, 4]. In 

order to construct a model that is optimised, it is 

necessary to investigate a wide variety of potential ranges 

of solutions. Hyper-parameter tuning refers to the process 

of discovering the optimal combination of hyper-

parameters that will enable a model to provide the highest 

possible level of performance [5, 6].DL models have 

higher dependency on hyper-parameter tuning as 

compared to traditional ML models. Because DL models 

have more hyper-parameters to tune and also the 

performance depends on the configuration of hyper-

parameters. Literature reports that the DL model accuracy 

fluctuates from 30-90% due to different selection of 

hyper-parameters [7, 8, 9] 

1.1. Motivation 

There are two types of parameters in DL models. First, 

model parameters which are learned during the training 

process and second, hyperparameters which are 

adjustable in nature. In this research paper an empirical 

approach is used to optimize Incept LSTM by adjusting 

the values of these hyperparameters [12, 13]. The error 

(after minimizing loss) is computed and used for bias-

variance adjustment. 

2. Proposed Motion Flow Based Incept LSTM 

Architecture 

Deep convolutional model outperforms the traditional 

approach of feature extraction. However, it has certain 

limitation [2] like 

1) deep models are generally designed by trial-and-

error process, which requires large amount of 

labelled training data [14, 17]. 

2) Also, large number of neuron connections will result 

into large computational expense [22, 23]. 
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In this part of the tutorial, Incept LSTM will be enhanced 

and tuned so that it can assess aberrant and normal 

behaviour in real-world scenarios. The motion flow based 

Incept LSTM that has been suggested retrieves the spatial 

information that is included within the RGB frames and 

also gathers the motion information from the input data 

that has been provided. The appearance characteristics 

[34, 33] are stored in RGB frames and must be retrieved 

by hand as part of the pre-processing operation. The Lucas 

Kanade optical flow method is used in order to determine 

the motion flow [18, 19]. Through combined learning of a 

person's motion and appearance attributes, the motion 

flow based Incept LSTM that was suggested is able to 

distinguish between normal and aberrant patterns of 

behaviour shown by a person. Following the extraction of 

these characteristics from the Inception v3 model, a data 

fusion procedure is carried out. Transfer learning allows 

for the undertaking of such a combination of parameter 

fusion and combination. 

Transfer learning [24, 25] refers to a method in which 

information gained from completing one job may be 

transferred to completing another.  Image networks that 

have been pre-trained may be used to successfully do this 

job. It may be done in two distinct ways depending on 

your preference. The first method is called the fine-tuning 

strategy, and it involves using a pre-trained network while 

simultaneously updating all of the model's parameters in 

order to complete a new job. Second, an update is made to 

the topmost layer, which serves as the basis for future 

forecasts. The process of obtaining features using transfer 

learning is called feature extraction. 

 CNN that has already been trained is used as the feature 

extractor, and the final layer is modified according to the 

classification problem at hand. Following the collection of 

all of the features, the following step is to provide the 

LSTM network with those features. It takes sequential 

data and extracts the temporal information from that data. 

2.1. Feature Extraction using Pre-trained Model 

DL models plays a significant role in extracting the 

features from image/video data. CNN has the capability 

of learning deep features from the static images. It has 

ability to learn spatial features present in the individual 

image frames. Training a DL model for the image 

representation requires a large volume of training data. 

Further, requires high computational resources to handle 

huge data. To resolve this limitation, the proposed model 

leveraged the concept of transfer learning. In the proposed 

model, the weights of pre-trained Inception v3 model is 

used to accomplish the task. Inception v3 is pre- trained 

model and has shown excellence in the area of image 

classification. Various other pre-trained model has shown 

remarkable results in this area. Due to its deep structure 

and top-5 accuracy score and reduced error rate, it has 

been chosen for the feature extraction process. 

2.2. Motion Information 

To understand the human activities from videos, it is re- 

quired to analyse given data in spatial and temporal 

domain. As Video is a collection of static images 

operating in specific temporal range. Further, information 

in video data is not only processed spatially but sequence 

of frames is also considered for the correct understanding 

of the event/scene. This extra bit of motion information 

makes the problem more challenging. 

There is a numerous increase in the number of parameters 

while considering video data. Therefore, it is a very 

challenging to design algorithm for detecting temporal 

structure in the given data with large number of 

parameters.  This task can be accomplished by converting 

2D networks to 3D networks to inherent the motion 

information. But this approach is not computationally 

effective. Videos are treated as the collection of separate 

frames and most methods learn features from the image 

frame only. And most of the classification is also 

performed frame wise. Maximum voting for one label is 

considered as the final classification for the video files 

which is not always true. For e.g., a person throwing a 

ball in one frame may be misinterpreted by catching a 

ball in another frame. To understand the importance of the 

representation, it is required to estimate the motion in 

between consecutive frames. 

 

Fig. 1.  Schematic Representation of Motion flow 

based Incept LSTM 

To understand and estimate the motion information, 

optical flow is used. It is widely used in classifying 

videos at very low computational cost. Optical flow 

shows the direction of motion of the object in 

corresponding image frame. It works on the phenomenon 

of estimating the pixel brightness across the screen over 

time. 

Optical flow estimation, in the proposed model, relies on 

following two assumptions [41]: 

1) Pixel intensity doesn’t ‘t change along the motion 

trajectory. 
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• 

2) Motion appears locally as a translation or 

neighbouring pixel have similar motions. 

Variational method is one of the earliest methods of 

estimating the optical flow. It works on estimating the 

brightness over consecutive frames. It was the most 

simple and effective approach given by Horn Schunck 

(Savian, Elahi and Tillo, 2020). Another approach is 

given by Lucas Kanade (LK) (Mliki, Bouhlel and 

Hammami,2020), which works on considering 

consecutive frames and dividing them into patches of 

fixed sizes. 

2.3. Feature Fusion  

Motion and appearance features are fused together using 

feature level fusion to form a single feature vector. 

Aggregated feature vector is then passed further for 

processing. Independent feature vectors are combined 

together using late fusion (Xu, Yan, Ricci and Sebe, 

2017) strategy to form a strong feature vector. The 

feature level fusion helps model to learn more effectively 

and jointly using two different or similar kind of 

modalities. Sequential Learning Using LSTM After 

extraction of these consecutive time-varying features, 

LSTM is used to accumulate the dynamic behaviour. 

3. Experimental Results and Analysis 

In proposed motion flow based Incept LSTM, 

Experiments are conducted on segmented videos taken 

from UCF-Crime dataset. Data collected is pre-

processed for further processing. Augmentation 

techniques are incorporated to enhance the size of the 

dataset. This method is really helpful when the size      of 

the data is limited. Further, in order to train the model, 

experiments are carried out to select best hyper-

parameters values. With the careful selection of hyper-

parameters, model is trained for the designated task. 

Finally, testing is performed to validate the model. 

3.1. Settings in Training and Testing Phase 

• Pre-processing 

Data is pre-processed before feeding into the model for 

training. Pre-processing is the essential step for training 

pro- cess. Not all the categories of UCF-crime dataset are 

selected rather, due to computational resource limitation 

this work focuses on only 4 categories. Optical frames are 

generated using Lucas Kanade algorithm for individual 

category. RGB and optical frames are used for the 

training purpose. These  extracted frames were then 

combined in a group of 16 frames each to create one 

image of dimension 2048 X 128. 

 

 

 

Fig. 2.  Optical Flow Computation Using Lucas 

Kanade Method 

 

Fig. 3.  Optical Flow Computation Using Lucas 

Kanade Method 

• Hardware and Software Requirements 

For training and validation purpose following resources 

are selected: 

Software Resources 

• TensorFlow 2.0: TensorFlow 2.0 

(https://www.tensorflow. org) is an open-source, free 

library for developing DL models more efficiently. It is a 

tight integration of TensorFlow and Keras. It provides a 

high level API tf.keras to build neural networks and other 

ML models. 

• Python 3.8: Python 

(https://www.python.org/downloads/re lease/python-

370/) offers a simple syntax for writing the pro- gram, 

which makes more comfortable reading and understand- 

ing of the code and also cost of maintenance is also 

reduced. It is an interactive language which has capability 

of interpreting and object-oriented programming 

concepts. High-level data structures are built-in 

functionality, supports dynamic linking which helps 

programmers to build rapid applications. 

Other than these two major software tools, some more 

packages are used to fulfil the need of the problem. 

OpenCV, sklearn, numpy and pandas are used to 

accomplish the task. 

Hardware Requirements 

For this exploratory study, training and validation use 

avail- able hardware resource with following 

specifications: 

• Intel Core i7 9th Generation. Nvidia 

• GTX 

• Windows 10 Operating System 16 GB Ram 

• Model Training 
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The training of the model is done under close observation 

at all times. Each layer that is a part of the architecture has 

some weight and bias, both of which are initialised with 

values that are chosen at random. I gave this model a few 

runs through the training process in order to determine the 

optimal values for its hyper-parameters. At each iteration 

of the process, the values of the parameters are varied and 

the results are monitored. A categorical accuracy metric is 

used in order to do the accuracy measurement. A loss 

function is determined by using the cross entropy. The 

difference between the actual distribution and the 

probability distribution of a particular random variable 

may be measured with its help. In this body of work, the 

cross entropy loss function is used to determine the degree 

of deviation that exists between the actual value and the 

value that was anticipated. To do this, throughout the 

training phase, the value of the weight or parameter will 

also be modified. The goal is to reduce the effectiveness 

of the loss function. In the training phase, the batch size is 

configured to be 4, and the epochs are configured to be 15. 

In addition, a modest learning rate of 1e-6 has been 

assigned in order to improve the capability of learning and 

fitting. 

3.2. Analysis 

The value of learning rate is set to 1e-6, Leaky ReLU 

was picked as the activation function, and RMSProp was 

chosen as the optimizer for the proposed motion flow-

based Incept LSTM. These hyperparameter parameters 

were determined by the optimizer. The influence that 

Hyper-Parameters have on Model Performance When it 

comes to the classification model's overall performance, 

hyper-parameters have a considerable impact. Hyper-

parameters that have a major influence on model 

performance include the kind of optimizer that was 

employed, the learning rate, and the type of activation 

function. Altering the settings of the model's hyper-

parameters allows for the experiment to be carried out 

on the UCF-Crime dataset, and the performance of the 

model can then be assessed. 

As a result of the optimizer: The purpose of the 

calculation is to determine the value of the weights that 

will result in the lowest possible cost function. 

Calculating and maintaining an up-to-date version of the 

network's parameters is the job of the optimizer. It has 

an impact on the training as well as the output of the 

model. As a result, it is strongly recommended to choose 

the optimizer for the training of deep neural networks 

with great care. A few examples of common optimizers 

include Adagrad, SGD, Adam, and RMSprop. Table 1 

presents the results of experiments conducted to verify 

the optimizers' performance. Figure 4 illustrates the 

effects and results of a number of different optimizers 

that were chosen for experimentation. image 5.4 

demonstrates that the model that was trained by the 

RMSProp optimizer has an excellent fitting effect. This 

can be noticed by looking at the image. In addition, the 

slope of the fall is not changing and is instead providing 

the best stable curve. Because of this, the RMSProp 

optimizer has been chosen as the one that will be used to 

train the Incept LSTM model. 

Table 1 Performance Comparison on Various Optimizers 

Optimizer Train Accuracy Train Loss Validation Accuracy Validation Loss 

Adagrad 48.8 1.202 21.66 1.449 

RMS 98.2 0.2 94.57 0.3891 

Prop Adam 91.8 0.4197 93.37 0.5630 

SGD 92.9 0.4793          46.8 0.4835 

 

Effect of Activation Function: An activation function in 

neural network is responsible for transforming the 

weighted sum of the inputs to output node. These 

functions are attached to each neuron in the network and 

it determines whether it should be activated or not. The 

decision is made on analysing the neuron ‘s current 

input, and sent further if it is helpful in predicting the 

results. Table.2 shows the comparison of using various 

activation functions. Figure4 and figure 5 shows the 

accuracy and loss comparison with different activation 

functions. 
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Fig. 4. Accuracy Comparison with Various Optimizers 

 

Fig. 5. Loss Comparison with Various Optimizers 

Table 2 Performance Comparison on Various Activation Function 

Activation Function Accuracy Loss 

ReLu 97.6 0.3581 

Leaky ReLu 98.2 0.2 

Softmax 89.3 0.4547 

 

 

Fig. 6. Accuracy Comparison on Various Activation Function 
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Fig. 7. Loss Comparison on Various Activation Function 

 

Effect of Learning Rate: Learning rate is defined as the 

step size for parameter update in training process. It is a 

hyper- parameter that controls the adjustment of the 

weights with respect to gradient loss. The value of 

learning rate lies in the range of 0.0 to 1.0. Smaller 

learning rates requires more training epochs for any 

update and it may happen that process may stick in 

between. Whereas, the larger value of learning rate 

converges at faster speed and produces suboptimal 

results with a smaller number of epochs. It is very 

challenging for DL models for the careful selection of 

the learning rates. 

Hyper-parameter tuning is performed to improve the 

training and testing loss. Instead of using fixed value for 

learning rate, it is suggested that with each iteration, the 

value of learning rate needs to be revised until an optimal 

solution is achieved. 

For optimizing the performance of the proposed method, 

learning rate is tuned and analysed in table 5.3 On 

empirically testing, the model was able to learn the 

problem well with learning rates 1e-4 and 1e-6. Selection 

of too high (1e-2) and too low (1e-8) value of learning 

rate gives comparatively low model performance on train 

and test sets. On analysing, it is observed that 1e-6 gives 

the best possible outcome on train and test sets. Training 

and validation accuracy is achieved 98.2 and 94.57 

respectively, also train and test loss incurred is minimum 

as compared to other empirically tested values. Figure 

5.7 and 5.8 shows the accuracy and loss comparison on 

empirically set values of learning rates. 

Table 3 Performance Comparison on Various Learning Rate 

Learning Rate Train Accuracy Train Loss Validation Accuracy Validation Loss 

1e-2 85.2 0.5471 32.6 0.975 

1e-4 92.15 0.4078 58.21 0.586 

1e-6 98.2 0.2 94.57 0.389 

1e-8 85.45 0.328 86.18 0.418 

 

4. Comparison with State-of-the-Art Methods 

In this section, the performance of the proposed model 

motion flow based Incept LSTM is compared with state 

of-the-art-methods mainly on UCF-Crime dataset. In 

recent times, DL models are performing very well, 

however, with its deep structure, the storage and 

computational requirement is also increasing. 
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Fig. 8. Accuracy Comparison on Various Learning Rates 

 

Fig. 9. Loss Comparison on Various Learning Rates 

 

Table 4 Motion Flow-Based Incept LSTM Results 

Data set Epochs Learning 

rate 

Optimize

r 

Training 

accuracy 

(%) 

Training 

Loss (%) 

Validation 

Accuracy 

(%) 

Validation Loss 

(%) 

No. of 

output 

classes 

UCF Crime 

dataset 

15 1e-6 RMSProp 98.2 0.2 94.57 0.38 4 

 

In anomaly recognition, a delayed response can cause the 

loss of human being, and important assets. Therefore, 

model selection for feature extraction is important for 

anomaly detection. Table 5 presents the accuracy 

comparison of the proposed model with the state-of-the-

art methods. In the proposed model, Motion flow based 

Incept LSTM, the number of parameters is 23 million, 

with a 1.5 GB model size. The time taken to process a 

sequence of 16 frames is 0.08 seconds with a total training 

time of 17hrs 13minutes presents the comparison on the 

number of parameters and processing time taken by the 

individual model to process a sequence of frames for 

activity recognition. 
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Table 5 Accuracy Comparison with State-of-the-Art Methods 

Method used Accuracy Dataset Used 

DEARESt based on 

VGG19 + FlowNet for motion flow [17] 

76.66% UCF-Crime dataset 

VGGNet+Bi- 81% UCF-Crime dataset 

directional LSTM [43]   

VGG16 +BD- LSTM [30] 82/87.5% UCF-Crime dataset/UCFCrime2Local 

Inception v3+BD- LSTM [30] 80/88% UCF-Crime dataset/UCFCrime2Local 

Resnet50+BD- LSTM [30] 85.53/89.05% UCF-Crime dataset/UCFCrime2Local 

Inception v3+LSTM [32] 88.37% KTH 

CNN(MobileNet)+Atte 78.30% UCF-Crime Dataset 

Proposed Method 94.57% UCF-Crime Dataset 

 

Table 6 Comparison of the Proposed Method with State-of-the-Art terms of the Parameters and Time Complexity 

Method used No. of parameters (in 

millions) 

Time Complexity/Per 

Sequence (in seconds) 

DEARESt based on VGG19 + 

FlowNet for motion flow [17] 

305.49 - 

VGG16 +BD- LSTM [30] 143 0.22 

Inception v3+BD- LSTM [30] 23 - 

Resnet50+BD- LSTM [30] 25 0.2 

Proposed Method 23 0.08 

 

5. Conclusion 

In this research paper, the baseline Incept LSTM is 

optimized. To improve the recognition accuracy, the 

importance of motion flow with video data is analysed and 

incorporated. The input to baseline model has changed 

and provided with the more construct, required for the 

video data. Further, impact of hyper-parameters is studied 

and analysed. An empirical driven approach is used to 

optimize Incept LSTM by adjusting the values of these 

parameters. The impact of learning rate, activation 

function and optimizers are carefully observed. And 

empirically observed results are used for the final training 

purpose. To establish the validity of the results, the final 

computed results are compared with state-of-the-art 

accuracies. 
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